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Abstract

The availability of very high dimensional data has brought sparsity modeling to

the forefront of statistical research in recent years. From complex physical models

with hundreds of parameters to DNA microarrays which offer observations in

tens to hundreds of thousands of dimensions, separating relevant and irrelevant

parameters is becoming more and more important. This dissertation will focus

on innovations in the area of variable and model selection as they pertain to these

high dimensional systems.

Chapter 1 will discuss work from the literature on the areas of variable and

model selection.

Chapter 2 will describe an innovation to hierarchical variable selection model-

ing that corrects errors that stem from assuming incorrectly that multiple thou-

sands of observations are informing about the same distribution.

In Chapter 3, we introduce a novel technique for applying variable selection

priors to induce sparsity in variance modeling.

One of the weaknesses of DNA microarrays is their sensitivity to the conditions

under which they were prepared. Chapter 4 describes a technique for correcting

the systematic bias that is introduced by these extreme sensitivities.

Chapters 5 and 6 are both case studies. They focus on implementing the

techniques described in chapters 2-4 in real world situations in order to ferret out

pathway signatures and to apply those to clinical situations.

Chapter 7 will introduce a new technique for sampling from a point mass

mixture prior when calculation of the conditional probability is impossible.

In Chapter 8, we apply this technique to a challenging problem in structural

iv



biology.

For Chapter 9, we switch gears somewhat and apply some of the techniques

of decision theory the protein folding problem introduced in chapter 8. We are

able to use the results of our model fitting to inform future decisions for studying

polypeptide helicity.

Finally, we close, in Chapter 10, with some areas for future work that have

opened up as a result of studying these variable selection techniques.
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Chapter 1

Bayesian Variable Selection

The problem of model selection is pervasive in modern statistics. Determining

which of the (potentially many) predictors are relevant to a response variable of

interest is a surprisingly difficult prospect because of the exponential number of

potential predictor interactions. The volume of literature on model selection is

vast, but focuses mostly on the issue as it pertains to generalized linear models.

An excellent survey is available in Clyde and George (2004).

In this situation we have a variable Y that we want to explain in terms of a

subset of measured variables {Xi}k
i=1. Let ϕ = 1, · · · , 2k index the subsets of our

predictor variables. Then we want to choose from among the 2k models of the

form

Y = Xϕβϕ + ε.

With Markov Chain Monte Carlo and the ability to do fast calculation, sta-

tisticians are now able to attack this problem directly with hierarchical models.

One puts prior distributions on the different models π(Mϕ) and priors on the pa-

rameters βϕ|Mϕ of each model. The most studied of the hierarchical models is of
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the form

βϕ|ϕ,Σ ∼ N(0,Σ),

ϕ|p ∼ Bin(rϕ, k − rϕ),

where rϕ is the number of predictors included in model ϕ and p is the probabil-

ity of including any particular variable in the model. When Σ is diagonal, this

formulation is equivalent to using a mixture of a normal distribution and a point

mass at zero for each of the k β’s as follows:

βi ∼ (1− p)δ0(βi) + pN(βi|0, φ)

The term “Spike and Slab” has been used to describe this model for obvious

reasons. Its popularity is due, in part, to its tractability to calculation. In the

linear model situation outlined above this prior is conditionally conjugate, which

allows for complete posterior inference via Gibbs sampling in MCMC.

1.1 Some History and Related Ideas

There is a large body of work built up around a different approach to the problem

of model selection. This involves minimizing a penalized sum of squared errors

function

SSEϕ

σ̂2
+ λ(k) · rϕ

where σ̂2 is an estimate of variance under the “true” model, λ(k) is a function of

the size of the largest model under consideration, and rϕ is the size of model ϕ.

Techniques for choosing penalty functions are myriad. The Akaike Information
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Criterion (AIC) seeks to minimize the expected Kullback-Leibler distance (Akaike,

1973). The Bayesian Information Criterion (BIC), introduced in Schwarz (1978),

chooses a penalty that is asymptotically equivalent to model selection based on

Bayes’ factors (Kass and Raftery, 1995). The advantage of penalized least squares

models is that they are “automatic” in the sense that they allow one to avoid

having to specify a potentially large collection of hyper-parameters. More recently,

CMML and CCML, introduced in George and Foster (2000), use Empirical Bayes

to automatically define hyper-parameters in the context of hierarchical models.

They are able to show the equivalence of this technique to a penalty function that

varies with the structure and amount of data available. A concise survey of the

history of these models and others can be found in George (2000).

These techniques are prevalent in applications due to their ease of use, though

there has been some statistical work in producing new penalty functions from the

perspective of Empirical Bayes. Software tools for model selection based on AIC

and BIC are readily available and there are many users who are comfortable with

them. However George and Foster (2000) show that, given a particular (fixed)

penalty function, there is a choice of (constant) Σ and p so that the ordering

of the posterior probabilities of the models, L(Mϕ), is exactly the same for the

hierarchical model selection and the approach that seeks to minimize a penalized

least squares (George and Foster, 2000). Because it offers significant increases in

flexibility over older approaches (we need not leave p and Σ constant), the main

body of work in variable selection since the introduction of variable selection

priors in Box and Meyer (1986); Mitchell and Beauchamp (1988) has focused on

hierarchical modeling.

There are other approaches to variable selection that are closely related to or
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derivatives of the hierarchical model described briefly above. One such, introduced

by George and McCulloch (1993), uses the following prior for the coefficients of

regressors:

βi ∼ (1− p)N(βi|0, ρ) + pN(βi|0, σρ), (1.1)

p ∼ (1− r)δ0(p) + rδ1(p). (1.2)

The differences here are the replacement of the point mass part of the mixture

with a spike normal distribution and the replacement of a continuous distribution

for p with point masses at zero and 1. We are estimating βi with a mixture of a

very low variance (ρ) normal distribution and a higher variance, σρ with σ >> 1,

normal distribution. In order to avoid problems of identifiability and to aid in

interpretability, we are forced to fix ρ at a value that would keep βi small enough

to be estimable by zero and to keep σ large so that if βi is drawn from N(0, σρ)

then it is unlikely to be estimable by zero. The strongest reason to use this model

over the variable selection model defined above is when the measurement error in

the data is low enough, or the number of observations is high enough to identify

non-zero coefficients that would, nevertheless, be accurately approximated by zero

(George and McCulloch, 1997).

The LASSO method for variable selection, introduced by Tibshirani (1996),

uses a standard linear model setup with double exponential priors on the coeffi-

cients rather than normal priors. This is equivalent to a normal prior distribution

with a certain gamma prior for the variance (Andrews and Mallows, 1974). While

it is evident that this does not lead to posterior mass at zero for any of the coef-

ficients, it can lead to maximum a posteriori (MAP) estimates of zero for many

of them. It is equivalent to (and indeed it was introduced as) a classical least

squares regression model in which one constrains the sum of the absolute values
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of the coefficients,
∑
|βi| ≤ k. The Lasso produces a single “best” answer for any

given value of k, and so any ability to rank the models, or use model averaging to

improve predictive accuracy is lost. For the same reason, there is no information

about posterior density or uncertainty. However, Tibshirani has discovered an al-

gorithm (Efron et al., 2004) which allows the computation of the LASSO solution

to a linear regression problem for all values of the constraint, k, and which has

the same computational complexity as basic least squares regression. Thus, for

variable selection problems, LASSO offers the possibility of solving problems that

would be computationally infeasible for MCMC algorithms such as those required

by hierarchical models with mixture priors.

1.2 Specification of Prior Distributions

The “Spike and Slab” models allow full posterior inference via MCMC algorithms.

We may compute posterior probability of inclusion as a variable selection criterion,

we automatically generate full posterior distributions for all model parameters,

and we have all the information required to use model averaging for the purposes

of prediction. In this sense, Bayesian hierarchical models provide a complete

solution to the variable selection problem in generalized linear models. However,

this does not mean that there is no more work to be done.

In this case, the selection of informative prior distributions and hyper-parameters

is a challenge due to the potentially large number of parameters to choose. Addi-

tionally, the consequences of choosing specific priors on posterior bias have not yet

been fully elucidated. Indeed, the effect of a particular prior structure is different

for problems with high dimension and low observation number data versus low

dimensional problems with many potential predictors.
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1.2.1 Variable Selection with g-Priors

There are two different prior specifications to be made in the “Spike and Slab”

model. The first is the prior probability of variable inclusion, p, and the second

is the prior variance structure, Σ. Often the prior variance is expressed in terms

of Zellner’s g-priors as follows:

βi ∼ (1− p)δ0(βi) + pN(βi|0, gσ2(X ′X)−1).

This leaves the choice of only p and g. Some suggested choices are given in Kass

and Wasserman (1995), Foster and George (1994), and Fernandez et al. (2001).

This type of model suffers from two well known issues. First, if one endeavors to

be as uninformative as possible by choosing g large, one biases the results toward

the null model, βi = 0 for all i (This is a well known problem and is called either

Lindley’s or Bartlett’s paradox). Second, as the information supporting a specific

model, Mϕ, accumulates, the Bayes’ factor for that model tends to a constant

that is strictly less than 1 (Information Paradox).

There are two alternatives to the approach of assigning constant values to p

and g. Empirical Bayes (EB) seeks to choose p and g to maximize the model

marginal likelihood. This is worked out in George and Foster (2000) under the

assumption of a single g for all models. One might follow the same procedure

assuming a different g for each model. Liang et al. (2005) refer to these as Global

and Local Empirical Bayes, respectively. These are conceptually very similar to

the approach of fixing g and p, but now these parameters will depend on the data.

It has also been shown that they are equivalent to least squares regression with a

particular, data dependent penalty function.
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The other alternative is hierarchical modeling. Liang et al. (2005) describe

Hyper-g priors, which are priors with polynomial tails for the parameter g. Use

of such a prior admits the calculation of a closed form for the posterior of g and

is, therefore, fast and easy. Zellner and Siow (1980) propose Cauchy priors on

the regression coefficients, arguably more difficult to calculate with, but offering

the best consistency results. See Liang et al. (2005) for the details of the relevant

theorem and its proof.

All of these approaches resolve the consistency issue and outperform models

with constant g and p. Additionally, it is unclear whether EB or hierarchical mod-

elling performs better as choice of hyper-parameters seems to make a difference,

for example Liang et al. (2005) and Cui and George (2004). A standard complaint

about Empirical Bayes is that the use of the data to “compute” the prior leads

to underestimation of variation in the posteriors. It should be pointed out that

g-priors in general are subject to this complaint because of the use of the data

covariance matrix in the construction of the prior variance, Σ, though it has not

been shown that they maximize marginal likelihood in the empirical Bayes sense.

1.2.2 Independent Priors

Approaches to independent prior specification for the variable selection model

βi ∼ (1− p)δ0(βi) + pf(βi|Φ)

are numerous and, for the most part, lack a coherent focus. (Here, f is a known

distribution with parameters Φ.) This should not be surprising as the problems

to which they can be applied vary widely. In social data, one may have many
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potential predictors of some outcome variable. On the other hand, in the case

of gene expression data, we may have just one experimental group, and we want

to determine in which of multiple thousands of genes there is an effect. In the

case of wavelet density estimation, we may have just one “observation” at each

basis function, and we need to determine which wavelet coefficients can be best

estimated by zero.

The simplest possible solution to the problem is to assign a fixed value to p

and let f be a mean zero normal distribution (with or without a known variance).

Unfortunately, this approach has problems with consistency (Bartlett’s Paradox,

Information Paradox) and suffers from slow convergence as data accumulates.

Additionally, fixing p can lead to significant bias in the posterior (see chapter

2). Finally, the lack of a prescribed technique for assigning p leads to significant

variability in the results from application to application. This kind of dependence

on the prior is excellent cause for rejection of the results of any analysis in which

it is used. There are generally two types of solutions to these problems. The first,

Empirical Bayes, seeks to use the data to produce automatic estimates for the

parameters of the model. The chief complaint regarding this technique is that, by

using the data to construct the prior distributions, one underestimates the true

variance in the posterior. The second, hierarchical modeling, seeks to add levels to

the hierarchy in order to allow the choice of diffuse hyper-parameters which have

minimal effect on the outcome. This approach, however, leaves open the question

of what constitutes minimal effect. Additionally, one is still left with the question

of how to choose hyper-parameters, even though the negative consequences of a

poor choice of prior are lessened.
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1.3 Empirical Bayes

Empirical Bayes is the approach to the problem that has seen the most statistical

research. This is not surprising, as determining the maximum likelihood estimate

of a particular hyper-parameter is a statistical problem. Additionally, EB pro-

vides a technique for selecting hyper-parameters automatically, a feature that is

important to users of the procedures who do not have the knowledge to make

informed choices of hyper-parameters, or do not understand the procedures. The

use of hierarchical modeling is more often used as a tool for specific data analysis

problems in fields where expert opinion on the prior distributions is present.

In a pair of papers Johnstone and Silverman (2004) and Johnstone and Sil-

verman (2005) outline a variable selection method specifically for a thresholding

problem and apply it to wavelet density estimation. Suppose that we have many

observations {xi}n
i=1, each of which are either zero (with some noise) or drawn

from some symmetric distribution (with some noise), and that we want to esti-

mate the mean of each observation. We must either choose zero or some non-zero

value for each mean. The best one can do in this situation is threshold the data

at some value, t, and estimate µi = 0 when xi < t and µi = xi otherwise. For

varying levels of sparsity, the optimal value of the threshold parameter (in terms of

mean squared error of estimation), varies widely (small p leads to high thresholds).

Johnstone and Silverman proceed by assuming the model

xi ∼ (1− p)δ0(xi) + pf(xi|Φ)

where f(xi|Φ) is known, and choosing p to maximize the data likelihood. This

leads to an adaptive threshold that is close to optimal in a rigorous sense, de-
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scribed by Johnstone and Silverman (2004), across all levels of sparsity. However,

assuming that the method can be generalized to multiple observations from each

µi, this leaves open the question of choosing f(xi|Φ) and provides no information

on the uncertainty of each particular estimate of the mean. (Though the latter

would be of dubious use in the case of just one observation from each distribution.)

Another example of the use of Empirical Bayes is given in Yuan and Lin (2005).

They formulate the model as follows. First, let γ be binary vector indicating which

variables are non-zero, and define |γ| to be the number of non-zero variables

included in the model described by γ. Then βγ is a vector of coefficients, |γ| of

which are non-zero. This model is of the form

Y |γ, βγ ∼ N(Xγβγ, σ
2In),

βi|γi ∼ (1− γi)δ0 + γiDE(0, τ),

f(γ) ∝ q|γ|(1− q)p−|γ|
√
det(X ′

γXγ).

There are two significant changes to the basic formulation (equation 1.2) described

above. The first is the use of a double exponential (DE) rather than a normal

distribution in the mixture prior for βi. The double exponential distribution has

heavier tails, and, therefore, should be able to accommodate large ranges in the

posteriors for the set of βi. The second innovation is the addition of
√
det(X ′

γXγ)

in the prior for γ. This has the desirable effect of lowering the prior probability

for models that include highly collinear predictors. This model formulation has

three hyper-parameters, σ, τ , and q, which need to be set. Yuan et al. propose

using Empirical Bayesian techniques to automatically select these values, though

the possibility of adding levels to the hierarchical model is clear. Yuan et al. were

able to show in simulation studies that this model outperforms the EB model
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introduced above by George and Foster (2000) in many situations, and is tractable

to calculation even in cases of high dimensional data.

1.3.1 Hierarchical approaches

Approaches to hierarchical modeling are somewhat varied. West et al. (2001) and

West (2003) use a beta prior for p with a conjugate inverse gamma prior for σ2,

and indeed this seems to have become the default choice in hierarchical variable

selection models (Clyde and George, 2004). Wolfe et al. (2004) describes the use of

an inverse gamma (IG) prior for σ2 with a one parameter family of gamma priors

for the shape parameter. Additionally, they use a prior that allows the modeling

of dependence structure in the pi’s in cases where there is some idea of a metric

on the βi’s. Geweke (1996) prefers a non-conjugate χ2 prior for σ2 for reasons of

interpretability. Finally, there is some evidence (Yuan and Lin, 2005) that mixing

a point mass with a reflected exponential, rather than a normal, distribution leads

to more robust results. With the notable exception of Wolfe et al. (2004), little

attention has been paid to prior distributions for p. Additionally, hierarchical

modeling is something like the Wild West; because there is no consensus as to

the best choice for any of the prior distributions or hyper-parameters, researchers

must fend for themselves.

1.4 Data and Examples

The first of three Affymetrix data sets we use in the paper is from a Human

Mammary Epithelial cell line (HMEC). The arrays were generated by upregu-

lating specific known oncogenes (Bild et al., 2006). The data set consists of 15

samples from a control group, and 7-10 samples from each of the 9 experimental
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groups. The 9 experimental groups correspond to the upregulation of the following

genes: myc, src, b-cat, E2F3, H-Ras, Np63α, AKT1, E2F1, and Pik3CA. All of

the samples were generated from the same cloned cell line, thereby avoiding signif-

icant gene expression changes due to normal biological variability. Thus, observed

variation in gene expression should be due to oncogenic intervention exclusively.

However, the samples from this experiment come in three groups which were col-

lected months apart. The first consists of 10 of the controls along with the first

5 experimental groups, the second consists of the last 4 experimental groups, and

the remaining 5 controls were collected last. Array data is notoriously difficult to

collect in a standard way, and there are clear temporal effects observable in the

data. Additionally, there is evidence in some genes of large changes in expression

variance across the experimental groups.

The second of the Affymetrix data sets, also obtained from HMEC’s, involved

a study of the effects of hypoxia and lactic acidosis. Three samples were taken

from the cell line in each of four conditions: control, in the presence of lactic acid,

in the absence of oxygen, and with lactic acid in addition to hypoxia. These cell

lines do not show the temporal variability that can be seen in the up-regulation

experiment, but with only three observations in each group there is no way to

observe any differences in the variance of expression levels across the experimental

conditions.

The final Affymetrix data set was generated on RNA extracted from the breast

tumors of hospital patients (Miller et al., 2005). In addition to biological variabil-

ity across patients, the tumors themselves are heterogeneous, so we expect to find

distributions of expression levels in this case that look much more unimodal. We

have survival data from these patients, and this will allow us the opportunity to
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find collections of genes from the previous data sets, and then test these collections

for their ability to predict patient survival.

In general, RMA data is noisy, so we will drop from consideration any gene

which remains low across all samples. Also, from prior experience with microar-

rays, we have some idea of likely levels of experimental variance of the observations.

This will allow us to inform some of our prior distributions where appropriate.

For the second part of the text, we will focus on a different type of data set.

We have collected from publications a set of polypeptides with experimentally

measured alpha helicity. For each such polypeptide, we have information on the

temperature and pH at which the measurement was taken. There are 360 dis-

tinct polypeptides with such measurements and there are included a number of

temperature and pH curves, bringing the total number of observations to 1187.

Of the 360, 142 are designed polypeptides and the remainder are naturally oc-

curring. The designed sequences contain multiple instances of alanine and lysine.

Because of this and other biases in peptide design, we can not assume that the

polypeptides were sampled randomly from polypeptide space.

1.5 Summary

While there has been significant work on the variable selection problem as it

pertains to linear models, there is a conspicuous absence of work on hierarchical

models. In chapter 2, we will examine the choice of prior probability of inclusion

of a model parameter, p, and offer an expanded model to correct for bias in the

posterior probability of inclusion. In chapter 3, we will examine the potential

application of variable selection priors in models of heterogeneous variance in

expression. Chapters 4 and 5 are case studies in which we apply our multilevel
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hierarchical model to the gene expression data sets described above.

Another area of importance for variable selection is in non-linear models. In

chapter 7 we introduce a particular graphical model and discuss the possibility of

variable selection in this context. Chapters 8 and 9 are devoted to the application

of this model to the prediction of helicity in short polypeptides. Thus we will

retain our biomedical/genomics theme throughout the thesis, with our theoretical

focus centering on model and variable selection.
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Chapter 2

Shrinkage in “Large p Small n” Analysis

Since the introduction of variable selection priors, there has been little focus on

specification of the prior probability that a variable is included in a model. This

prior probability is often treated as a nuisance parameter. Empirical Bayes solu-

tions set the parameter to a constant and hierarchical Bayes solutions make the

obvious choice of giving it a weak beta prior.

It is almost always the case, however, that an experimenter is specifically

interested in the posterior probability of inclusion as a study variable. In these

cases, it is difficult to justify a constant prior even if it is derived from a maximum

likelihood estimate. The loss of some of the posterior uncertainty can be shrugged

off when the posterior of the given variable is of secondary interest, but it is not

clear that this is the case if it is of primary interest.

The hierarchical Bayes solution of using a beta hyper-prior has a different prob-

lem. By definition, it assumes that all of the parameters under consideration are

being drawn from the same distribution. That is, the variable inclusion/exclusion

indicators are viewed as exchangeable. This is often a dubious assumption. Con-

sider the oncogene experiment described in chapter 1. We have 10 observations
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from a control group, and 10 from and experimental group in which a particular

gene has been artificially up-regulated in a human cell line. We may have results

from 50,000 or more genes. If we make the prior assumption that the probabil-

ity of seeing a shift in mean expression level follows a single beta distribution,

then we are in effect saying that each of the 50,000 experiments gives us informa-

tion about the same distribution. Now consider what happens when we eliminate

40,000 of the genes because the associated expression levels are all below the de-

tection threshold of the experiment. If there were about 1000 genes that show a

change in mean due to our experimental up-regulation, then the posterior prob-

ability of inclusion has changed from 1/50 to 1/10 (because a beta distribution

updated with either 10,000 or 50,000 observations is essentially a constant). Elim-

inating the “noise” genes, which are providing no information about the variables

of interest, has significantly changed our posterior.

The main problem here is the assumption that all of the 50,000 expression

levels are providing information about the same distribution. In fact, some of

the microarray probes have nothing at all to do with our artificially up-regulated

gene. Indeed, some of them may have nothing to do with human mRNA at all!

What we truly want is a hyper-prior that implies that some of the expression

levels are within the pathway of our up-regulated gene and some are not, but we do

not know, a prioŕı, which are which. In this chapter we will outline new statistical

thinking and resulting modelling methodology that aims to better differentiate

between noise and useful information in such a situation. There is some similar

work in Ishwaran and Rao (2005) for use with spike and slab type variable selection

models.
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2.1 Framework and Notation

There are three main data sets that we will be using throughout the first part

of the text for illustrative purposes. These are Affymetrix DNA microarray data

sets. For these, we will use the standard RMA estimates of the intensity of the

flourescence at each point on the chip, (Irizarry et al., 2003a,b).

We will write yg,i to refer to the expression level of gene g from sample i. We

will reserve p for the number of genes and n for the number of samples. Let yi

denote the column vector of expression levels for sample i and Y = [y1, · · · yn] be

the p× n dimensional matrix of expression levels.

We will use linear regression in dealing with these data sets:

yi = µ+Bxi + εi

where µ is a p dimensional vector of means (constant across samples), xi is a d-

dimensional design vector of known covariates, and B is a p×d dimensional vector

of unknown coefficients. Our error in the model, ε, is a p-dimensional vector of

zero mean normal random variables, ε ∼ N(0, ψ), where ψ is a p × p diagonal

covariance matrix. We write µg for the gth element of µ and β′g for the gth row of

B. If we let j ∈ 1 · · · d, then we write βg,j as the element of B in the gth row and

jth column. Our model above can then be written:

yg,i = µg +
d∑

j=1

βg,jxj,i + εg,i

where the εg,i are conditionally independent N(εg,i|0, ψg).
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2.2 Prior Assumptions about Probability of In-

clusion

The default choice of distribution for prior probability of inclusion of a model

parameter is a beta distribution. A simple form of the model, with a single

regressor, xi, on sample i is:

yg,i = βg,0 + βg,1xi + εg,i, (2.1)

βg,0 ∼ N(m, v), (2.2)

βg,1 ∼ (1− π)δ0(βg,1) + πN(βg,1|0, τ), (2.3)

π ∼ Be(α, γ), (2.4)

εg,i ∼ N(0, ψg). (2.5)

where 1 ≤ i ≤ n is an index on the observations and 1 ≤ g ≤ p where p is the

(large) number of variables, (genes in a microarray experiment).

This is a shrinkage prior on the variable π which tends to shrink the pos-

terior in surprising ways. Specifically, consider a simulated example containing

1,000 “genes”, each with 10 control group and 10 experimental group observa-

tions. Suppose that all controls are drawn from a standard normal distribution.

Additionally, suppose that in 700 of the trials the experimental group is drawn

from a standard normal distribution while in the remaining 300 trials the result is

from a N(1.5, 1) distribution. Take a uniform Be(1,1) prior for π and Ga(1, 100)

priors for both 1/τ and each of the 1/ψg.

As one would expect (see Figures 2.1 and 2.2), the posterior means for β1,i

and ψg fit what we know of the data. However, consider the posterior probability

that βg,1 6= 0 shown in Figure 2.3. We see that the bulk of the mean posterior
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Figure 2.1: A histogram of the posterior means of the regression coefficients,
βg,1, from the model outlined in equations 2.1 through 2.5 on simulated data.
The data was generated such that the “truth” is 0 for 700 of the trials and 1 for
300 of the trials. The standard Bayesian variable selection model correctly obtains
a bimodal posterior distribution for the coefficient, which matches the simulated
data set.

probability of β1,i 6= 0 is above .4 and that all of the 1000 posteriors are larger

than .2. This is surprising considering that there are 123 of the 1000 trials in

which the absolute difference in mean from control to experimental is less than

.01 and the minimum difference is 10−4. The model in this situation predicts

a 30% probability of an experimental effect when there is in fact no evidence

whatsoever in the data.

In fact, it is possible to observe the same mean from a N(0, 1) process and

a N(1.5, 1) process; the probability, given 10 observations from each, that the

second process will produce a smaller mean than the first is only about .04%.

Clearly, then, a posterior of 30% is undesirable. Let us consider what else is going
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Figure 2.2: A histogram of the posterior means of the standard deviations,
√
ψg,

from the model outlined in equations 2.1 through 2.5 on simulated data. The data
was all generated from normal distributions with variance 1. The actual variance
for the data was 1.

on.

Let p(βg,1|−) be the conditional density of βg,1. The prior for βg,1 is condition-

ally conjugate, so that

p(βg,1|−) = (1− π̂g)δ0(βg,1) + π̂gN(βg,1|m, v),

where the values of the parameters of this posterior are shown in equation 2.9 of

section 2.3.1.

The strongest evidence for βg,1 = 0 occurs when
∑

i yg,i − βg,0 is minimal. In
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this case,

π̂ =
π/(1− π)√

τ/v + π/(1− π)
.

We know from the construction of our data set that π is drawn from a beta distri-

bution with mean approximately .3 after being updated with 1,000 observations.

This implies a > 99% probability that π/(1 − π) will be less than .46. Notice

that v is the variance of the estimate of βg,0 derived from 10 observations which is

approximately 1/
√

10. τ is the variance of the normal distribution that approxi-

mates the distribution of βg,1, which in this case should be about .5 (the variance

of a vector of 700 zeros and 300 values of 1.5). Under these assumptions, we find

that π̂ ≈ .33. Hence we expect to see a non-zero βg,1 more than 33% of the time

even when there is no evidence at all in the data. This phenomenon is what we

see in Figure 2.3. (Note: we have used a Be(.5, .5) prior for π and diffuse inverse

gamma priors for τ and ψ.)

Consider the experiment we have just outlined. We have 1000 different trials,

but implicit in this assumption is that there is something different across the trials,

otherwise we would treat the data as coming from just one large experiment with

10000 control observations and 10000 experimental observations. On the other

hand, the standard model assumes that the process by which an experimental

effect occurs is the same across all of the trials. That is to say, from a modeling

standpoint, our original experiment would have been no different if we had just

repeated trial i 1000 times. Based on the standard Bayesian variable selection

model, we are simultaneously assuming that the trials have some feature that

differentiates them and that they are exchangeable.
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Figure 2.3: The posterior probabilities from the model outlined in equations 2.1
through 2.5 of P (βg,1 6= 0) for the 1,000 trials in the simulated data. The data
contain only 300 trails in which β 6= 0. Shrinkage has caused β1,i to shift much
higher than the data should suggest.

In truth, we believe that the results from some of the trials are best explained

by assuming that βg,1 = 0, others are best explained by assuming that βg,1 6= 0,

and a prioŕı we do not know which are which. However, we do believe that the

results from trial i should be consistent if we were to repeat the experiment. One

model for βg,1 that better reflects this situation is:

βg,1 ∼ (1− πg)δ0(βg,1) + πgN(βg,1|0, τ), (2.6)

πg ∼ (1− r)δ0(πg) + rBe(πg|α, γ), (2.7)

r ∼ Be(ρ, ϕ). (2.8)

We now have a notion of πg as a variable-specific (or in the case of microarrays,

gene specific) prior probability that βg,1 6= 0. By assuming a mixture of a point
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mass at zero and a beta distribution, we assume that some of the variables are

best explained by assuming βg,1 = 0 with probability 1. When we repeat our

experiment with the same simulated data, we obtain a much clearer separation

of signal from noise, and lower our false discovery rate significantly (see figure

2.4). Full details of this prior and the resulting Bayesian analysis are described in

section 2.3.2.

Figure 2.4: A histogram of the posterior probability of βg,1 6= 0 for the model
outlined in equations 2.6 through 2.8 on the simulated data set. The new model
for πg does a much better job of separating the noise from the clear signal. As
before, 300 of 1000 experimental group results are drawn from N(1.5,1) while the
rest, along with the controls, are drawn from N(0,1).

Choice of Hyper-Parameters

First consider the mixture prior for πg. Notice that a low mean beta distribution

can be almost indistinguishable from a point mass at zero. In what follows, we
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are considering the conditional densities of βg,1 and πg. With this in mind, we

drop βg,0 from consideration, as it can be incorporated into the data as a residual.

Additionally, because βg,1 and βg′,1 are conditionally independent, we will drop

the subscript notation and simply write β = βg,1 and π = πg here. Consider the

density for π conditional on β = 0:

p(π|β = 0, r) ∝ (1− π)δ0(β)[(1− r)δ0(π) + r ·Be(π|α, γ)]

∝ (1− r)(1− π)δ0(π) + r(1− π)
Γ(α+ γ)

Γ(α)Γ(γ)
πα−1(1− π)γ−1

∝ (1− r)δ0(π) + r
γ

α+ γ
Be(π|α, γ + 1)

∝ (1− r)(α+ γ)

α(1− r) + γ
δ0(π) +

γπr

α(1− r) + γ
Be(π|α, γ + 1)

= (1− r̂)δ0(π) + r̂Be(π|α, γ + 1)

with r̂ implicitly defined.

Thus, when β = 0 an MCMC analysis will sample π from Be(α, γ + 1) with

probability r̂. The ideal choice of α and γ will depend on the data. If r̂ is near

zero, then π (and therefore β) will stick to zero leading to convergence issues

in the MCMC chain. On the other hand, if r̂/r is near 1, then there is clearly

an identifiability issue, as β = 0 is the strongest evidence possible for π = 0.

r̂/r = γ/(α + γ − αr), so the ratio approaches 1 when γ is large relative to α.

This is not surprising since a Be(1, 100) distribution (for example) is difficult to

visually distinguish from a point mass at zero.

The prior values for ρ and ϕ will determine the mean and variance of the

prior for r. For a very low variance, r will be essentially constant, and our model
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treats each variable independently. That is to say, the status of βg,1 provides no

information on βg′,1 if g 6= g′. If this is the situation we want to achieve, we may

need to choose a prior for r that is much more concentrated.

Figure 2.5: When we set α = .9 and γ = .1 we obtain this relationship between r̂
and r. This shows the relationship between the prior value for r and its posterior
after we update when β is observed to be zero (the strongest evidence that r = 0).

Experimentally, we have determined that a choice of α = .9 and γ = .1 work

well for the point mass mixture prior for π (see Figure 2.5) in a number of analyses

of simulated and real data sets.

As in many complex hierarchical models, there is some lack of clarity on the

criteria for choosing hyperparameters. There is the possibility of making such

decisions based on maximizing predictive accuracy, or by minimizing misclassifi-

cation rates. This is an area for future work.
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2.3 Markov Chain Monte Carlo

Thus far, we have focused our attention on a very simple model for illustrative

purposes. In more practical situations, we must expect to have multiple covariates.

In order to make the following sections more directly applicable, we will expand

our model as

Y ∼ N(βH ′, ψIp)

where we have a n × d design matrix, H, with columns corresponding to the d

design vectors, a p×d matrix of regression coefficients, and a p-dimensional vector

of variances, ψ = (ψg). We will index the elements of β as βg,j.

We have developed a relatively complex model which includes some point mass

mixtures. Without careful design of a sampling algorithm, we will have difficulty

with convergence. However, because of the structure we have chosen, we are able

to use Gibbs sampling for all of the variables. Techniques for updating regression

coefficients that have normal priors (such as the mean expression parameter, βg,0)

are standard, and will not be covered here. Instead we will focus on the updating

schemes for the coefficients with variable selection priors.

2.3.1 Updating β

Note that, given all of the other variables, βg,j and βg′,j are independent. Thus, in

the interest of clarity, we will leave g out of the notation in this section. Thus we

will write yg,i = yi, βg,j = βj, etc. We update each of the βj’s (j = {1, 2, · · · , d})

sequentially and independently of the others. If Hj is the design matrix with

the jth column set to zero, then let ti = yi − βH ′
j. Our model for ti is then

ti ∼ N(βjxi, ψi) where xi is the ith element of the zeroed out column from the

26



design matrix. Notice that our design matrix may contain some cases where xi

is neither 1 nor 0. For the purposes of updating βj, we throw out observations

corresponding xi = 0. Define φi = ψi/x
2
i and zi = ti/xi. Then, we can then write

zi ∼ N(βj, φi). Notice that we have allowed the variance parameter, ψi to be

different across the observations. Our reasons for this will follow in Chapter 3.

Now our complete conditional posterior density for βj is

P (βj|−) ∝

(∏
i

N(zi|βj, φi)

)
[(1− πj)δ0(βj) + πjN(βj|0, τ)],

∝ (1− π)δ0(βj)e
− 1

2

P
i z2

i /φi + πe−
1
2

P
i(zi−βj)

2/φi
1√
2πτ

e−
1
2τ

β2
j ,

∝ (1− π)δ0(βj) + πe
− 1

2

h�
1
τ
+
P

i
1
φi

�
β2

j−
�
2
P

i
zi
φi

�
βj

i
1√
2πτ

.

If we let 1/v = 1/τ +
∑

i 1/φi and m = v ·
∑

i zi/φi, then

P (βj|−) ∝ (1− π)δ0(βj) + πN(β|m, v)
√
v√
τ
em2/(2v),

= (1− π̂)δ0(βj) + π̂N(βj|m, v)

where π̂ = c/(1 + c) and

c =
π

1− π

√
v√
τ
em2/(2v).

Thus, to update βj we let βj = 0 with probability 1 − π̂ and otherwise sample

βj ∼ N(m, v).
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2.3.2 Updating π

The other step in the MCMC of note is the updating of π. The conditional

posterior is

p(π|β = 0, r) ∝ (1− π)δ0(β)[(1− r)δ0(π) + r ·Be(π|απ, γπ)]

∝ (1− r)(1− π)δ0(π) + r(1− π)
Γ(απ + γπ)

Γ(απ)Γ(γπ)
παπ−1(1− π)γπ−1

∝ (1− r)δ0(π) + r
γπ

απ + γπ

Be(π|απ, γπ + 1)

∝ (1− r)(απ + γπ)

απ(1− r) + γπ

δ0(π) +
γπr

απ(1− r) + γπ

Be(π|απ, γπ + 1)

= (1− r̂)δ0(π) + r̂Be(π|απ, γπ + 1).

Thus, when β = 0 we sample π from Be(απ, γπ + 1) with probability r̂ and

otherwise we sample π = 0.

Similarly, if we suppose that β 6= 0, then

P (π|β 6= 0, r) ∝ πN(β|0, τ)[(1− r)δ0(π) + r ·Be(π|απ, γπ)].

In this case, however, we know that π 6= 0 since this would force β = 0 , thus

P (π|β 6= 0, r) ∝ πN(β|0, τ)r ·Be(π|απ, γπ)

∝ π ·Be(π|απ, γπ)

∝ Be(π|απ + 1, γπ).

So when β 6= 0, we draw π from a Be(π|απ + 1, γπ) distribution.
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2.3.3 Updating rj and sj

The parameter rj is a prior on I[πg,j=0]. As a beta prior on a binary variable, it is

conjugate. If we observe πg,j = 0 for f of the genes, then we update rg from the

distribution:

rj ∼ Be(αrj
+ p− f, γrj

+ f).

Because of the conjugacy of these parameters, we are able to update and

converge to our posterior distribution quickly.

2.4 Results

2.4.1 Gene Up-regulation Experiment

The modification of our hierarchical priors has a profound effect on the posterior

results in our gene expression experiment. Figures 2.6 and 2.7 show the analysis

of the MYC experimental group using the old beta prior and the new multi-level

prior respectively.

As can be seen in figures 2.8 and 2.9, this trend is seen in all of the different

experimental groups. The much lower discovery rate is indicative of a lower false

discovery rate, and is more consistent with the expectation of the size of these

gene pathways.

2.4.2 Lactic Acidosis Signature

We may apply the same analysis to another data set. In this experiment, we have

a single cell line used for 12 gene microarray assays. There are three observations

in each of four groups: control, lactic acid, hypoxia, and both. We will focus on

the lactic acidosis vs control group for this section.
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Figure 2.6: A histogram of the posterior probabilities of change in mean between
control and the MYC experimental group as computed from the standard hierar-
chical Bayesian variable selection priors. Notice that the model finds that > 3500
of the 12,000 genes under study are significantly affected by the up-regulation of
MYC. This is difficult to believe, as we are studying the pathway of just one gene.

With the standard hierarchical model, we find 3,350 genes that are relevant

(posterior probability that β1 6= 0 > .95) in the lactic acidosis signature. Figure

2.10 shows the expression levels of all 12 of the experimental cells on the first

two principal components of the expression levels of the 3,350 genes found to be

relevant to the lactic acidosis intervention. We call these principal components

the lactic acidosis metagene or the lactic acidosis signature. Notice that the cells

grown in the presence of lactic acid are relatively poorly separated from the others.

Using the new hierarchical structure, we find that there are only 808 relevant

genes in the lactic acidosis signature. Without the irrelevant genes that are “dis-

covered” by the older hierarchical structure, we find a much cleaner separation of

the lactic acidosis cells from the others in the experiment (see Figure 2.11).
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Figure 2.7: When we use the new, multi-level hierarchical prior, there is a large
drop, from 3500 to around 1500, in the number of genes that are determined to
be significantly affected by the up-regulation of MYC. Also notice that, compared
to the standard hierarchical prior, there are many genes that are determined to
have a very low probability of being in the MYC pathway. The genes with the
least such probability using the standard model are still assigned a probability
near 10%.

2.5 Summary

We have presented a new sparsity prior for multiple regression and anova,

yg,i ∼ N(x′iβg, ψg),

βg,j ∼ (1− πg,j)δ0 + πg,jN(0, τj),

which assumes a prior probability of inclusion that is different for every gene and

every group. These prior probabilities are independent, conditional on knowledge

of a group specific overall inclusion probability, rj:

πg,j ∼ (1− rj)δ0 + rjBe(απ, γπ),

rj ∼ Be(αr, γr).
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Figure 2.8: Boxplots of the posterior probabilities of a change in mean for each
of the nine experimental groups across the 12,000 genes under study. These plots
are of posteriors generated from the standard beta prior probability of a difference
in mean. Notice that the median level of posterior probability of a difference in
mean is much higher than that obtained using the new multi-level hierarchical
prior.

This hierarchical structure leads to a conditional probability of a change in mean

π̂g,j =
cg,j

1 + cg,j

cg,j =
πg,j

1− πg,j

√
vg,j
√
τj
em2

g,j/(2vg,j)

where vg,j and mg,j are defined as in section 2.3.1. This model leads to improved

estimation of the probability of a true difference in mean between control and ex-

perimental groups that is both more true to our prior beliefs, and which produces

posterior results that are nearer to expectation. Additionally, there are few addi-

tional complexities introduced in the Markov Chain Monte Carlo, with all steps

updated by Gibbs sampling. While there is further work to be done in under-

standing the implications of choosing particular hyper-parameters, the benefits,
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Figure 2.9: Boxplots of the posterior probabilities of a change in mean for each
of the nine experimental groups across the 12,000 genes under study. These plots
are of posteriors generated from the new multi-level hierarchical prior probability
of a difference in mean. Notice that the median level of posterior probability of
a difference in mean is much lower than that obtained using the standard beta
hierarchical prior.

in terms of improved posterior inclusion probabilities, are significant.
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Figure 2.10: Expression levels for the first and second principal components of
the lactic acidosis meta-gene. The meta-gene is derived with the standard model
for hierarchical Bayesian variable selection, and encompasses 3,350 genes.
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Figure 2.11: Expression levels for the first and second principal components of
the lactic acidosis meta-gene. The meta-gene is derived with the use of the new
hierarchical prior. This meta-gene contains only 808 genes and leads to a much
cleaner separation of the cells grown in the presence of lactic acid from the rest
of the cells in the experiment.

35



Chapter 3

Sparsity in Variance Modeling

Revolutionary advances in microbiology have led to the ability to assay mRNA

expression levels for thousands of genes concurrently. This ability has led to an

explosion of gene expression data in many different organisms and many different

cell lines. These arrays have already been used in research institutions everywhere

in the study of aortic aneurysms (Tung et al., 2001), esophageal cancer (Hu et al.,

2001), breast cancer (West et al., 2001), atherosclerosis (Karra et al., 2005), and

many other studies.

In many of these experiments, the researcher will obtain multiple observations

from control and experimental groups. In this situation, the researcher may want

to know which of the genes show a response to the treatment. As discussed in

chapter 2, an excellent way to approach this is via the use of a variable selection

prior. One of the weaknesses of this approach is the assumption of a constant

variance across both control and treatment groups. This assumption causes loss

of power, and may lead to both Type I and Type II error.

Implicit in the standard Bayesian selection model is the assumption that the

experimental intervention will have no effect on the variance of the observations,
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ie.,

yg,i ∼ N(βg,0 + xiβg,1, ψg),

1/ψg ∼ Ga(a, b),

implicitly assuming that ψg is constant as xi varies. (Note: for simplicity, we have

reverted back to a model that has just one variable with a selection prior.) While

this can be a useful approximation, it is often inappropriate. Consider a typical

dose response curve shown in Figure 3.1. At the upper and lower ends of the

curve, the response will have much lower variance. With this in mind, it is much

Figure 3.1: A hypothetical dose response curve showing the response from dosing
at 5, 10, and 15 when the dose is normally distributed with a variance of 1. This
illustrates the obvious result that there is much more variance in the response
when the dose level varies around 10.

easier to understand results such as that shown in Figure 3.2.

There have been some ad hoc attempts to deal with differences in variance

between genes (Delmar et al., 2005), but, to date, there has been no attempt to
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Figure 3.2: A scatter plot of the expression levels of the gene CDKn2a across
all 97 samples from the oncogene experiment described in section 1.4. There are
clear changes in the variance of expression levels for E2F3, Ras, and E2F1.

model differences in variance across treatment groups within a gene in general

models. We will present a model for doing just that in a selective manner which

allows the assumption of constant variance to be kept when appropriate.

3.1 Sparsity Priors and Variance Modeling

In the ideal situation, one would like to detect and adapt to differences in variance

only when they are present. This would allow us to keep the lower false discovery

rate associated with the assumption of constant variance when appropriate. In

fact the tools for accomplishing this are already available to us in the form of

variable selection. Rather than the more typical inverse gamma distribution for

the variance of the zero mean error, one might assume a log-normal distribution.

This variable can then be modeled in exactly the same way as any other normal
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random variable including regression with variable selection priors. For example,

yg,i ∼ N(βg,0 + xiβg,1, ψg,i),

log(ψg,i)

2
∼ N(∆g,0 + xi∆g,1, ρ),

∆g,1 ∼ (1− q)δ0 + qN(0, τ).

However, we are now apparently free to place any type of hierarchy structure

on the coefficients ∆ of our model for variance. In particular, we may use the

hierarchical variable selection priors such as those described in chapter 2. This

will accomplish our goal of modeling changes in variance only where appropriate.

That is,

∆g,1 ∼ (1− qg)δ0(∆g,1) + qgN(∆g,1|0, τ),

qg ∼ (1− s)δ0(qg) + sBe(qg|α, γ),

s ∼ Be(αs, γs).

Given λg,i = log(ψg,i)/2, model fitting proceeds exactly as in standard variable

selection. In fact, computer code may be reused exactly with no changes, thus

implementation complexity is not increased at all for these elements of the model.

There are, however, two important hyper-parameters to consider when model-

ing variance in this way, ρ and τ , and some additional complexity crops up in the

study of these parameters. The default technique in each case would be to insert

an inverse gamma prior for each of these parameters, and let the computer do its

thing. However, it turns out that this is the wrong decision in both cases.
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3.1.1 The Conditional Density for ψ

The complete conditional posterior for each ψg,i is the product of an inverse gamma

distribution and a log-normal distribution. Based on the model,

yg,i ∼ N(x′iβg, ψg,i),

log(ψg,i)

2
∼ N(x′i∆g, ρ).

First consider the contribution from the inverse gamma distribution:

yg,i ∼ N(x′iβg, ψg,i),

yg,i − x′iβg√
ψg,i

∼ N(0, 1),

(yg,i − x′iβg)
2

ψg,i

∼ χ2
1,

log |yg,i − x′iβg| = λg,i =
log(ψg,i)

2
+ κg,i,

λg,i = zg,i − κg,i.

where the κg,i are 1/2 of the log of a χ2
1 random variable, λg,i = log(ψg,i)/2 and

zg,i = log |yg,i − x′iβg|.

Thus, the full conditional density for λg,i is:

p(λg,i|−) ∝ fκ(zg,i − λg,i) ·N(λg,i|x′i∆g, ρ), (3.1)

∝ ezg,i−λg,ie−
1
2

exp(2(zg,i−λg,i)) · e−
1
2ρ

(x′i∆g−λg,i)
2

. (3.2)

Equation 3.2 gives us the density we need to perform updates of ψg,i during

Markov Chain Monte Carlo. Specifically, in order to update ψg,i we first draw λ′g,i

from a random walk distribution, N(λg,i, .2). (It was determined that a standard
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deviation of .2 lead to an acceptance rate of around 40%.) We then accept a move

to λ′g,i with probability

min
(
1,
p(λg,i|−)′

p(λg,i|−)

)
.

The variance, ψg,i, is then set to exp(2λg,i).

3.1.2 Prior Distributions on Variance Hyper-parameters

within the Variance Model

Notice that ρ is a parameter that will allow for changes in variance across the sam-

ples in the same experimental group. Since one usually assumes, for good reason,

that observations in the same experimental group come from the same distrib-

ution, it is clear that we want this parameter to be quite small. Additionally,

consider that ρ is truly a nuisance parameter which will provide no information

about our data. Finally, ψg,i are variables in the model, unlike yg,i. Thus, seem-

ingly reasonable priors on ρ will tend to cause the ψg,i to shrink to a common

mean. This in turn will lead to a decrease in ρ, thereby strengthening the ten-

dency of the ψg,i to shrink to a common mean, as shown in the trace of ρ (Figure

3.3).

This tendency of ρ to shrink to zero can have disastrous consequences for the

convergence of other parameters. The traces for the ∆1,1 parameters from two

different MCMC runs of the exact same data are shown in Figure 3.4. Note that

one goes to zero just after step 2000 while the other converges to a non-zero

distribution.

There is a separate issue at work here as well. Notice that we are updating each

of our ψg,i around a mean ∆g,0 + xi∆g,1 and subsequently updating ∆g,0 and ∆g,1
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Figure 3.3: The trace of the parameter ρ (from equation 3.1) when it is given
an inverse gamma prior. This trace was generated on a generated data set of size
p = 20 and n = 20. Depending on the initial data, there is a tendency for ρ to
limit to zero.

given {ψg,i}. If, for example, we have 20 observations in our experimental group,

we will find that, even if convergence is possible, it will be very slow because each

of the 20 separate ψg,i parameters must move toward its correct distribution with

a step size that is partially determined by ρ while at the same time remaining

near the other ψg,j. When ρ decreases to zero at the same time, we find that the

model never converges (as in figures 3.3 and 3.4).

3.1.3 Prior on ρ

The solution to these problems comes in two parts. First note that the size of ρ

will have a direct bearing on the level of variation in the estimates of ψi within a

trial. Due to the nature of variable selection, higher variability will lead to lower

posterior probability that ∆1 6= 0. We generated a data set consisting of two
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Figure 3.4: When ρ does limit to zero, as in Figure 3.3, this can have disastrous
consequences for the convergence of the variance parameters. Here we see the
traces for the parameter ∆1,1 from two separate runs on exactly the same data
used to generate Figure 3.3.

groups of 10 each and 500 “genes”, of which all 10×500 from the control group were

generated from a standard normal, and all 10× 500 from the experimental group

were generated from N(0, .5). Figures 3.5 and 3.6 show the posterior probabilities

on this data set for ∆1 6= 0 when ρ is set to constant value of .1 and .5 respectively.

We find empirically that: 1) when there are 10 observations in both control and

experimental groups, 2) the prior probability of variance difference is set to .5,

and 3) ρ is set to .2, that there is about a 50% chance of detecting a doubling or

halfing of the variance from control to experimental observations.

3.1.4 Independent Movement of ψi

We have an exact formula for the conditional probability of λg,i|zg,i,∆ (see equa-

tion 3.2), so we can use a random walk Metropolis step to update it (and hence
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Figure 3.5: When ρ is small, there is a high chance of finding variance differences
in the data set.

ψg,i). First we set λg,i = log(ψg,i)/2. We then draw λ̂g,i ∼ N(λg,i, .2). The stan-

dard deviation of .2 was chosen to induce approximately a 40% acceptance rate.

The proposed new value, λ′g,i is then accepted with probability min
(
1,

p(λ̂g,i)

p(λg,i)

)
. If

it is accepted, then we set ψg,i = e2λ′g,i .

With the model and updating scheme as we have described it so far, we have

eliminated the issue (shown in Figure 3.3) of convergence to zero. This, however,

does not entirely address all of the convergence issues.

3.1.5 Convergence

While fixing ρ will control the problem of non-convergence to some extent, there

is still an issue when there are multiple observations moving individually, but

also constrained to be near each other. Additionally, notice that we are poten-
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Figure 3.6: When ρ is large, there is less chance of finding variance differences,
as compared to Figure 3.5.

tially inducing multimodality in ∆g,1 with our point mass mixture prior. This will

translate directly into multimodality in the posterior of ψg,i with the two modes

corresponding to ∆g,1 = 0 and ∆g,1 6= 0. If we can move all of the ψg,i simultane-

ously, the problem with the convergence rate can be substantially improved, and if

we can do this with a Gibbs step, we can solve the problem of movement between

modes. Consider the conditional posterior (from above) for λg,i = log(ψg,i)/2,

p(λg,i|−) ∝ ezg,i−λg,ie−
1
2

exp(2(zg,i−λg,i)) · e−
1
2ρ

(x′i∆g−λg,i)
2

,

and suppose that we use an improper uniform prior distribution for ∆g,1|(∆g,1 6=

0). We will introduce a new latent “offshift” variable, δg, by which amount we

will simultaneously move ψg,i and ∆g,1. It is important to note that this step can
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only be taken when ∆g,1 6= 0. Then the conditional density for δg is:

p(δg|−) ∝
∏

i

ezg,i−λg,ie−
1
2

exp(2(zg,i−λg,i)) · e−
1
2ρ

(x′i(∆g,1+δg)−(λg,i+δ−g))2 ,

=
∏

i

ezg,i−λg,ie−
1
2

exp(2(zg,i−λg,i)) · e−
1
2ρ

(x′i(∆g,1+δg,i)−(λg,i+δg))2 ,

∝
∏

i

ezg,i−λg,ie−
1
2

exp(2(zg,i−λg,i)),

= enδge−1/2
P

i exp(2(zi−λg,i)) exp(2δg),

∝ enδge−1/2K exp(2δg),

where K =
∑

i exp(2(zg,i − λg,i)). Now, if we let νg = exp(δg) we find

p(νg|−) ∝ νn
g e

−1/2Kν2
g (1/νg),

= νn−1
g e−1/2Kν2

g .

Now we may draw ν2
g ∼ Ga((n + 1)/2, K/2) and set δg = log(νg). A similar

assumption of an improper uniform prior on ∆g,0 allows us to move in the opposite

direction. Thus, we can move between the two modes in the posterior distribution

of ψg,i that occur due to the multimodality of ∆g,1 and, at the same time, improve

convergence significantly.

We ran 1,000 different simulated trials, each of them on two different MCMC

chains. Figure 3.7 demonstrates convergence of the separate chains after 10,000

steps, assuming the use of the Gibbs step allowing joint movement of ψg,i and

∆g,1. Figures 3.8, 3.9 and 3.10 are the results from running the test without

the step allowing joint movement of ψg,i and ∆g,1. The three figures show non-

convergence after 10,000 steps, 20,000 steps, and 40,000 steps respectively. Points

where there is disagreement by more than 20% are marked with red x’s. Note that
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the three experiments showing non-convergence were performed independently of

each other. The 10,000 steps from the shortest of the three are not a subset of

the steps from either of the other two.

Figure 3.7: Convergence of two separate chains after 10,000 steps, and tested on
1,000 different trials. This experiment uses the joint move of ψg,i and ∆g,1. The
red ’x’ makes the single point for which the posteriors disagree by more than 20%.

3.2 Experimentation

We have introduced a model for variance in a linear model which will allow for non-

constant variance only where it is appropriate. We have demonstrated calculation

for this model, and shown how to avoid certain convergence issues. We will now

discuss some of the results that come from using this model. In section 3.2.1, we

will discuss some simulated data sets, and demonstrate differences in posteriors

between standard hierarchical models and ours. In section 3.3 we will show the
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Figure 3.8: If the joint move of ψg,i and ∆g,1 is excluded, there is significant
non-convergence after 10,000 steps. Red x’s mark points at which the posteriors
disagree by more than 20%.

consequences of using the model in a real gene microarray experiment.

3.2.1 Simulated data

Consider the following experiment with a simulated data set. We will use 1000

“trials”, each consisting of 10 “control group” observations and 10 “experimental

group” observations. The control group observations will be sampled from a

N(0, 1) distribution in all trials. For 700 of the trials, the experimental group will

be sampled from N(0, 1) and the remainder will be sampled from N(.75, .5).
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Figure 3.9: The same experiment as shown in Figure 3.8, but this shows non–
convergence after 20,000 steps.
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Figure 3.10: The same experiment as shown in figures 3.8 and 3.9, but this shows
non-convergence after 40,000 steps. Note: the three non-convergence experiments
were independent of each other.
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(a) (b)

Figure 3.11: Figures (a) and (b) show the posteriors from the full variance model
and the constant variance model. The ‘x’ represents data that was generated with
a different mean. The data was generated as described in Section 3.2.1. In (b)
we see that for all g, P (βg,1 6= 0|−) < .06. Modification of the prior to raise these
probabilities leads to significant type I error.

We find experimentally that we pick up much more information about the data

with our inclusion of a model for variance (Figure 3.11a). Without our variance

model (Figure 3.11b), there is very little separation between the trials with an

effect and those without. Experimentally, we find that increasing the discovery

rate artificially through strong priors induces a high false discovery rate.

3.3 A DNA Microarray Experiment

One of the most prevalent things one finds microarrays being used for is to de-

termine what genes are in a particular pathway. For example, to study which

genes are affected (up or down regulated) by a particular promoter one might

grow two cell lines, one control and one with an artificially up-regulated promoter

gene. Other examples include comparing cells grown in different media, in the
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presence or absence of toxic (or other) substances, and in high or low oxygen

concentrations.

In one such study, introduced by Bild et al. (2006) and described in section

1.4, we have 15 control group observations with between 7 and 10 observations

from each of a set of nine experimental groups. The non-control groups have

up-regulated Myc, Src, β-Catenin, E2F3, Ras, P53, AKTA, E2F1, and P110.

Figure 3.12: Without the possibility of a difference in variance, the standard
model is unable to find a difference in means between control and the E2F1 ex-
perimental group. The colors represent the different experimental groups.

Among the genes on the microarray is the gene for Calcium-Transporting AT-

Pase, ATP2A2. This gene is known to be a coregulator, along with some members

of the E2F family, of the expression of many genes. Additionally, it is known that

retinoblastoma-related protein, p107, regulates the expression of some E2F genes

(Zhu et al., 1993) as well as the expression of ATP2A2. Thus, in an experiment in

which E2F1 is artificially up-regulated, it is stands to reason that some feedback

loop would raise the levels of p107 in an attempt to lower expression levels of E2F1.
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Figure 3.13: A model that includes variable selection on the variance terms will
allow the detection of small shifts in mean if there is a simultaneous decrease
in variance. With a variable selection prior for the variance model, there is a
> 95% posterior probability of a difference in mean between control and the
E2F1 experimental group.

A side effect of this happening would be the down-regulation of ATP2A2. Figures

3.12 and 3.13 show the results from a standard model with constant variance and

from a variable selection model for variance, respectively. If π is the posterior

probability that β1 6= 0, then the lines are the posterior mean for β0 + Iπ>.95β1,

where I is an indicator function for π > .95. In the case of the standard model,

the posterior probability that there is a difference in means between control and

the E2F1 experimental group was less than 20%.

3.4 Summary

Because of the complexity and volume of new biological data, every effort must

be made to maximize the power and minimize false discovery regardless of model
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complexity. We have been able to make a significant improvement to the current

state of the art hierarchical model which accounts for possible changes in variance

across the different groups within an experiment while at the same time retaining

the assumption of constant variance where appropriate.

With this new model, we are able to show clear improvements in the analysis

of both simulated and real experimental data. Difficulties with fitting and con-

vergence of the Markov Chain Monte Carlo algorithm introduced by the use of a

variable selection in the variance model have been overcome, and, in future sec-

tions, we will be able to show how this model can effectively identify and estimate

effects on collections of pathway genes, thus creating metagenes that provide ro-

bust predictions of practically relevant phenotypes, such as survival in real clinical

situations.
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Chapter 4

Internal Consistency in Microarray

Experiments

Advances in both computer science and biology have led to a remarkable ability

to measure vast numbers of messenger RNA levels simultaneously in cell samples.

Because of these advances, researchers are able to study the effects of interventions

at the cellular and gene expression level. Recent studies have demonstrated the

potential of gene arrays as tools for drug discovery and categorization (Lamb et al.,

2006), identification of cellular response to intervention, and even as predictors of

clinical outcomes (Bild et al., 2006; Miller et al., 2005). Excitement about these

advances has been tempered recently due to the difficulty of obtaining consistent

results.

Through experimentation, it has become clear that the data obtained are ex-

tremely sensitive to the conditions under which the RNA is hybridized to the DNA

on the micro-array chip. Minute changes in pH, temperature, or other conditions

lead to differences in measured RNA levels that overshadow any difference that

might be associated with treatment or intervention. Additionally, the response of
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a particular probe varies depending on its composition. The four different nucleic

acids respond differently to environmental conditions.

This high sensitivity to experimental conditions can be accounted for by con-

currently running the assay on “control” and “experimental” cell samples and

examining only the difference in expression levels. Unfortunately, the need for a

control data set that was taken in close proximity, spatially and temporally, to

the experimental data removes most of the impetus for performing large, multi-

institution studies, as the results from one group may only be compared to the

controls measured by that same group and at the same time. Additionally, be-

cause the actual expression level of a particular gene is relatively meaningless, the

use of microarrays in a clinical setting is precluded.

4.1 Assay Artifact Controls for Microarrays

On the Affymetrix gene array chips, there are included a number of “housekeep-

ing” genes. These probes are designed for chip calibration and for these genes

one expects to observe a constant expression level across all observations, regard-

less of treatment or intervention. Often, however, one finds that this is not the

case. Consider the expression levels observed for the housekeeping gene “AFFX-

BioB-5 at” (shown in Figure 4.1), which shows vast differences in expression level.

Let yg,i be the expression level of gene g from sample i, where 1 ≤ i ≤ N

when there are N total samples. Also, let yg be the row vector with elements

(yg,i). Then, for the housekeeping genes, we believe that yg,i ∼ N(yg,i|µg, σg),

where µg is a gene specific mean expression level and σg is a gene-specific variance

of expression.

56



Figure 4.1: The expression levels across 97 samples of the gene “AF-
FX-BioB-5 at”, a housekeeping gene on the Affymetrix U133+ chip. The three
different groups represent measurements that were taken at different times. What
should be a constant expression level shows clear correlation with the time at
which the sample was taken.

Suppose now that there are a small number of different environmental con-

ditions, changes in which might explain variation like that seen in Figure 4.1.

Additionally, due to the relative levels of nucleic acids in the DNA probes, there

is a different level of response to these environmental conditions. Consider a model

in which we introduce a latent d × n matrix, W , which describes these environ-

mental conditions, and a latent d-vector, γg ∼ N(γg|0, I), which describes the

contribution to the expression level of yg,i from each of the d columns of W . Our

model then becomes

γg ∼ N(γg|0, 1)

yg,i|γg ∼ N(yg,i|γ′gW + µg, σg)

It is exactly this model, given the appropriate limiting assumptions on prior

hyper-parameters, that leads to classical principal components analysis (Bishop,
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1999; West, 2003). Specifically, the maximum likelihood estimate (MLE) for the

matrix W , assuming a fixed d, consists of the first d principal components of the

matrix with element (yg,i) in its gth row and ith column. Thus, under the modeling

assumptions outlined above, and using an appropriate subset of genes from the

gene microarray, we might hope to discover, and thereby correct for, any biases

introduced by differing conditions on the lab bench.

Fortunately, the housekeeping genes provide us with exactly such a subset.

There are 67 such housekeeping genes in the U133+ chip. For our experiment

containing n samples (n = 97 in Figure 4.1), we extracted these genes. This gives

us 62 observations from an n dimensional space. We center each of the n-vectors

and calculate the principal components, keeping enough of them to account for

95% of the variability in expression level of the housekeeping genes. This gives us

an algorithm for calculating the matrix W .

Suppose that we have some experimental m × d design matrix, H. Then we

are interested in modeling yg,i in terms of this design matrix as:

yg,i ∼ N(yg,i|βH ′, σ2
g).

However, in the case of gene microarrays, and when the data collection process

occurs across multiple labs or at different points in time, we expect significant

issues with lab bias which will render this model inadequate. We have already

computed the correction for this problem W , and its inclusion in the over-all

model is direct:

yg,i ∼ N(yg,j|Hβg +Wγg, σ
2
g).

As we are dealing with microarrays, it is reasonable to expect that we are

using some form of variable selection or sparsity inducing prior for βg,j, such as
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βg,j ∼ (1 − q)δ0(βg,j) + qN(βg,j|0, τg). Because there is no clear standard, the

choice of either the hyper-parameters, τ and q, or the structure of the hierarchical

model describing those parameters will vary according to the experiment. How-

ever, regardless of the chosen structure, the parameters βg and γg may be treated

exactly the same. The caveat to this is rooted in our understanding of what these

parameters describe. The parameters βg describe the effects of an experimental

intervention, and as such, are expected to be non-zero in only relatively few of the

genes on the array. Conversely, the parameters γg describe bias that is introduced

to the microarray as a whole due to conditions on the lab bench. It is expected

that many, or even most, of these parameters will be non-zero. Differences or

similarities in how these parameters are treated are important to consider, and

the effects of the various hierarchical structures in variable selection models are a

topic of considerable interest in current research.

4.2 Data Analysis Examples

The data sets we will use in this study are from Affymetrix U133+ 2.0 microarray

chips. It is well established that there are results from these chips that correspond

to zero expression in the cell samples under study. With this in mind, we will

eliminate from the study any gene which shows an expression level lower than 6

across all samples in the study. Additionally, we are preferentially interested in

genes which respond to the experimental intervention. Thus we will throw out

any genes that show a maximum difference in expression across all samples of less

than 2 on the log2 scale.

Our study focuses on two data sets. The first, used in Bild et al. (2006) for

the elucidation of certain oncogenic pathways, consists of 97 samples from various
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experimental interventions performed on human primary mammary epithelial cells

(HMEC’s). This experiment was done in three stages, but all of the data was

taken on Affymetrix U133+ 2.0 gene arrays. After use of the filter described in

the previous paragraph, we are left with 10,777 genes in our study.

Originally, 10 samples were taken from a control group along with 7-10 samples

from each of five experimental groups. In each of the experimental groups, a

specific, known oncogene was artificially upregulated. The oncogenes in this group

were MYC, SRC, BCAT, E2F3, and RAS. Some time later the decision was made

to study the genes P63A, AKTA, E2F1, and P110. At this point it was discovered

that there were systematic biases occurring between the two groups, and that the

original control group was inadequate for the subsequent experiment. With this

in mind, five more control samples were taken. There are potential issues here

related to outcome dependent testing that are being ignored.

The results of this experiment on the measured levels of the housekeeping

gene “AFFX-BioB-5 at” are shown in Figure 4.1. This is simply the first of the

housekeeping genes in the list, and was not chosen for any specific features. All

of the housekeeping genes show this type of variation across, and even within, the

groups.

The second data set was introduced in Shi et al. (2006). It is publically avail-

able data, produced by the MicroArray Quality Control Project (MAQC) for the

express purpose of studying the reproducability of results using microarray tech-

nology. The group performed identical assays at multiple different test sites using

over 1,300 arrays from nearly all vendors. We will examine a subset of the data

consisting of 120 Affymetrix U133+ 2.0 microarray chips. These were split into

four experimental groups each with five replicates. The same experiment was then
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repeated at each of six sites. There were two cell lines used, Universal Human

Reference RNA (UHRR) from Stratagene and a Human Brain Reference RNA

(HBRR) from Ambion. The four experimental groups consist of various mixture

ratios of RNA derived from these two cell lines (sample 1: all UHRR, sample 2: 3

to 1 UHRR/HBRR, sample 3: 1 to 3 UHRR/HBRR, and sample 4: all HBRR).

The details of this data set are outlined in Shi et al. (2006). Note that we have

reordered the labeling of these samples relative to that used in Shi et al. (2006).

After filtering this data set, we are left with approximately 22,000 genes.

4.3 Analysis

As with any study of microarray data, we must choose a model for determining

when there is a change in expression level between two study groups. We will

use the hierarchical Bayesian variable selection model introduced earlier to fit our

data sets. From this, we can derive full posterior marginal distributions for all

relevant parameters, in particular, the posterior probability of a difference in mean

and the expected difference in mean given that one exists.

Recall that we define yg,i to be the expression of gene g from sample i. If we
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let xi be the design vector for sample i, then our full model is as follows:

yg,i ∼ N(x′iβg, ψg),

βg,0 ∼ N(βg,0|0, τ0),

βg,j ∼ (1− qg,j)δ0(βg,j) + qg,jN(βg,j|0, τ) for j > 0,

1/σg ∼ Ga(ασ, γσ),

1/τ ∼ Ga(ατ , γτ ),

qg,j ∼ (1− rj)δ0(qg,j) + rjBe(αq, γq),

rj ∼ Be(αr, γr).

The details of choosing hyperparameters and constructing a convergent Markov

chain Monte Carlo algorithm for this model are discussed in the previous two

chapters and in Lucas et al. (2005). There are, of course, many other variable se-

lection models available. The PCA correction algorithm described here is directly

applicable, regardless of model choice.

For the HMEC data, the experiment is designed to elucidate biological path-

ways. Each of the genes that are upregulated will cause a concurrent up or down

regulation of the neighbors in its pathway. With this in mind, we expect relatively

few genes to respond to each of the experiments. Additionally, we expect to see

few genes that are in multiple pathways, and the ones that do show response to

more than one treatment should be interesting, as they are at the border between

the two pathways. Exceptions to this may be the MYC and RAS experiments,

as it is known that MYC is directly regulated by RAS, and the E2F1 and E2F3

pathways.

We will examine the posterior distributions for the parameters bg,j = βg,j|βg,j 6=

0 and q∗g,j = P (βg,j 6= 0). Specifically, we will make the (admittedly arbitrary)
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decision that there is a change in gene expression for experimental group j and

gene g when q∗g,j > .95. Also, when there is such a change in expression, then

E(βg,0 + bg,j|−) is the expected expression level from model fitting.

Because all of the genes in each of the pathways tested in this experiment

are not known, we will look at two outcomes to argue for the efficacy of PCA

correction. First, there are specific examples where gene regulation is known.

Second, there is a general trend toward fewer positive results after PCA correction.

For the data from the MAQC project we are interested in RNA titration. In

this experiment, samples were taken from two different sources. It is know that

there are many genes that are differentially expressed between these two sources.

Because we have data on different levels of mixing of the two samples, we expect

to see results that are monotonic for genes that are differentially expressed.

We will determine that PCA correction is a success in this experiment by

an increased probability of monotonic results. Shippy et al. (2006) argue for a

measure of success based on the mean expression level across each sample showing

a monotonic change. Also, by data exploration, they determined that one of the

study sites produced outlier data, and discarded that data. In fact, by a quick

study of the Affymetrix housekeeping genes (the first principal component is shown

in Figure 4.2), it is clear that there are differences across all study sites. Also,

the very purpose of PCA correction is to address systematic bias introduced by

slightly different procedures at different labs.

Another undesirable feature of the technique used in Shippy et al. (2006) for

evaluation of consistency is that there are 30 observations for each of the samples.

This should be more than enough to determine a reasonably tight bound on the

sample mean. Therefore, it is too blunt an instrument for demonstrating improve-
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Figure 4.2: The first principal component of the housekeeping genes from the
MAQC experiment. The x-axis is ordered by sample type, and results from each
of the six study sites are shown in a different color.

ment in consistency before and after PCA correction. With these facts in mind we

will propose a different metric. Specifically, we will use sampling to determine the

probability of proper ordering if just one observation is taken from each sample

type. This can be done with the raw data as well as the PCA corrected data,

thereby providing a direct and relatively sensitive comparison.

Having derived an adequate measure of the success of our correction technique,

we are left to decide which of the 54,000 genes on which to use our test. In

particular, which of them are differentially expressed in UHRR versus HBRR.

For the analysis done in Shippy et al. (2006), the question was sidestepped by

performing the test on all genes, and plotting the results against the ratio of

mean expression level of sample one to the mean expression ratio of sample four

(which should show the largest difference). The choice is not so clear in our

comparison study, because we must choose which mean expression ratio to use,

the one obtained from the raw data, or the one obtained after PCA correction. The
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decision was further complicated by our results from studying the housekeeping

genes. The forth housekeeping principal component is shown in Figure 4.3. There

is a clear monotonicity to the results from all but one of the study sites. This

leads to difficulty in interpretation of results from other genes, as it is unclear

whether an observed change in expression level is due to site bias or expression

differences among the four samples.

Figure 4.3: The forth principal component of the housekeeping genes from the
MAQC experiment. The x-axis is ordered by sample type, and results from each of
the six study sites are shown in a different color. There is a significant monotone
trend across all study sites except one. This leads to significant difficulty in
interpretation, as it becomes unclear whether an observed change in expression
level is due to site bias or expression differences among the four samples.

With this in mind, we will use our model to determine which of the genes

show significant change in expression across the samples. In Shippy et al. (2006),

Shippy et al. examine the RNA concentration difference of RNA in the UHRR

versus UBRR samples, and conclude that they are approximately 3% and 2%

respectively. This leads to estimates of actual percent of UBRR RNA in samples 2

and 3 of 0.18 and 0.67 respectively. From this analysis, we add to our design matrix
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the column 120 dimensional vector which has 0 corresponding to sample 1, 0.18

corresponding to sample 2, 0.67 corresponding to sample 3, and 1 corresponding

to sample 4. With the inclusion of a variable selection prior for this vector of the

design matrix, we obtain a posterior probability of a difference in expression level.

We will choose from these genes, those which show greater than a 95% posterior

probability of having a sample effect on expression level.

Notice that there is the option here to include a latent variable in our model

which describes the relative abundance of RNA in the two samples. We have not

done this, but if we were interested in studying differential expression in these two

cell lines, this would likely improve the robustness of our test.

4.4 Results

4.4.1 Temporal Separation: Gene Up-regulation in a Breast

Cancer Cell Line

In the breast cancer cell line analysis, we find that there is a significant improve-

ment in results after PCA correction. There is an overall drop of more than 60% in

the total number of discovered changes in mean. Additionally, as shown in Figure

4.4, there is a drop in the expected number of pathways each gene participates in

from 5.1 to 1.7 after PCA correction. Without PCA correction, we find that 65%

of the 10,777 filtered genes are in 5 or more of the pathways under study. This

is clearly absurd, as it is difficult to believe that even one of the pathways should

include over 7,000 genes. It is, in fact, somewhat difficult to justify a number as

high as 1.7. However recall that we have pre-filtered the data to screen out genes

that show no response, and that all of the genes studied are know oncogenes.

With this in mind, a close relationship between the gene pathways is believable.
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Knowing that PCA correction has decreased our discovery rate from absurd

to reasonable is encouraging, but it leaves open the question of whether we have

done it in an appropriate way. To answer this question, we will look at some

specific examples pulled from our data set.

Consider the expression level of the gene Nuclear factor (erythroid-derived

2)-like 1 (NFE2L1) shown before and after PCA correction in Figure 4.5. This

example is a compelling endorsement for the correction algorithm. The reason

for this is that NFE2L1 has a known MYC binding site in its promoter region

Morrish et al. (2003).

More examples are shown in Figure 4.6. Parts (a) and (b) show E2F1, which

is known to self promote, Parts (c) and (d) show cyclin A, which is known to be

downstream of Myc Bazarov et al. (2001), and parts (e) and (f) show expression

of RAF, which is known to be involved in replicative senescence along with p63a

Jung et al. (2001). Notice that both E2F1 and Raf demonstrate signatures found

even when the control data and the experimental intervention are done at different

times.

It is difficult, without knowing the correct answers, to say for certain that the

corrections are behaving as we would like. However, it is clear that the expression

differences measured after correction are reasonable, and that the genes for which

expression differences are found are worth studying carefully.

4.4.2 Microarray Quality Control

With the MAQC data, we know before hand that there are a collection of genes

that will show a titration curve. With this in mind, and knowing the titration

levels to be approximately 0.18, 0.67, and 1, we can model this data using an
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overall mean (which does not have a variable selection prior), a titration vector,

and the housekeeping principal components.

We sampled at random 1,000 of the 22,000 genes that show both non-negligible

expression levels and non-negligible changes in expression level across the study.

We fit our model to these 1,000 expression vectors, and find that there is good

empirical evidence that we are able to improve the titration signature. Figure 4.7

shows PCA correction when there are clear lab specific effects in the data. Notice

that much of the artifacts are removed by PCA correction.

Figure 4.8 shows one of the genes overlayed with the contribution from fitting

the principal components. Recall that W is the matrix with the principal com-

ponent vectors Wk in its columns. Also, γk is the coefficient for Wk and q∗k is the

posterior probability that γk 6= 0. Then, the principal components points on the

plot are at

pcj = E(β0) +
∑

k

Wk · γk · Iq∗k>.95

Notice that a significant part of the variance in expression of this gene is from

systematic error introduced in the lab setting.

While this empirical evidence is reassuring, Figure 4.9 is more compelling.

This shows that there is significant improvement in the probability of sampling

one point from each of the four sample types and getting them in the correct

order. The ordering of the four sampled points is improved in 77% of the tested

genes, and there are no significant outliers below the diagonal (genes that are

better ordered without correction).
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4.5 Summary

We have demonstrated an algorithm, PCA correction, which provides a systematic

technique for determining appropriate correction factors from a list of housekeep-

ing genes. Because these genes are the only ones involved in the determination of

the correction factors, and because they are subsequently thrown out of the analy-

sis, PCA correction provides the opportunity for subtracting systematic bias with-

out using the genes under study to define that bias. This leads to a good chance

of strengthening a signal of interest without introducing biases that come from

using the data itself to calculate corrections.

Our model has been shown to work on multiple different data sets. It demon-

strates significant improvement in results on both a full genome scale, correcting

false discovery rates, and on a gene by gene basis, leading to a much clearer

distinction between signal and noise for specific genes of study such as NFE2L1.

Microarray data that has been collected at different time points or in different

study sites show very clear biases, even in genes that should be expressed at a

constant level. Because we are able to correct data that show these biases, we are

making it much easier to compare the results of different experiments.
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Figure 4.4: Histograms of the number of experimental groups from the breast
cancer cell line example that show differential expression on a gene by gene basis.
There is a drop in expected number of relevant pathways per gene from 5.1 to 1.7
after PCA correction.
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Figure 4.5: The expression levels from the breast cancer cell line study for
“NFE2L1” before and after correction by PCA. The lines are drawn at the point
E(βg,0) + E(bg,j) · I[qg,j>.95].
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Figure 4.6: Breast cancer cell line study: expression of E2F1 (line 1), Cyclin A
(line 2), and Raf (line 3) are shown to exhibit believable results after PCA correc-
tion. The left column shows before and the right column shows after correction.
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Figure 4.7: MAQC study: expression levels before and after PCA correction.
Notice that most of the lab specific artifacts are corrected.
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Figure 4.8: MAQC study: expression of the gene ARL6IP shown with the pos-
terior mean of its principal component part. A significant part of the variance in
expression of this gene is from systematic error introduced in the lab setting.
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Figure 4.9: MAQC study: a comparison of the probability of obtaining the
correct order when sampling one point from each of the four tissue samples. The
x-axis shows these probabilities when the raw data is used, and the y-axis shows
the same probabilities after PCA correction. Because a significant portion of
the points are above the diagonal, we conclude that correction has improved our
results.
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Chapter 5

Case Study: Detection of Gene

Pathways

Bayesian regression formulations of factorial designed experiments for gene expres-

sion data allow for routine analysis that addresses the core questions of identifying

which model parameters - the effects of design factors and their interactions - are

likely of relevance in the context of a model that has many such parameters as

we move across thousands of genes. Standard shrinkage analysis, that has been

the workhorse of applied Bayesian methods for decades, has been well-described

and quite widely applied to two sample testing in gene expression studies (Scott

and Berger, 2005) and its extension to more complex designed experiments and

regression models is theoretically direct though requires some computational de-

velopment (Broet et al., 2002; Ishwaran and Rao, 2003; Do et al., 2005). In

general, these techniques have generated good results, but they do exhibit some

unwanted features. First, these techniques deal with variance by either assuming

it is constant across all samples, or making somewhat arbitrary variable transfor-

mations to make it so. Second, the structure of the models induces potentially
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unwanted correlation in posterior inclusion probabilities between genes. Finally,

these models heretofore have ignored the presence of the “house keeping” genes in

the data sets. These genes provide important information about the environment

in which the chips were read, and can help to properly adjust the resulting data

sets.

We will focus, in this chapter, on the implementation of the model innovations

described in the previous chapters. They models are designed to tackle just these

problems, and we will show that they perform adequately on an experimental

microarray data set.

5.1 DATA

Our data consists of mRNA expression levels from a set of controls and nine

different experimental tissues in which each of the genes GFP1, MYC1, SRC1,

BCAT, E2F3, RAS1, P63A, AKTA, E2F1, and P110 were upregulated. Data for

ten of the 15 controls was collected along with the first five experimental groups.

Some time later the data for the last four experimental groups was collected.

Finally, it was noted that there were systematic differences between the data

obtained at the two different collection times. Thus another set of five controls

was collected in the hopes that they would more closely compare to the second

set of experimental data.

We set out to determine which genes are affected in each of the experimental

interventions. We hope to be able to separate out the effects of the different

collection times from the biological effects of interest.
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5.2 The Full Variable Selection Model

5.2.1 The Complete Model Specification

We let g ∈ [1, G] be the set of genes, i ∈ [1, I] be the observations and j ∈ [1, J ]

index the design vectors. Let yg,i denote the observed value of the expression of

gene g on observation i. Our model is defined as follows:

yg,i ∼ N(x′iβg + w′
iΓg, ψgi) log(ψg,i)/2 ∼ N(x′i∆g, ρ)

βg,0 ∼ N(µg, τ0) ∆g,0 ∼ N(mg, σ0)
βg,j ∼ (1− πg,j) · δ0 + πg,j ·N(0, τj) ∆g,j ∼ (1− qg,j) · δ0 + qg,j ·N(0, σj)
µg ∼ N(µ0, ν0) mg ∼ N(m0, v0)
πg,j ∼ (1− rj)δ0 + rjBe(απg,j

, γπg,j
) qg,j ∼ (1− sj)δ0 + sjBe(αj, γj)

rj ∼ Be(αrj
, γrj

) sj ∼ Be(αsj
, γsj

)
1/τj ∼ Ga(ατj

, γτj
)

Notice that the parts of the model listed in the left and right columns are

mathematically similar. Thus, we will confine our discussion to the left side of

the above model description with the understanding that what is said applies to

the right as well.

We have split the mean gene expression, yg,i, into two parts. x′iβg and w′
iΓg.

Here, xi are design vectors, and wi are principal component vectors derived from

the housekeeping genes (see below). However, this distinction is purely for clarity

in the description. In our implementation, once the principal component vectors

have been computed, there is no difference in the treatment of the coefficients β

and Γ.

We use a Bayesian shrinkage prior on the coefficients, βg,j, of the linear model

(except the first), with the modification that each gene has an individual prior

probability that β = 0 (πg,j rather than πj). This modification is in place to avoid
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over-shrinking P (βg,j 6= 0) to the mean.

The prior for πg,j is designed to allow shifts for the genes where there are

detected differences while at the same time retaining a relatively high probability

that πgi = 0 when there are no such differences. We choose απg,i
and γπgi

to put

a low weight on low probabilities within the beta part of the mixture distribution

to avoid model uncertainty. (For example, it is difficult to distinguish between a

point mass at zero and a Be(0.1,100).) Choosing απg,i
= 3 and γπg,i

= 1 suffices.

The constant parameters, αrj
and γrj

may be chosen to encode a prior mean

and some prior idea about the level of shrinkage desired for P (βgj 6= 0). If we

write αρ0 = cm and γρ0 = c(1−m), then m is the prior mean, and the parameter

c controls the level of shrinkage. For low values, behavior will be very similar

to older models which simply use a single πj and give it a beta prior (Scott and

Berger, 2005). An example of the results of this type of model are shown in

Figure 5.2. High values will behave more like a model in which each πgj receives

its own individual beta prior (ie. P (βgj 6= 0) and P (βg′j 6= 0) are completely

independent). With c = 200 on a data set of size 716, we get the results shown in

Figure 5.3.

At first glance, our model for the ψg,i adds significant complexity. However,

notice that the two columns match exactly (except for ρ), and therefore much of

the code is repeated. With this richer model for variance, we can accommodate the

much more realistic situation in which constant variance across all the observations

of a gene is largely true, but fails for some of the genes.

The design matrix consists of the mean expression vector (all ones), and a

vector for each of the experimental groups. It is important to note that there is

no explicit vector that separates the two different sets of controls, nor is there a
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vector that separates the first five experimental groups from the last four.

As discussed in the previous chapter, Affymetrix chips contain a number of

control and housekeeping genes, and it is these that we rely on to detect differences

in data collection. In this example, 162 of the approximately 50,000 genes on the

chip are control genes. From these 162, we calculate the first eight principal

components, and add these to our design matrix, H.

5.2.2 Correlation in π and q

Figure 5.1: With either model, if there are no effects in the data, there are
no effects detected. These are posteriors from analysing a simulated data set for
which all observations were generated from a standard normal distribution. These
are results from the standard variable selection model, but there is little difference
from the posterior distributions of the full model of Section 5.2.1.

The unwanted correlation in the values of π and q can be seen best in Figures

5.1, 5.2 and 5.3. Since the number of genes affected by a particular experimental

intervention can be a variable of interest, and this can vary significantly, we find

this modification is critical to improving understanding of a given data set.
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Figure 5.2: The data for the “control” group is generated from N(0,1). 616 genes
in the “experimental” group were also generated from N(0,1) and the other 100
genes were generated from N(2,1). Notice that the bulk of the results are centered
around p(β 6= 0|−) = .4

5.3 Some Examples and Details

5.3.1 Revisiting the Data

As described in Section 1.4, the analysis was run on RMA expression indices of

p = 10, 715 genes selected by screening all n = 97 samples to identify genes that

varied in observed levels by at least a factor of 1 (fold) and whose median log2

expression across the samples exceeded 7 (just below the median off all genes

across samples). The 97 samples were collected in three parts at three different

times, and variations in lab conditions produced significant noise in the data which

can be seen to correlate with the different collection times (see Figure 5.4). For

this analysis of the oncogene data set, we used the first eight of the principal

components of the housekeeping genes.

The specific parameter settings for prior hyperparameters required were chosen

to define relatively uninformative priors consistent with the known ranges of vari-
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Figure 5.3: This is the same data analyzed in Figure 5.2. Notice that with the
added level of hierarchy, the points that do not show strong evidence of difference
between control and experimental groups have a genuinely low p(βg,j 6= 0|−)

ation of gene expression (fold scale) and also know characteristics of Affymetrix

data generating processes. Based on many experiments with observational and

experimental data generated on the current Affymetrix platform and processed

with RMA, typical ranges of residual/technical variation experienced indicate er-

ror standard deviations in the 0.1-0.5 range, so guiding our choice of ρ = .01.

Additionally, we expect that changes in laboratory technique will produce changes

across all genes while the knockout of a single specific gene will affect only those

genes that are in the same pathways. Thus, in the selecting of hyperparameters

αrj
and γrj

we choose a relatively higher mean and allow for more shrinkage in

the principle components coefficients than those associated with the experimental

design.

The MCMC is initialized with values consistent with the prior and data and

the simulation run for 4000 iterations to achieve nominal burn-in before saving

and summarizing samples for a series of 20,000 iterations. Posterior means are

then evaluated for exploration.
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Figure 5.4: This is the first principle component of the set of 162 housekeeping
genes. Notice that it nicely separates the data into three groups which correspond
to the three different collection times.

The simplest aspect of our data to contrast is the difference in shrinkage be-

tween the experimental design and principal component coefficients (Figures 5.5

and 5.6). Notice that by our choice of hyperparameters, we are choosing to at-

tribute as much of the variation in our data as possible to differences in data

collection (principle components).

In our analysis, we find compelling evidence (see Figures 5.7a and b) that our

use of principle components is significantly improving our ability to compare data

taken at different times. Examples such as this are pervasive throughout the data
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Figure 5.5: The posterior probability of βg,j 6= 0 plotted with the posterior mean
given it is not zero. This plot shows the coefficients associated with upregulation
of the gene BCAT.

set.

In all previous models, the simplifying assumption that variance is constant

across all experimental groups is made. Figure 5.8 is an example of why this is

not a fair assumption. Finally, consider Figure 5.9. The first group consists of

controls, and the other nine are experimental groups. Notice that experimental

group six (P63A) shows a visible difference in both mean and variance. In older

models, the difference in variance is undetectable, and this leads to the inability
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Figure 5.6: Because of our weaker prior on the hyperparameters of r associ-
ated with the principle components, we find that there is significant movement of
P (βpc6) toward 1.

to detect this gene in the signature for P63A.

5.4 Markov Chain Monte Carlo

The conditional densities used for the Gibbs steps in updating variables βg,j, πg,j,

and r have been described in Sections 2.3.1, 2.3.2, and 2.3.3 respectively. Also,

the Metropolis algorithm for updating λg,i = log(ψg,i)/2 has been described in
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(a)
(b)

Figure 5.7: Figure (a) shows that without adjusting for differences in the data
collection using the housekeeping genes, we may miss a weak signal from the Myc
experimental group, and we will pick up significant type I errors from all of the
data collected in the second group. Alternatively, (b) shows that after correction
the Myc and Ras signals are strong, and the type I errors from the second set of
data are eliminated.

Section 3.1.1. The only parts of the process that has not been described as yet

are the updating of β0 and ∆0, and the updating of r.

5.4.1 The β0 and ∆0 Components

Note that, given all of the other variables, βg,0 and βg′,0 are independent. Thus

we will drop the subscripts for this subsection. Let zi = yi −
∑

j>0 xi,jβj. Then

zi ∼ N(β0, ψi),

β0 ∼ N(µ, τ),

µ ∼ N(µ0, ν0),

1/τ ∼ Ga(ατ , γτ ).

This section of the model is straightforward, and so I will only state the conditional

sampling distributions. To update these parameters in the MCMC, we do the
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Figure 5.8: The assumption of a constant variance across all experimental groups
is unreasonable.

following:

• Sample µ from a normal distribution with variance v = τν0/(τ + ν0) and

mean v(β0/τ + µ0/ν0).

• Sample 1/τ from a gamma distribution with shape parameter ατ + p/2

(where p is the number of genes in the study) and rate parameter γτ +∑
i z

2
i /2.

• Sample β0 from a normal distribution with variance v = 1/(1/τ +
∑

i 1/ψi)

and mean v(µ/τ +
∑

i zi/ψi).
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Figure 5.9: Notice that expression levels for experimental group 6 appear to be
different from the control. The lines represent β0 + βi · πi for gene number seven
for our full model. However, because the variance differences are undetectable by
older models, they are unable to find this gene in the signature for P63A.

5.5 Summary

We have demonstrated the efficacy of our model for the identification of meta-

genes associated with particular treatments. The model is shown to produce

decreased false discovery rates compared to standard models. Additionally, where

there are cases of variance changes in expression levels, Bayesian variable selection

with our modifications allows for higher power in the choice of important genes.
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Chapter 6

Case Study: Group Signatures and

Breast Cancer

Whenever one uses microarrays to study the effects of an experimental interven-

tion, one is essentially performing many thousands of experiments simultaneously.

Because of this, it is difficult to justify singling out one gene as significant for any

particular intervention in the absence of external corroborating evidence. How-

ever, the aggregation of all of the genes relevant to a particular intervention can

be used to define a signature for that particular intervention. If the signature is

one that is relevant for disease prognosis, such as the prediction of future heart

attacks or the determination of level of malignancy in an excised tumor, then that

signature has a potential use as a tool for recommending future treatment. In

this way, it may be possible to avoid uncomfortable and costly treatments where

there are unnecessary.
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6.1 Data

In this chapter we will evaluate the use of metagenes for the prediction of breast

tumor prognosis. We have three different data sets with which to work.

The first is an experimental data set. We have twelve U133+ 2.0 Affymetrix

gene expression arrays that are broken into four groups of three. The same human

mammary epithelial cell line was used in all of the experiments. The first group is

a control group, the second set of cells were grown in the presence of lactic acid,

the third was grown in low oxygen conditions, and the last was grown in both

lactic acid and hypoxia. These experimental groups will be used to determine a

gene signature for lactic acid and hypoxia.

Our second data set, which we will refer to as ”Codex”, is from a group of

breast cancer patients. We have gene expression measurements, done using the

U95 Affymetrix chip, from resected breast tumor cells from 436 patients with

followup information on tumor recurrence. This data was collected in four groups

and at three different locations. In order to partially correct for spatial and

temporal biases, we will use principal components from the housekeeping genes

as correction factors, as described in Chapter 4.

Our third data set comes from Miller et al. (2005). We will refer to this data

set as ”PNAS”. It is also breast cancer though this study used the U133+ 2.0

chip, and it followed patient survival rather than tumor recurrence. Miller et al.

use the data set to demonstrate the existence of a p53 signature in breast tumors,

then show its relevance for the prediction of survival. In addition to survival data,

we have a binary marker for the presence of a dangerous mutation in the p53 gene.
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6.2 Modeling Gene Expression

Our first step will be the construction of lactic acidosis and hypoxia gene signa-

tures. This will be the sole use for the experimental data set. The Codex and

PNAS data sets will not be used in the construction of these meta-genes. In this

way, the results obtained will be truly predictive results, with no issues of training

on the same data that is used to do prediction. In this section we will discuss only

the lactosis/hypoxia data set.

Many of the probes will be for genes that are not expressed, and most of the

ones that are expressed will show no response to either hypoxia or lactic acidosis.

Due to hybridization and measurement errors, a gene that is not expressed at all

may still show some signal in the RMA data. The same errors make it difficult

to distinguish between genes who’s expression levels do not vary by more than

one (fold). It is for these reasons that we eliminate from consideration any genes

with median expression level lower than six and any gene for which the range of

expression is less than one. This leaves 11,213 of the original 54,000 genes for

analysis by variable selection.

One of the challenges of gene expression data is its sensitivity to the conditions

under which measurements were taken. We utilize the housekeeping genes present

on the U133 Affymetrix chips (which should show constant expression levels across

both control and experimental groups) to build principal components. These

are assumed to reflect the systematic noise, which occurs in all genes to varying

degree, due to minor changes in assay conditions. We include enough principal

components to account for 95% of the variation of the reference genes. In this

case we found that the first four principal components, which we label PC1-PC4,
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were sufficient. We refer to this as principal components analysis for microarrays

(HPCA) for the remainder of the paper.

Our analysis will follow the lines of Chapters 2 and 4. We will not make

use of the variance model described in Chapter 3. Because we have only three

observations per group, there will not generally be sufficient evidence of variance

changes across groups.

6.3 Results

We find that we are generally successful in showing the biological relevance of the

pathways detected in the lactosis/hypoxia experiment. Specifically, metagenes

in the signatures relate to known hypoxia genes, and the scores of the tumors

on these pathways are statistically relevant as parameters in a survival model of

patients with breast cancer, as we will show below.

6.3.1 Principal Components

The number of genes showing a response to PC1 is high, but trails off to almost

zero for PC4 (see Figures 6.1 and 6.2). This is consistent with the interpretation

that PC1-PC4 are measuring decreasing levels of systematic error in the assay

techniques. Empirically, we find that the results are significantly cleaner due

to the inclusion of PC1-PC4 in the design matrix. Figures 6.3 and 6.4 show the

RMA data before and after correction by PCAM for the gene, Androgen Receptor-

Associated Protein 24 (ARA24). This is a member of class of androgen receptors,

at least one of which (SRC1), has been shown to be a component of the hypoxia

signaling pathway (Linja et al., 2004; Carrero et al., 2004).
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Figure 6.1: Boxplots of the posterior probability that a given factor is important
in the measured expression level of the 11,213 genes. The x-axis lists the factors
associated with the corresponding boxplot (hypoxia, lactic acidosis, both, and
the four principal components from PCAM), and the y-axis shows the posterior
inclusion probabilities.

6.3.2 Experimental Factors

We find that there are 1400 genes in the lactose response group, 152 genes in the

hypoxia group, and 1100 genes that respond to the presence of both in a non-

additive manner. Figure 6.5 shows the posterior probabilities of inclusion for each

of the three experimental groups and all of the 11,213 genes.

We found 13 genes which show a response to hypoxia, lactic acidosis, and a

synergistic response when both are present. Two of these, RRP40 and CAB56184,

show a true synergistic response (Figure 6.6). Two of them, KIAA0279 and

ALOX15B, show a paradoxical response in which the gene is up-regulated by

either hypoxia or lactic acid, but expression returns to baseline when both are

present (Figure 6.7). The remaining 9 can more accurately be categorized as

93



Figure 6.2: A heatmap of the posterior probability of inclusion for PC1-PC4
(x-axis) for each gene (y-axis). The low posterior probability of inclusion for
PC3 and PC4 for almost all genes indicates that we have captured almost all
systematic variation in the first two components.

on/off switches (Figure 6.8). In these cases, the presence of hypoxia, lactic acid,

or both changes the expression level by approximately the same amount. Isolat-

ing these different behaviors, with linear models and a standard design matrix

is impossible. There is some current research, built around constructing physical

models for potential interactions, but this has not yet progressed to the point of

fitting high dimensional data, as is seen in expression arrays.
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Figure 6.3: The measured expression levels before correction by PCAM. The
groups are: black - control, hypoxia - blue, lactic acidosis - green, both - red.

6.4 Tumor Scoring

6.4.1 Codex Data Set

We now have gene signatures that occur in the presence of lactic acidosis, hypoxia,

and under both conditions. One problem with relating these signatures to the

breast tumor cells is the use of different Affymetrix chips. Affymetrix provides a

list of matches from U133 to U95 that is many to one. We have arbitrarily chosen

the first on the list for each U95 gene as its match.

After removing the genes from the lactic acidosis, hypoxia, and combined

signatures that have no match in the U95 chip, we are left with 312, 22, and 217

genes respectively. Figures 6.9, 6.10, and 6.11 show the projections of the twelve

experimental observations on the first two principal components of these three

sets of genes.
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Figure 6.4: The measured expression levels after correction by PCAM. The
groups are: black - control, hypoxia - blue, lactic acidosis - green, both - red. The
lines represent the posterior mean plus or minus two standard deviations from
fitting our hierarchical variable selection model.

Because it separates the groups appropriately, we will take the second principal

component from the lactic acidosis signature group. Likewise, the hypoxia cell

lines are separated from the other groups by the second principal component of

the hypoxia signature.

While there is no clear predictive effect associated with the presence of a lactic

acidosis signature on tumor recurrence (Figure 6.12), we find that the presence

of a hypoxia signature is significant (cox survival model) in predicting a higher

chance of the tumor recurring (Figure 6.13).
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Figure 6.5: A heatmap of the posterior probability of inclusion for the three
experimental groups (x-axis) for each gene (y-axis). They have been ordered to
group genes with high probability of inclusion for each of the three groups together.

6.4.2 PNAS Data Set

Because the data we use to construct our meta-genes is taken on the same chip

as is the tumor data, we are able to ignore the significant problem of mapping

between two different chips. We project PNAS data onto the same hypoxia and

lactic acidosis signatures, though now we are able to use all of the genes in the

signature, rather than the subset used with Codex.

Figure 6.14 shows the first two principal components of the expression levels

from the hypoxia genes of the experimental cells. There are differences in the

placement of the 12 experimental cell lines on the graph due the the exclusion of
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Figure 6.6: The expression levels of RRP40 with the fitted mean plus or minus 2
standard deviations. This gene is repressed significantly more when both hypoxia
and lactic acid are present than would be expected if the effects were additive.

some of the genes from the meta-gene when comparing U95 and U133 chips.

Notice that there is a significant hypoxia signature in almost all of the tumors

in the PNAS data set. Indeed, some of the tumor cells show a stronger hypoxia

signature than even the cell lines. The experimental cell lines are homogeneous,

and known to be grown in very low oxygen levels, while the tumors are necessarily

heterogeneous. The level of hypoxia signature expression is extraordinary, as the

tumor cell scores are averaged by the process of extraction of RNA from the tumor

as a whole, and a significant part of the cells in the tumor are likely to be well

perfused. Because the PNAS and experimental data sets were taken at different

times and by different groups, it is difficult to determine whether the high hypoxia
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Figure 6.7: The expression levels of KIAA0279 with the fitted mean plus or
minus 2 standard deviations. This gene shows a paradoxical ”return to base-
line” response when both hypoxia and lactic acid are present even though it is
up-regulated when one or the other are present.

signature is due to difference in labs or actual elevated hypoxia signatures in tumor

cells.

Splitting the patients into the top and bottom 50% of hypoxia signatures shows

no obvious predictive value (see figure 6.15). However, if we separate the top 10%

from the bottom 90%, we find a visible difference in the survival curves (see Figure

6.16).

Because we are able to keep all of the genes in the lactic acidosis meta-gene,

we have a more sensitive measure of tumor response to lactic acidosis than we

did with the codex data set. Interestingly, lactic acidosis signature and the p53

99



Figure 6.8: The expression levels of SLC7A11 with the fitted mean plus or minus
2 standard deviations. This gene behaves like an on/off switch in the presence
of hypoxia, lactic acid or both. Isolating this behavior, with linear models and a
standard design matrix, from paradoxical or synergistic responses is impossible.

wild type versus mutant type are visibly correlated (see Figure 6.17). It is already

known that this particular p53 mutant is indicative of a poor prognosis, thus it

is no surprise, given the correlation, that low lactosis score in a tumor is also

indicative of poor prognosis (Figure 6.18). It has been shown previously that

lactic acidosis is required for tumor cell death from hypoxia, and that p53 plays

an important role in this process (Schmaltz et al., 1998). Thus, our analysis adds

support for this connection, and its relevance for disease prognosis.

As is to be expected, we find that p53 status in the PNAS data set is indicative

of survival, however, our lactic acidosis signature is a much stronger predictor.
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Figure 6.9: The scores of the twelve experimental observations on the first two
principal components of the lactic acidosis signature genes. Control is black, lactic
acidosis is red, hypoxia is magenta, and both is green. Notice that it is the second
principal component that separates the lactic acidosis cells from the rest. The
scores of the 436 cancer cell lines are overlayed using ’x’.

We find that when lactic acidosis score is taken into account, p53 status becomes

insignificant while lactic acidosis signature remains significant.

It has become common knowledge within the biological community that the

presence of lactic acid in tumor cells is indicative of poor cancer prognosis (Walenta

and Mueller-Klieser, 2004). It is important to note here that, while the presence of

lactic acid and the cellular response to that presence should obviously be correlated

in normal cells, it is exactly the derailment of cellular responses that leads to tumor

growth. With this in mind, it should not be overly surprising that one might see

an abnormal response to the presence of lactic acid in a tumor, and that this

abnormal response might be indicative of a poor prognosis. Indeed, one should
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Figure 6.10: The scores of the twelve experimental observations on the first
two principal components of the hypoxia signature genes. Control is black, lactic
acidosis is red, hypoxia is magenta, and both is green. Notice that it is the second
principal component that separates the hypoxia cells from the rest. The scores of
the 436 cancer cell lines are overlayed using ’x’.

expect the presence of lactic acid to correlate more with the cause for its presence

(machinery for hypoxia response) than with the response to it.

6.5 Summary

We have been able to use the work, outlined in previous chapters, to construct gene

signatures for cells grown in hypoxic envrionments, cells grown in the presence of

lactic acid, and cells under both conditions. Even acknowledging the probability

that some genes have been incorrectly identified, we are able to measure these

signatures in real tumor cells taken from patients. The level of expression of

both hypoxia and lactic acidosis signatures was shown to be significant in disease
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Figure 6.11: The scores of the twelve experimental observations on the first two
principal components of the ”both present” signature genes. Control is black,
lactic acidosis is red, hypoxia is magenta, and both is green. Notice that it is
the first principal component that separates cells that are grown with both lactic
acidosis and hypoxia from the rest. The scores of the 436 cancer cell lines are
overlayed using ’x’. Notice that there is very little evidence of the presence of a
”both” signature in the tumor cells.

prognosis in the patient.

These gene signatures have the potential to identify which patients will respond

to specific types of treatments. This will allow patients and their doctors to skip

treatments that will do more harm than good in favor of those that have been

shown to work on the patients tumor type.
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Figure 6.12: The survival curve for the patients in the study split according
to whether they were in the top 50% in scoring on the lactosis signature (cyan)
or the bottom 50% (blue). There is no clear affect of a lactosis signature in the
cancer cell on tumor recurrence.

Figure 6.13: The survival curves for patients with a strong hypoxia signature
(cyan) versus a weak hypoxia signature (blue). The survival curves are visibly
separated, and the value of the hypoxia score is relevant with a p value of .043.
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Figure 6.14: The hypoxia signature for the data sets that are used to define
the meta-genes along with the values from projecting the PNAS data onto the
corresponding principal components from expression of the genes in the meta-gene.
Notice that the tumor cells almost universally exhibit a strong hypoxia signature,
with some having a higher score than even the experimental cells that were grown
in known hypoxic conditions.
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Figure 6.15: There is no obvious difference in survival when patients are split
equally according to the level of hypoxia signature in their tumors.

106



Figure 6.16: There is a visible difference in survival between patients with the
top 10% of tumor hypoxia scores and those in the bottom 90%.
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Figure 6.17: Notice the correlation between p53 mutant type vs wild type cells
and lactic acidosis score.
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Figure 6.18: High expression of the lactic acidosis signature in tumors is indica-
tive of a better survival outcome.
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Chapter 7

Variable Selection in Gibbs Energy

Models

Aside from the standard linear models used in earlier chapters, Bayesian variable

selection has been specifically formulated for many types of generalized linear

models, including log-linear models (Albert, 1995), logistic regression (Chen and

Dey, 2003; Viallefont et al., 2001), time series (Ibrahim et al., 2000), and Poisson

regression (Clyde and DeSimone-Sasinowska, 1997). Additionally, implementa-

tions have been described for time frequency surface estimation (Wolfe et al.,

2004) and certain non-parametric models (Kohn et al., 1999). The feature that

all of these models have in common is the ability to write down and sample from

the conditional densities of the variables that have been assigned variable selec-

tion priors. It is the absence of this feature that has so far precluded the use of

variable selection priors in complex Gibbs energy models.

In the case of most hierarchical models, if one can not draw from the condi-

tional density, then it is usually easy to switch to Metropolis steps in the Markov

chain Monte Carlo. Unfortunately, that is not straightforward in the case of point
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mass mixtures. Because the density function associated with a point mass dis-

tribution is infinite at the point mass (the function must integrate to 1 at that

point), if we start a random walk at zero, it will never leave. Also, if the pro-

posal distribution has no point mass at zero, and doesn’t star there, it will never

visit zero. For this reason, use of a random walk Metropolis-Hastings algorithm

directly is impossible.

If we write the likelihood of data Y given parameters x as L(Y |x), the prior

distribution as π(x), and the proposal distribution for x′ starting from x asQ(x′|x),

then the probability of accepting a move from 0 to x is:

L(Y |x)
L(Y |0)

π(x)

π(0)

Q(0|x)
Q(x|0)

For a random walk, the ratio of proposal distributions is 1. We know, π(0) = ∞,

so we are left with zero probability of accepting the move.

In this chapter we will focus on approximations of variable selection priors that

will allow them to be used outside of the framework of generalized linear models.

7.1 Proposal Distributions

The most direct solution to this problem is to use the prior distribution as a

proposal distribution. In this case, the prior and proposal distributions cancel

each other, leaving only the likelihood in the calculation of acceptance probability.

In cases where priors are well informed, this may be an acceptable alternative,

however it is often the case that the use of the prior in this context will lead to very

low acceptance rates. For example, if we take 50 observations from a standard

normal distribution and use a mean zero normal prior with standard deviation
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of four for the mean, we will have an acceptance rate of just over 4%. Because

acceptance rates become low very quickly, the use of any form of diffuse prior in

this situation is precluded.

What we need to fix this acceptance rate problem is some ability of the proposal

distribution to adapt to information gained about the posterior as the MCMC

progresses. Suppose that, instead of using a prior that is a mix of zero with a con-

tinuous distribution, we approximate the continuous distribution with a finite set

of points, {xi}N
i=1. In this situation, we may clearly choose a proposal distribution

with support on our discrete set and with non-zero probability on every point. If

we write π(xi) = πi and Q(xj|xi) = qi,j, then our acceptance function for a move

from xi to xj now looks like

L(Y |xj)

L(Y |xi)

πj

πi

qj,i
qi,j

By use of discretization, we may now use any sampling method we choose,

including a random walk through the points. However, because we are approxi-

mating a point mass mixed with a continuous distribution, we should assume that

the prior probability attached to zero is much higher than that attached to the

other points in the discrete set. Indeed, if we begin to consider larger and larger

discrete sets (as a better and better approximation of a continuous distribution),

then the ratio of those probabilities will limit to infinity.

With this in mind, we need to ensure that, if our proposal distribution is a

random walk, then it has a reasonably high chance to move both to and away

from zero.
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7.2 A Random Walk Analogue

Let g(x|µ) be a family of distribution functions (on the real numbers) with location

parameter µ. (For example, to produce a random walk, g(x|µ) might be normal.)

Define gi(xj), a probability density function on {xj}N
j=1, as g(xj|xi)/

∑
j g(xj|xi).

We define our proposal distribution, Q(xj|xi), to be gi(xj) with probability q

and 0 with probability 1 − q. With this proposal distribution, we will return to

zero at random intervals in the MCMC chain. In order to simplify calculation, we

might assume that the points {xi}N
i=1 extend far out into the tails of the posterior

distribution, and that gi(·) is symmetric around xi. Under these conditions, gi(xj)

and gj(xi) will be approximately equal (with any difference originating from mass

in the tail of both the proposal and the posterior distributions). This means that

the acceptance probability in this situation will be

L(Y |xj)

L(Y |xi)

πj

πi

.

Without these conditions, we will need to calculate the integration constant,∑
j g(xj|xi) for each point xi (or at each step of the MCMC) and include the

ratio gj(xi)/gi(xj) in our calculation, as this will affect the transition probabili-

ties.

For moves between non-zero points, we are using a standard random walk.

Therefore we need only calculate the acceptance probability for the case of xi 6= 0

and xj = 0 (the opposite direction will have an inverse acceptance probability).

For simplicity, let us assume that the point 0 is treated separately from the re-

maining point masses {xi}N
i=1. That is to say, gi(0) = 0 and moves to zero only

occur through a separate point mass at zero. Finally, define 1− r to be the prior
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probability that x = 0. Acceptance of a transition to zero is then

L(Y |0)

L(Y |xi)

π(0)

πi

Q(xi|0)

Q(0|xi)
=

L(Y |0)

L(Y |xi)

(1− r)

rπ(xi)

qg0(xi)

(1− q)

Suppose that g(x|µ) is normal with a variance that has been calibrated during

burnin to achieve an acceptance rate of between 15% and 50% (standard practice

in random walk MCMC). If our posterior distribution is unimodal with mode

at zero, or if it is bimodal, but the modes are close (zero will almost always be

a mode), then this technique should converge to our posterior distribution. By

allowing our set of discrete points, {xi}N
i=1, to tend to infinite size (or at least

to the number of numbers representable by a computer), we recover our original

mixture prior.

Unfortunately, it is precisely this desired unimodality that is likely to be de-

stroyed by our prior. If there is indeed evidence that x is non-zero, then the

posterior will have a mode that is separated from zero by an area of low posterior

probability. This will lead to poor or no convergence.

7.3 Random Walks and Multi-modality

Now we will return to treating our variable on continuous space. Suppose that we

are able, by judicious use of the information obtained about our posterior during

burnin, to design g(·) so that it is approximately proportional to our posterior

conditional on x 6= 0, that is p(x|Y, x 6= 0)π(x|x 6= 0) (perhaps with some overdis-

persion in order to avoid under-sampling the tails). If this is possible, then we

might use a proposal distribution that mixes a point mass at 0 with g(·). This

would lead to reasonable acceptance rates with periodic jumps to and from 0.
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We propose to learn, in a second burnin phase, about our distribution through

the following non-Markovian chain:

• Suppose we are at step t in the chain. Let n ≤ t be the largest value such

that xn 6= 0.

• If xt 6= 0 then

choose yt ∼ N(xt, σ) with probability q. Set xt+1 = yt with the accep-

tance probability

L(y)

L(xt)

π(y)

π(xt)

choose yt = 0 with probability 1 − q. Let xt+1 = yt with acceptance

probability

pt,n =
L(0)

L(xt)

1− r

rπ(xt)

qN(xt|xn, σ)

1− q

• If xt = 0 then set xt+1 = 0 with probability q. Otherwise, let yt = N(xn, σ)

and accept the move xt+1 = yt with probability 1/pt,n.

Note that this is not Markovian because it relies on knowledge of values from the

chain (xn) that are potentially arbitrarily far back in history. However, as we will

show, it can perform well for the purposes of learning about the distribution of

interest.

If we allow this algorithm to run for a burn in period, then begin collecting

mean and variance data, with which we can construct a normal approximation

to P (x|Y, x 6= 0)π(x|x 6= 0). Our true Markov chain then proceeds with a mix of

this Gaussian and zero.
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7.4 A Toy Example

We will use a set of data points that are known to be drawn from a normal

distribution with variance one, and we want to decide whether the mean of the

distribution is zero. Under these conditions, we may use a point mass prior for

the mean of the distribution

µ ∼ (1− q)δ0 + qN(0, σ)

From section 2.3.1 we can calculate the posterior distribution exactly. Thus, this

example provides a tool for testing our sampling mechanism.

We will use a sample of 25 observations with mean and variance artificially set

to .75 and 1 respectively. Additionally, we will set the prior standard deviation to

σ = 100 and the prior probability that µ = 0 to 0.5. Under these conditions, and

using the formulas in section 2.3.1 we obtain an approximate posterior distribution

for µ of

µ ∼ (.3065)δ0 + .6935N(.75, .04)

From the burnin, using a normal random walk with standard deviation of .7, we

obtain a distribution for µ|(µ 6= 0) with a mean of .7504, a variance of .0395,

and P (µ = 0) = .3250. When we then shift to sampling from N(.7504, 1)

(overdispersed to ensure that the sampler will sample from the tails) with prob-

ability .5 and zero otherwise we obtain the slightly more accurate estimate of

P (µ = 0) = .3057. Note that we have chosen a mean of .75 for this example to

induce a posterior probability that is relatively far from both 0 and 1. For means

that are higher that .75, the posterior probability quickly converges to 1 and for

lower means it quickly converges to 0.
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Note that there are significant questions opened up by the use of this scheme.

First, it is unclear whether the secondary burnin algorithm will converge to any

distribution. Second, we have demonstrated good behavior in the case of estima-

tion of the mean of a collection of observations. This is a one dimensional variable

selection problem, and the behavior of this algorithm may not be as simple in a

larger, more complex model. This algorithm is presented as an ad hoc method

that produces good behavior in our situation, but opens up a potentially fruitful

area of research.

One important issue that may need to be addressed is the problem introduced

by posterior correlation. If two (or more) variables which both have variable

selection priors are highly correlated, then there are likely two modes, one at

(0, 0) and another at (x, y). In this circumstance, it will be very difficult to move

between the two modes with proposals in one dimension. If such behavior is

extreme, then convergence may be very slow. It is fair to note that this is a

problem with Gibbs sampling in one dimension in the case of linear models as

well.

Now let us focus on a physical model, for which we can not calculate exactly

the conditional distribution of the model parameters.

7.5 A One Dimensional Multi-scale Model

A graphical model is a set of random variables together with the dependencies

between those variables. The name is derived from the fact that one can represent

the model pictorially by assigning the variables to the nodes of the graph and

drawing edges to show dependency. The statistical concept of dependency is

often one way, and so the edges of a statistical graphical model are often (but not
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required to be) arrows.

Consider the model depicted in 7.1, and suppose that xi ∈ X and yi ∈ Y , and

let α index all of the possible n-vectors of states, x̄α. Finally, assume that we have

an “energy” function defined by, U(x̄) =
∑n

i=1 U0(xi|xi−1, xi+1) for some function

U0 : X → IR.

Figure 7.1: A hidden Markov model in which there is imperfect information, z,
about a summary statistic, f(x). Shaded nodes are observed, and clear nodes are
unobserved.

We can then define a density on the space of possible configurations such that

f(x̄α) =
1

Z
e−U(x̄α)/T

where Z is the integration constant:

Z =

∫
α

e−U(x̄α)/Tdα

The constant Z, known as the “partition function” or “evidence”, is generally
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intractable to computation. (Except in the special cases of the Kalman filter or

when there are a finite number of states.)

Additionally, because the conditional independence is destroyed by the ad-

ditional variable w (see figure 7.1), the backward-forward algorithms from tra-

ditional hidden Markov models can not be used. We will, however, be able to

calculate the partition function directly in the case where X is a finite space.

Let X = {a1, · · · , am} be the finite set of states in X. Also, define x̄k to be an

n-vector of states in the space X (corresponding to the n elements in the chain),

and let xi,k be the ith element of the vector x̄k. This leaves us with a total of mn

states in the system. We have

Z =
∑

k

e−U(x̄k) (7.1)

=
∑

k

∏
i

e−U0(xi,k|xi−1,k,xi+1,k) (7.2)

Let Mi be the matrix with elements ub,c = exp(−U(xi = ab|xi−1 = ac)).

Additionally, let v = (e−U0(x1=a1), · · · , e−U0(x1=am)) be proportional to the density

on the possible states of x1 and w = (e−U0(xn=a1), · · · , e−U0(xn=am))′ be the same

for xn. Then

Z = v ·
n∏

i=1

Mi · w.

Keeping in mind the fact that one need only multiply an m-dimensional vector

with an m×m matrix a total of n times, the calculation of Z takes place in order

m2n time. In cases where some transitions are impossible, there will be zeros in

the matricies, Mi, and the order may be less.

Once it is possible to calculate the evidence, inference becomes possible. Sup-
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pose, for example, that the function, g(x) in Figure 7.1 is the average prob-

ability of finding any of the xi are in state a1. Let ui be the column vec-

tor exp(−U0(a1|xi+1,k, xi−1,k) where k runs from 1 to n. Then define M∗
i =

(u1, 0̄, · · · , 0̄). The quantity Qi = vM1 · · ·Mi−1M
∗
i Mi+1 · · ·Mnw/Z is the proba-

bility that variable xi is in state a1. Thus, 1/n
∑

iQi is the quantity of interest.

Notice that the calculation of Qi is almost identical to the calculation of Z, and

therefore requires very little additional work.

7.6 Summary

We have introduced a novel technique for fitting a point mass prior when there is

no possibility of calculating the conditional probability of the variable in question.

In the following chapter we will explore further use of this model in the prediction

of α-helicity in short polypeptides.
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Chapter 8

Calibration and Variable Selection in a
Physical Model for α-Helicity

The development of new pharmaceutical therapies has become the newest booming

economy, but at its heart, it is still a process of “guess and check”. Almost all

drugs work on the binding sites of proteins, but the folded structure of the proteins

themselves is difficult to determine. Because of this, it is difficult to design a drug

with a specific protein in mind. Additionally, the drugs to be designed may be

proteins themselves. Thus, even if the geometry of a target binding site is known,

directly designing a protein to fit the target is beyond current modeling technology.

One of the main secondary folded structures one finds in proteins is the α-

helix. As suggested by the name, the structure is formed when the backbone of

a protein forms a helix. The structure is stabilized by hydrogen bonds between

certain carboxy and amino groups in the backbone.

Because the α-helix structure is linear, and because the potential for long range

interactions (interactions between amino acids that are separated by more than a

few residues) is relatively low, this structure lends itself to modeling by the model

outlined in chapter 7.
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In this chapter, we will describe the modeling of α-helices with the one dimen-

sional multi-scale model described previously. Additionally, we will demonstrate

inference using that model and show that the posterior fit is better than the

current state of the art in modeling helices.

8.1 Data

We have collected 1187 different polypeptide helicity measurements which are

broken into 360 distinct polypeptide chains, some of which have been measured

at different temperatures and pH’s. All have been collected from the biological

literature. To date, biochemical researchers have focused on singling out specific

interactions which has led to a data set that is by no means a random sample

from the space of polypeptides. Discovering what biases are inherited due to this

process will be part of future work.

8.2 A Physical Model for α-Helix Formation

Consider the polypeptide backbone shown in 8.1. We will define an amino acid

to be in a helical conformation when the φ and ψ dihedral angles are within

a particular range (figure 8.2). Thus our model for helix formation at its sim-

plest has hidden states, x ∈ {h, c} (helix and coil states respectively), with

y ∈ {G,A, V, L, I,M, F,W, P, S, T, C, Y,N,Q,D,E,K,R,H} (these are the 1-

letter abbreviations for the 20 amino acids).

With this model we can take into account the fact that each amino acid has a

different energy level associated with being in α-helix conformation. However, this

does not allow for the inclusion of any long distance interactions (as one would
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Figure 8.1: Definition of the φ and ψ dihedral angles in a polypeptide backbone.

expect from a first order Markov model).

In truth, one would expect to have to input energy to constrain any amino acid

to its α-helix conformation. Unfortunately, if we use this prior information, we

will find that, in fact, α-helix conformation will be unfavorable in all situations.

The stabilizing interaction in an α-helix is a hydrogen bond that occurs between

an amino acid and the amino acid that is three steps away. This interaction is

available when there are three amino acids in a row that are in helical conforma-

tions. We may keep our first order model and incorporate this interaction energy

by expanding our state space. Now we assume that our state space consists of

pairs of helices/coils. That is x ∈ {hh, hc, ch, cc}. It becomes immediately clear

that our transition matrix will contain a number of zeros, as transitioning from

state hh̄ to state c̄h requires that the amino acid in position 2 in the first state

and in position 1 in the second state be simultaneously in both helix and coil for-

mations (here the bar signifies the positions that are represented in both states).
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Figure 8.2: An example of a Ramachandran plot. The colored areas represent
rotational angles corresponding to α-helix and β-sheet conformations. This is a
stylized example. In truth, these plots vary with the amino acid.

The full transition matrix is shown in Figure 8.3.

Note that our work is adapted from the work of Chakrabartty et al. (1994).

h̄h h̄c c̄h c̄c
hh̄
hc̄
ch̄
cc̄


wj vj 0 0
0 0 1 1
vj vj 0 0
0 0 1 1


Figure 8.3: The transition matrix for the hidden Markov model in which each
state contains helix/coil configuration for two amino acids. The overbars are
meant to mark an amino acid position that is recorded twice. Thus if three amino
acids are in positions ‘hch’, then that would be labeled ‘hc̄’ together with ‘c̄h’.

As described in section 7.5, we are using a Gibbs energy formulation for our

model. The coil position is defined to have energy 0 (which, when exponentiated

gives us the 1’s in the transition matrix). Consider the meaning of wj and vj.

Notice that transition weight, wj, corresponds to three consecutive amino acids
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in helical configuration. Using a standard Gibbs energy (Munoz and Serrano,

1995a),

∆Gj = ∆H − T∆Sj (8.1)

where j ranges over the distinct amino acids, we define wj = e−∆Gj/rT . The

contribution to stability due to hydrogen bonding is measured by the strength ∆H

(which is constant across all amino acids). An amino acid in a helical conformation

with at least one coil neighbor is assigned vj = e−∆S/R, corresponding to the

entropy loss of helix formation without the enthalpy of H-bond formation between

helical residues.

8.2.1 Model For Temperature

It has been shown (Munoz and Serrano, 1995b) previously that the temperature

dependence in 8.1 is inadequate. We are modeling a phase transition between

random coil and α-helix. In such a transition there will be changes in solvent

accessibility due to the exposure of groups of atoms in one state that are unavail-

able to the solution in the other state. This involves a change in heat capacity

which we include in our model as a temperature dependence in both the energy

and enthalpy terms in 8.1.

∆H = ∆Htref + ∆Cp(t− tref )

∆Sr = ∆Sr,tref + ∆Cp log

(
t

tref

)

Notice that any change in tref can be incorporated in the constants Cp, ∆Sr,

and ∆Htref . In order to stay consistent with previous work, we set tref = 273

Kelvin. These equations result from thermodynamic considerations, and are pro-

posed for α-helix formation in Munoz and Serrano (1995b).
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8.2.2 Interaction Parameters

In an α-helix, amino acids that are separated in the polypeptide chain are poten-

tially brought into close proximity by the geometry of the helix. Specifically, once

the chain is in helical formation, an amino acid at position i is nestled between

those at positions i + 3 and i + 4. This leads to long range interactions that,

depending on the amino acids involved, may have significant effects on the sta-

bility of the α-helix. We model these by inclusion of new interaction parameters,

∆∆Ga,b,3 and ∆∆Ga,b,4, representing sidechain interactions between amino acids

a and b in positions i to i + 3 and i to i + 4 respectively. Thus the our energy

function becomes: ∑
i

∆Gi + ∆∆Gi,i+3,3 + ∆∆Gi,i+4,4

In order to accommodate these interactions, we must have sixteen possible states

at each position of the Markov model with a corresponding 16x16 transition ma-

trix. The transition matrix shown in Figure 8.3 is inadequate to the task. Instead

we will use the following transition matrix.

Figure 8.4 shows a matrix of transition weights expanded to include enough

states to accommodate interaction energies in positions separated by as many as

three other amino acids. Listed along the left side and across the top are the

sixteen different states at each point in the Markov model, with un-normalized

transition probabilities in the matrix. The zeros in the matrix represent impossible

states, where some amino acid would have to be simultaneously in helical and coil

positions. Consider the top left position of the matrix, hhhh → hhhh. This

implies that there are five amino acids in a row that are in helical position. We

are assigning the i to i+4 interaction energy between the amino acids in the first
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hhhh hhhc hhch hhcc hchh hchc hcch hccc chhh chhc chch chcc cchh cchc ccch cccc

hhhh
hhhc
hhch
hhcc
hchh
hchc
hcch
hccc
chhh
chhc
chch
chcc
cchh
cchc
ccch
cccc



xj wj 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 vj vj 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 vj vj 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 vj vj 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
yj wj 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 vj vj 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 vj vj 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 vj vj 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



Figure 8.4: An un-normalized transition matrix that is large enough to account
for interactions between amino acids that are separated by 4 positions.

and last positions and the i to i+3 interaction energy between the first and forth

amino acids to the amino acid at position three. This is equivalent to a model

in which we split the energy between the amino acids actually involved in the

interaction because it is the total energy of the polypeptide that is relevant for

the calculation of percent helicity. Additionally, in order to split the energy as

described we would have to significantly increase the size of our state space.

8.2.3 Blocking Groups

Recall the partition function for this Markov model:

Z = v′ ·
n∏

i=1

Mi · w

The first and last amino acids in the polypeptide chain will obviously have neigh-

bors to only one side. The first state cannot be hhhh as this would imply that

the first amino acid has neighbors in helical position preceding it. Also, without a
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group preceding it the first amino acid cannot benefit from the stabilizing effects

of hydrogen bonding. Similarly, the final amino acid cannot benefit from hydrogen

bonding without a group following. In fact there are two types of polypeptides

in our data. Those with “blocking groups” in the first and/or last positions, and

those without. The blocking groups serve the purpose of allowing the first (or

last) amino acid to participate in the formation of hydrogen bonds. In order to

exclude impossible situations and accommodate blocking groups, we assign

v′ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

w′ = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)

when the polypeptide is blocked, and

v′ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)

w′ = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)

when it is unblocked.

8.2.4 Capping and Positional Parameters

There are some reasons to believe that certain amino acids are seeds for α-helix

formation. For example, Proline has a ring structure that incorporates its back-

bone. Because of this, its φ and ψ angles are severely restricted, causing this

amino acid to be an α-helix breaker. It is, however, known statistically to be

strongly associated with the amino terminus of α-helices.

Also, an α-helix creates an electric dipole that has the potential to interact

with charged amino acids differently depending on whether they occur early or

late in the helix. A negatively charged amino acid at the amino terminus would
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tend to favor the formation of an α-helix because its charge would complement

the dipole which would put a positive charge at this end. For the same reason, it

would discourage α-helix formation if it were located at the carboxy terminus.

With no modifications to our model, we have the ability to define ∆∆G pa-

rameters for: 1) the N-capping position (the first coil position before a helix

corresponding to ∗ ∗ ch∗), 2) the C-capping position (the first coil after a helix

corresponding to ∗hc̄ ∗ ∗), 3) the first and second positions of the α-helix (∗ch ∗ ∗

and chh ∗ ∗ respectively), and 4) the last two positions of the alpha helix (∗ ∗ hc∗

and ∗∗hhc). This is done by modifying the corresponding values in the transition

matrix above.

There are also experiments which suggest that there are capping effects asso-

ciated with the blocking groups. We treat amino capping by modifying v′ and w′

so that

v′ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ncap, ncap, 1, 1)

w′ = (0, 0, 0, ccap, 0, 0, 0, 1, 0, 0, 0, ccap, 0, 0, 0, 1)

8.2.5 Model for pH

There are nine amino acids with ionizable side groups. Each of which occurs in

protonated and unprotonated states. There is the potential for these state changes

to cause significant differences in the probability of α-helix formation. The nine

amino acids and their corresponding pK’s are listed below (Creighton, 1993).
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Amino Acid side-chain pK
Asp 3.9
Glu 4.1
Arg 12.5
Lys 10.8
His 6.0
Cys 8.3
Ser 13
Thr 13
Tyr 10.1

We assign to each a ∆Sr associated with the unprotonated state. In addition,

each of these five amino acids has a separate ∆∆Sr which is added when the

amino acid is in its protonated state. We use this formulation so that we may use

a variable selection prior on the parameter ∆∆Sr that is centered at zero.

We use the standard formula for calculating the fraction of an acid or base

that is protonated, fp, at a known pH (Munoz and Serrano, 1995b):

fp =
1

1 + 10pH−pK

Thus the Gibbs energy associated with being in helical position for one of these

nine amino acids is:

vr = efp∆Sr+(1−fp)(∆Sr+∆∆Sr)+Cp log(t/tref )

In addition to the calculation of ∆Sr, we use split parameters according to the

fraction of these amino acids that are protonated in the calculation of capping,

positional, and interaction parameters. This allows us to obtain a reasonable fit

for most pH curves in our data set. An exception is the polypeptide AETAAAK-

FLRAHA, a chain that contains an i − i + 8 salt bridge between Glutamate at

position two and Arginine at position 10. Our current model contains i− i+3 and
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i− i+ 4 interactions. Expanding it to include i− i+ 8 interactions would require

that we use 128 states at each position in our Hidden Markov Model, significantly

more than the sixteen we have now.

8.3 Prior Specification and Variable Selection

Consider what happens when we use a flat prior for ∆Sr, the energy required to

constrain the amino acids in α-helical formation. Figure 8.5 shows the posterior

mean distribution of, exp(−T∆Sr/RT ), for the 20 amino acids. Notice that Argi-

nine is calculated to be an order of magnitude more helical than the other amino

acids. In fact, it is highly likely that this reflects some bias in the data, though

the origin of the bias is unclear.

Figure 8.5: The calculated inherent helicity of each amino acid (box plots) is
plotted with the biologically estimated helicity (lines). The biologically estimated
values may differ from our calculated values because our statistical model can
account for confounding effects which were not accounted for in the experiments.
However, such a significant difference in the inherent helicity of Arginine is more
likely due to bias in the data.

Significant work has been done experimentally to obtain estimates of many of

the parameter values in this model (Chakrabartty et al., 1994). We will try to
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avoid situations such as those shown in Figure 8.5 by capitalizing on this previous

work. We define our prior distributions for ∆Sr and ∆H to be normal with

a standard deviation of around 200 cal/mol and centered around the estimates

provided in (Chakrabartty et al., 1994). This allows us to somewhat alleviate the

overfitting associated with over-parameterized models in general, and our model

in particular.

Consider the temperature curves shown in 8.6. Notice that there is general

disagreement in the slopes of the temperature curves predicted by Agadir and

those measured in the lab (if the shapes were consistent, the sequential points

would follow straight line paths). It is this disagreement that leads us to choose

uninformative priors for both the specific heat parameter, Cp and the hydrogen

bonding parameter ∆H.

We are faced with a data set of around 1100 data points and a model with

the potential for over 900 parameters. Thus over-fitting is a significant concern.

Because of this, we have chosen to implement variable selection in two different

ways. The first is by the use of a point mass mixture prior of the form

(1− π)δ0 + πN(0, σ2)

. For comparison, we will also implement a Laplacian (reflected exponential) prior.

The MAP estimate from this prior is equivalent to the lasso method for shrinkage

in linear regression Hastie et al. (2001). This prior distribution has the property

that the maximum a posteriori (MAP) estimate of the parameters, in cases where

there is little evidence of effect, is exactly zero.
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Figure 8.6: Chemically measured helicity values versus those predicted by
Agadir. The points shown here are taken only from the temperature curves in
the data. Because the shape of the Agadir curves is evidently off, we have chosen
not to use informative prior distributions for either the specific heat or hydrogen
bonding energy.

8.3.1 Markov Chain Monte Carlo for Variable Calibration

If we label the model for helicity described above as M , then for peptide xi we

have a statistical model for measured helicity hi defined as follows:

hi = M(xi) + ε

ε ∼ N(0, σ)

1/σ ∼ Ga(α, β)

We have over 1100 data points, so any reasonably uninformative prior for σ will

suffice to avoid biasing our results. We have chosen α = β = .01.

Assuming an algorithm for usingM to calculate the helicity of a given polypep-
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tide, this is a very simple model with conditional posterior for σ of

σ|{hi}, {M(xi)} ∼ Ga(N/2 + α,
1

2

∑
(hi −M(xi))

2 + β

It is the details of calculation of helicity from M that cause issues.

For the cases where we have either normal or reflected exponential priors,

we proceed by Metropolis steps in a Markov chain Monte Carlo algorithm. The

calculation of helicity has been outlined in previous sections. Given a set of model

parameters, θ, we may calculate a predicted helicity, hi,θ for each polypeptide. If

hi is our measured helicity, then the conditional posterior of hθ,i is:

P (θ|{hi}, σ) =
∏

N(hi|hθ,i, σ)p(θ)

We propose a new set of model parameters, θ′ ∼ N(θ,Σ) and accept them with

probability

min

(
1,
P (θ′|{hi}, σ)

P (θ|{hi}, σ)

)
.

This produces a Metropolis Markov chain with stationary distribution equal to

the posterior of interest. When we are using a point mass prior, we will proceed

with the sampling algorithm outlined in section 7.3.

There are 658 model parameters, and we update them individually with a

one dimensional random walk. As part of the burn-in process, we update the

variance of the random walk individually for each parameter to keep the accep-

tance rate between 15% and 50%. This is done by keeping track of the number

of accepted proposals for each 500 steps and incrementing or decrementing the

variance accordingly.
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8.3.2 Convergence

We run four separate chains with random start points, and use the squared error

of prediction as a convergence diagnostic statistic. Figures 8.7 and 8.8 show the

posterior mean squared errors from four different runs of the algorithm. There is

close agreement among the chains, which suggests that the chains have converged.

We have also monitored the traces of all individual parameters for agreement

across all models.

Figure 8.7: The cumulative distribution functions computed from the data for
each of four different runs shows reasonable agreement.

8.4 Results

Dataset We have collected a database of peptide helicity measurements drawn

from the published literature on helical peptide studies. In doing so we have

incorporated most of the papers cited by Agadir (Munoz and Serrano, 1994) in
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Figure 8.8: Boxplots from four different runs show close agreement in posterior
mean squared error values.

an attempt to recreate as closely as possible the dataset used there. We have also

added to our dataset a number of peptide helicity measurements published after

the Agadir publication and 3 unpublished measurements, to obtain a “test set” on

which neither Agadir nor our model have been trained for purposes of comparing

prediction accuracy.

The dataset used in this paper contains 1187 peptide helicity values measured

by circular dichroism (CD). The set contains 300 distinct peptides, including

142 designed and 218 natural sequences. The remainder of the data consists

of repeated measurements on these peptides under various perturbed conditions,

including 22 pH curves and 19 temperature curves. Most of the designed sequences

are alanine-based peptides, and a large fraction of both the designed and native

sequences are single mutations of other sequences in the database. Thus coverage
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of sequence space is far from uniform, and significant bias exists in amino acid

composition.

Standard Deviation of Error Rate It is accepted that the error associated

with the measurement of helicity is dependent on the technique used, but that it

is around 5%. This is in line with the fitted error rate shown in 8.9.

Figure 8.9: The posterior distribution of the standard deviation of the mea-
surement error. There is close agreement between this value and the expected
experimental error of around 5%.

Estimated parameters Figure 8.10 shows the resulting posterior intervals

for the ∆SR) parameters for each sidechain. Also shown for comparison are the

parameters obtained from experimental measures Chakrabartty et al. (1994). Pos-

terior intervals for the ∆Sr’s were obtained by fitting the model described in the

beginning of the chapter via the Bayesian inference procedure described in Sec-

tion 8.3.1 using MCMC, and then transforming the Lifson-Roig wr parameters at

a temperature of 273 Kelvin. Sidechains are ordered according to experimentally

measured helicities to enable comparison of trends. We see that Ala is estimated
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to one of the most helical residues, with Pro and Gly the lowest, as expected. We

see that a number of residues encompass values higher than Ala. We are exploring

the possibility that this may be due to sequence composition bias in the database

arising from overrepresentation of designed peptides relative to native ones. How-

ever it is important to note that the experimental values do not necessarily reflect

the true physical values; indeed, we expect to observe some differences and that

these differences will improve the predictive ability of the model.

Figure 8.11a shows the posterior distribution obtained for ∆H. The Agadir

value of −1.4kcal mol−1 is well within the posterior distribution for this parameter.

The specific heat parameter, shown in Figure 8.11b, is positive, indicating an

interaction favorable for melting of α-helices at higher temperatures.

Some posterior distributions for the subset of sidechain-specific i to i + 4 in-

teractions described in Section 8.2.2 obtained using laplace shrinkage priors are

shown in Figures 8.12a and 8.12b. We found that complementary charges yield

generally favorable interaction energies, while same charges result either in re-

pulsion or no interaction, the latter occurring when sidechains are free to rotate

away to avoid unfavorable interactions. Figures 8.12c and 8.12d show how these

interactions can depend on how the side groups are charged. Several interactions

are seen to be asymmetric, or dependent on the N/C-terminal ordering of the

sidechains.

We estimate the N-Capping parameters of all amino acids as well as the favor-

able effects of being in either position 1 or position 2 of a helix. 8.13 shows the

N-Cap parameter estimates for all 20 amino acids as well as that for the blocked

amino terminus of the polypeptide chain.

All told, there are 67 of the 669 variables in the model which show evidence of
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being non-zero. These include the ∆H parameter, the heat capacity parameter,

all of the ∆Sr parameters, one shift in pK (that of Glu), two shifts in ∆S for

pH changes, 16 positional parameters and 26 interaction parameters. The Agadir

model retains all of these parameters, and performs more poorly in both fitting

and prediction.

Cross-validation results In order to evaluate predictive accuracy of the model

in an unbiased fashion, it is important to look at test-set predictions on datapoints

which were not used in estimating the model parameters. Many results reported

to date for helix-coil theory models have been given in terms of accuracy in repro-

ducing the data used for parameter determination, and results on out-of-sample

peptides have been primarily anecdotal rather than across large samples. Such

evaluations do not provide an accurate picture of the model’s ability to predict the

helicity of new peptides which were not present in the dataset at the time of para-

meter fitting. Without out-of-sample test set evaluations, “testing on the training

set” as it is sometimes called is well-known to yield upwardly biased estimates of

model accuracy.

One approach to obtaining unbiased estimates of predictive accuracy is the

use of leave one out cross-validation. The resulting accuracy is estimated as the

mean across the validation points, ensuring that every datapoint is available for

validation, while avoiding training on the test set. Special care must be taken

in performing cross-validation on the peptide helicity dataset described above,

due to the high near-redundancy in the dataset. We partition the peptides into

subsets according to sequence uniqueness, placing all repeated measurements,

temperature curves, pH curves, and single-site mutations of each sequence in the

139



same cross-validation subsets.

Figures 8.14a and 8.14b show the helicities predicted by our model versus

experimental values for the training set and test set, respectively. The overall

mean-squared-error (MSE) is .0021 for the training set and .0107 for test set,

compared to .0178 and .0176 for Agadir. These results indicate that our parameter

estimation and selection scheme simultaneously improves the model fit to the

training data and the predictive accuracy on the test set.

Figure 8.15 shows real and predicted test-set temperature and pH curves for

several peptides in the database. We see that even where the model curves depart

from the experimental curves somewhat, the experimental data lies within the

posterior predictive intervals of the model. This suggests that the error arises

from lingering uncertainty in the model parameters, rather than a poor fit of the

helix-coil model itself, and highlights another advantage of our statistical approach

over previous algorithms such as Agadir (shown for comparison). In most curves

the model correctly predicts the general shape of the curve.

For comparison we have included in Figures 8.18 to 8.29 all of the posterior

distributions for the interaction parameters under both reflected exponential and

point mass mixture priors. The histograms of the point mass mixture priors have

been truncated on the y-axis in order to show the shape of the histogram away

from zero.

8.5 Correlation in the Posteriors

One of the nice features of the posterior distribution for this model is the fact

that most variables are close to independent of each other. Figure 8.16 shows the

pairwise correlations of all 67 of the variables included in the model. There is
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generally low correlation with a few exceptions. As can be seen in Figure 8.17,

five of the 15 variable pairs that have greater than 50% correlation are of the form

∆∆Sx vs ∆Sx. This is not surprising, because these parameters are unidentifiable

for every ionizable amino acid for which has no pH curve in the data set that

covers the range of its pK.

One of the features of variable selection techniques discussed thus far is the

independence of the prior distributions. This structure precludes the use of prior

knowledge of dependence structure, and can lead to overestimation of the signif-

icance of a particular variable. Figure 8.10 shows that the ∆S parameter for all

five of these pairs is within a close range of its prior. This together with the fact

that the two variables are known, a priori, to be confounding leads us to propose

a new form of non-independent prior.

We have an informative prior for ∆S and, additionally, we propose to use

a prior hierarchy that tells us that ∆S is a more important and more relevant

parameter than ∆∆S. This leads us to the following hierarchical prior structure:

∆∆S ∼ (1− r)N(∆S|µ, σ)

(1− r)N(∆S|µ, σ) + r
δ0 +

r

(1− r)N(∆S|µ, σ) + r
N(m, v)

∆S ∼ N(µ, σ)

That is to say, the farther the parameter ∆S ranges from its prior distribution,

the more likely we are to allow the inclusion of the less important variable, ∆∆S.

8.6 Conclusions

We have presented an approach to combining statistical mechanical models based

on biophysical theory with databases of experimental measurements via Bayesian
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parameter inference and model selection. We have applied this approach to a

frequently used model for biopolymer sequence and structure analysis, the helix-

coil model. Our approach allows the incorporation of previous experimental and

theoretical knowledge in the form of prior information on model parameters and

model structure, and combines this with a large dataset to obtain posterior distri-

butions on model parameters. This general approach has applications to a wide

variety of problems in biostatistics and biophysics. Our approach may be applied

directly to the problem of protein secondary structure prediction using helix-coil

models (Froimowitz and Fasman, 1974; Qian and Chan, 1996; Misra and Wong,

1998), with little modification. Of broader interest may be problems in empiri-

cal forcefield parameterization for protein structure prediction by threading and

homology modeling, fragment reconstruction, and empirical energy minimization,

as well as problems in protein-protein and protein-ligand docking.

In this chapter we have applied our approach to model selection and parame-

ter estimation in the context of peptide helicity prediction, and shown that this

approach provides both improved fit to the training data and improved test-set

predictive performance. The use of shrinkage priors enables the inclusion of a

large number of potential sidechain interaction and capping parameters, yet still

induces a sparse model structure by retaining only those parameters for which

significant evidence exists in the data set. Upon study, we find that the error in

fitting helicity has heavier tails than a normal distribution. There is the opportu-

nity to improve fitting and prediction by using heavier tailed T-distributions. This

extension can be accomplished by mixtures of normal distributions, and therefore

would require little modification of our treatment.

In the following chapter, we will discuss how our approach enables the appli-
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cation of statistical design of experiments to select future helical peptide studies

which will be most informative in improving model predictive accuracy, reduc-

ing uncertainty in parameters, and examining hypotheses about model structure.

This approach represents a promising new way to bridge the gap between detailed

physical modeling done in computational biophysics and computational chemistry,

and more traditional data-driven bioinformatics algorithms.

Figure 8.10: Posterior distributions for ∆Sr parameters. Boxplots show poste-
rior means, quartiles, and 95% posterior intervals. Amino acids are ordered by LR
w values obtained previously Chakrabartty et al. (1994). These values, converted
to ∆Sr scales, are shown in red. Differences between experimental values and
posterior intervals are discussed in text.
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(a) (b)

Figure 8.11: The temperature parameters show reasonable agreement with the
standard values. The Agadir value, ∆H ≈ −1400cal/mol, is well within the
posterior distribution. ∆Cp is in units of cal/(mol Kelvin).
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(a) (b)

(c) (d)

Figure 8.12: When there is no evidence for a non-zero parameter in the data, we
get back the prior distribution. In (a), there is only one observation of F - Y in
the i to i+3 position in the data set. The corresponding posterior using the point
mass prior puts a 93% probability that the parameter is zero. In (b), there are 133
observations in the data set, and this allows us to determine that this parameter is
likely non-zero. The point mass prior puts a 35% probability that this parameter
is non-zero. Our model distinguishes between charged and uncharged versions of
particular side groups. For Figures (c) and (d), the black curve corresponds to the
absence of protons (high pH), the red curve corresponds to the presence of one
proton among the pair, and the green curve corresponds to the presence of two
protons. For figure (c), we see that there is an unfavorable interaction only when
both Lys side groups are charged. For Figure (d) we see evidence of a favorable
interaction only when both E and R are charged (oppositely in this case).
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(a)

(a)

(a)

Figure 8.13: Many of the N-Cap parameters (a) are non-zero. There is some
cause for concern here, as these parameters are generally considered to be of
lesser importance. One of these that is known to be important is the parameter
for the amino terminus blocking group (labeled * in the figure). Some positional
parameters (b) and (c) are also strongly non-zero
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(a)

(b)

Figure 8.14: There is good agreement between known helicities and both fit (a)
and out of sample (b) model values. Also, there is a significant improvement over
the Agadir model.
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(a) PLTQEQLEDARRLKA (b) PLTQEQLEDARRLKA

(c) NYSKLKYESEKKKKDSHKK (d) NYSKLKYESEKKKKDSHKK

(e) EYGKFRFEQQKKEKEARKK (f) EYGKFRFEQQKKEKEARKK

(g) AETAAAKFLRAHA (h) AETAAAKFLRAHA

Figure 8.15: Predicted helicity versus experimentally measured temperature and
pH curves for several peptide sequences. Predictions by our model (open circles)
are shown with 95% posterior predictive intervals. Fitted curves are shown in the
left column and predictions from cross-validation are shown in the right column.
Agadir is shown in red and measured data values are in blue.
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Figure 8.16: A heatmaps of the pairwise correlations between the 67 variables
that are included in the model. Below the diagonal shows a standard heatmap,
and above the diagonal highlights those pairs that have correlation greater than
50%. There is generally low correlation between the variables.
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Figure 8.17: Scatterplots of the 15 pairs of variables that have higher than 50%
correlation. Five of the 15 are of the form ∆∆Sx vs ∆Sx.
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Figure 8.18: The posterior distribution for the i to i+3 charged group parameters
under the point mass mixture prior.
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Figure 8.19: The posterior distribution for the i to i + 3 hydrophobic group
parameters under the point mass mixture prior.
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Figure 8.20: The posterior distribution for the i to i + 3 ring structure group
parameters under the point mass mixture prior.
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Figure 8.21: The posterior distribution for the i to i+4 charged group parameters
under the point mass mixture prior.
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Figure 8.22: The posterior distribution for the i to i + 4 hydrophobic group
parameters under the point mass mixture prior.
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Figure 8.23: The posterior distribution for the i to i + 4 ring structure group
parameters under the point mass mixture prior.
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Figure 8.24: The posterior distribution for the i to i+3 charged group parameters
under the Laplacian prior.
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Figure 8.25: The posterior distribution for the i to i + 3 hydrophobic group
parameters under the Laplacian prior.
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Figure 8.26: The posterior distribution for the i to i + 3 ring structure group
parameters under the Laplacian prior.
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Figure 8.27: The posterior distribution for the i to i+4 charged group parameters
under the Laplacian prior.
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Figure 8.28: The posterior distribution for the i to i + 4 hydrophobic group
parameters under the Laplacian prior.

161



Figure 8.29: The posterior distribution for the i to i + 4 ring structure group
parameters under the Laplacian prior.
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Chapter 9

Experimental Design for Future Peptide

Helicity Prediction

The array of different potential polypeptides is vast. Because of this, randomly

choosing one to study is unlikely to significantly improve our ability to predict

helicity in future polypeptides. Unfortunately, experimentation is time consuming

and expensive, so there is a need to maximize, as much as possible, the information

obtained. Our model along with the posterior distribution on the parameters

derived in chapter 8 provide us with enough information to give some direction

for improving the model by future study.

The idea of making choices about the next avenue of study based on previous

data is not a new one. In 1948, Dixon and Mood (1948) described an iterative ’up

and down’ technique for estimation of median effective dose. Other work on this

problem includes the stochastic approximation method of H. and Monro (1951)

and a Bayesian technique introduced by Freeman (1970).

There is similar work on the problem of sequential clinical trials, in which

subjects are added to the trial as they come. If one wants to estimate a particular
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parameter in a model, for example the difference in expression levels of a particular

gene between control and experimental groups, then one must make a trade off

between bias and variance. In general, it is desirable to have balance between

control and experimental groups, but by deterministically assigning new patients

to groups (rather than random assignment) one runs the risk of introducing bias.

Some examples of this work include a variance minimization rule (Pocock and

Simon, 1975) and a ’biased coin’ rule (Efron, 1971). A comparison of these and

other experimental design techniques is presented in (Atkinson, 2002).

One difficulty with developing a general theory of sequential design is the va-

riety of potential models and potential parameters of interest within a particular

model. An attempt at generalizing the approach is to try to maximize the de-

terminant of the information matrix (Wynn, 1970). Experimental designs which

attempt do this are called D-optimal designs. (In fact, there is a whole series of

related optimality criteria, called alphabetical optimality criteria.) A description

of such a technique for generalized linear models is given by Dror and Steinberg

(2006), and for certain semi-parametric models by Verotta (1990). Additionally,

sequential D-optimal designs are used in a number of applied papers including

Coffey et al. (2005), Berger (1994), and Fujiwara et al. (2005). This technique is

helpful when one wants to learn generally about the parameters in a model.

The general Bayesian approach to experimental design, and the approach we

will take, is to specify a utility function, then choose the experimental design which

maximizes the expected utility. (This is equivalent to designating a loss function

and minimizing expected loss.) To convert this to sequential experimental design,

one simply recalculates at each step the maximum expected utility experiment

given any new data that has been discovered. For the case of median effective
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dose, the loss function is the difference between the estimated and actual median

dose. For the case of clinical trials, the loss may be the variance of the estimator

of the difference in response between experimental and control groups. Also, D-

optimality has been show to be a special case of the Bayesian approach which

assumes a particular utility function (Bernardo, 1979). A comprehensive survey

of Bayesian experimental design and decision theory is given in Chaloner and

Verdinelli (1995).

In our application we have a clear choice of loss function. It is the helicity of

polypeptides that we want to predict. While it is true that we have a physical

interpretation of our model parameters, it is predictive accuracy that drives our

study. Thus, we choose to make expected predictive error our loss function and

define our utility function to be −1× our loss.

9.1 Notation

For the purposes of this chapter, let X be the set of all polypeptides. Let the “true”

helicity of xi ∈ X be hi and the experimentally measured helicity be h̄i. Suppose

that we have a set of parameters for the model described in the previous chapter,

θ ∈ Θ. Define ĥi,θ = h(xi, θ) to be the model predicted helicity of polypeptide xi

given model parameters θ. Then, in this notation and fixing parameters θ, our

model is of the form h̄i ∼ N(ĥi,θ, σ). Let R(θ) be the log of the prior probability

of θ. If we have helicity measurements on a subset, {xn}N
n=1, of polypeptides, then

the conditional log-density of θ|{h̄n}, σ = R(θ) +
∑

n−
(h̄n−ĥn,b)

2

2σ2 − 1
2
log(2πσ2).

In order to limit the excess of notation, we will denote the probability density

function for θ as f(θ|{h̄n}, σ) = f(θ) (with an implicit assumption of dependence

on σ and the data). Our model estimated helicity for polypeptide xi, from the
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previous chapter, will be

ĥi|{h̄n} =

∫
Θ

ĥi,θf(θ)dθ

In the coming sections, we will approximate this integral by Monte carlo integra-

tion (see chapter 8).

Recall that our general goal with this work is the prediction of helicity, so it

is intuitive that we will use the squared error of prediction as our loss function.

The squared error of prediction for polypeptide xi is simply (ĥi − hi)
2. We will

also refer to this as the predictive accuracy.

We are faced with a somewhat ill-defined question. We are generally interested

in improving the predictive accuracy of our helicity model through better under-

standing of its parameters. However, this begs the question, “Predictive accuracy

over what set of polypeptides?”.

It is possible to answer this question in various ways, for example, predic-

tive accuracy for all polypeptides of length k. (Which would be a set of order

20k.) However, it is probably true that not all of these are equally interesting.

Additionally, fixing a length, k, is too restrictive.

Define a distribution ω(x) on all polypeptides (potentially zero at some points).

By a choice of ω an experimenter may define which polypeptides are considered

important. Possibilities may include high or low helicity polypeptides, naturally

occurring polypeptides, polypeptides that are resistant to temperature or pH

changes, etc. Having defined ω, we will define our expected predictive accuracy

over ω to be

Aω,{h̄n} =
∑
X

(hi − ĥi)
2ω(xi).
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We are ultimately interested in determining what polypeptide to study next.

We have defined a ranking of important polypeptides by way of ω, and an expected

predictive accuracy. Our change in predictive accuracy from studying polypeptide

xi is then

Aω,{h̄n} − Aω,{h̄n}∪h̄i
.

Because we do not have h̄i available when making the decision whether or not to

study xi, we must integrate across its possible values. Recall that the density for

h̄i is N(ĥi,θ, σ). We define our expected change in expected predictive accuracy

for polypeptide xi to be

Eω,{h̄n}[xi] =

∫
Θ

∫
[0,1]

Aω,{h̄n} − Aω,{h̄n}∪h̄i
N(h̄i|ĥi,θ, σ)dh̄idθ.

This is our expected gain from studying polypeptide xi.

We are considering the decision theoretic statistic of expected utility, with

a loss function defined by predictive accuracy error. In fact, there are other

considerations when deciding what polypeptide to study. First, synthesis of longer

polypeptides may be more expensive than shorter. Also, introducing a series of 20

point mutations to a particular polypeptide may be less expensive than studying

20 completely distinct polypeptides. If we let C(xi) be our expected cost for

polypeptide xi, then our expected utility is

E(U(xi)) = Eω,{h̄n}[xi]− C(xi).

Costs may vary from lab to lab. Because of this and because adding cost to the

calculation can be added on after calculation of Eω,{h̄n}[xi], we will ignore cost in

what follows. Additionally, given a distribution, ω, on X we may approximate the

expected utility of any polypeptide by sampling from ω and averaging the expected
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utility of xi across the sample. Finally, for the process of averaging expected

utility, we need only calculate the pairwise expected utility for each element of

the sample with xi. Thus, for the remainder of the paper, we will concentrate on

the calculation of a simple pairwise expected utility. Specifically, we will answer

the question “If I study polypeptide xa, what is the expected improvement in

predictive accuracy for polypeptide xb?” With the ability to answer this question,

one might perform a random search of the polypeptide space (for example, the

Shotgun search algorithm introduced by Hans et al. (2007)) in order to find good

candidates for future study.

9.1.1 Expected Loss

Suppose we are interested in a particular polypeptide, xa. We obtain the expected

squared error, Λa, by integrating over the distribution of ha. We know ha ∼

N(ĥa,θ, σ).

Λa =

∫
Θ

∫
[0,1]

(ĥa − ha)
2N(ha|ĥa,θ, σ)dhaf(θ)dθ

=

∫
Θ

∫
[0,1]

[(ĥa − ĥa,θ) + (ĥa,θ − ha)]
2N(ha|ĥa,θ, σ)dhaf(θ)dθ

=

∫
Θ

[
Eha [(ĥa − ĥa,θ)

2] + Eha [(ĥa − ĥa,θ)(ĥa,θ − ha)] + Eha [(ĥa,θ − ha)
2]
]
f(θ)dθ

=

∫
Θ

[
(ĥa − ĥa,θ)

2 + σ2
]
f(θ)dθ

This is our expected predictive error (expected loss) for polypeptide xa. As de-

scribed in the previous chapter, we have an algorithm for sampling from the
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distribution, f(θ). If {θi}N
i=1 is such a sample, we may approximate Λa as

Λa ≈ Λ̂a =
1

N

∑
i

(ĥa − ĥa,θi
)2 + σ2

i

=
1

N

∑
i

(1/N
∑

j

ĥa,j − ĥa,i)
2 + σ2

i

= σ2
ha

+ σ2
i

Let h̄a denote the experimental measurement that would be obtained if we

were to study peptide xa. Let g(θ) ∝ p(θ|{h̄n}, h̄a) be the distribution on the

parameters of our model when we include the “measurement”, h̄a. Then the

updated loss for polypeptide xb that occurs due to the study of polypeptide xa is

Λ∗
b =

∫
Θ

(ĥ′b − ĥb,θ)
2 + σ2g(θ)dθ

where ĥ′b is calculated over the density g(θ). As we are interested in discovering

polypeptides for potential study, we must assume that we do not know g(θ). We

may integrate over potential values for h̄a. This gives us an expected loss of

Λ∗
b =

∫
t∈[0,1]

∫
Θ

(ĥ′b − ĥb,θ)
2 + σ2g(θ|h̄a = t)dθ

∫
q∈β

N(t|ĥa,θ, σ
2)f(θ)dθdt

This can not be calculated analytically, so we will approximate it numerically.

One approach is through numerical integration over t. If we discretize t, then we

must re-calculate g(θ) for each point in the discretization. Even supposing some

form of quadrature rule that allows us to approximate the integral with only a

very rough discretization, we must redraw the set {θi} multiple times for each

value of t and each pair of polypeptides we want to compare. Since such draws
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from f(θ) involve a large MCMC simulation requiring multiple days, this sort of

brute force calculation is prohibitive for more than a few pairs of points.

Alternatively, if we assume that the addition of a single point, h̄a to our list of

known helicities will not have a drastic affect on the posterior for our parameter

space (p(θ|{h̄n}, h̄a) ≈ P (θ|{h̄n}) then our new estimate of the expected squared

error of helicity estimation for xb can be obtained from the same sample used

before, {θi}N
i=1 where θi ∼ f(θ)∀i, via importance sampling:

Λ∗
b ≈ Λ̂∗

b =
∑

i

g(θi)

f(θi)
[(ĥ′b − ĥb,θi

)2 + σ2
i ] (9.1)

*Note: ĥ′b is the model estimated helicity calculated over the distribution g(θ).

In order to calculate Λ∗
b , we must be able to quickly evaluate g(θi)

f(θi)
. Recall that,

given a set of polypeptides {xn} with measured helicities, {h̄n}, we have

log(f(θi)) = R(θb) +
∑

n

−(ĥn,i − h̄n)2

2σ2
i

− 1/2 log(2πσ2
i )

and therefore

log(g(θi))− log(f(θi)) = −(ĥa,θi
− h̄a)

2

2σ2
i

− 1/2 log(2πσ2
i )

g(θi)

f(θi)
=

1√
2πσi

e−(ĥa,θi
−h̄a)2/(2σ2

i )

∝ N(ĥa,θi
|h̄a, σi)

Let wi be the re-weighting of the sample draw θi. Then

wi =
N(ĥa,θi

|h̄a, σi)∑N
k=1N(ĥa,θk

|h̄a, σk)
(9.2)

170



Replacing g(θi)/f(θi) in 9.1, we see that

Λ̂∗
b =

∑
i

wi[(ĥb,θi
− ĥ′b)

2 + σ2
i ]

=
∑

i

wi

[(
ĥb,θi

−
∑

k

wkĥb,θk

)2

+ σ2
i

]

Notice from equation 9.2 that the form of wi implies that any re-weighting from a

new helicity measurement, h̄a should place greater weight on parameter sets, θb,

that lead to small differences between ĥa,b and h̄a, as expected.

Now we are in a position to decide how much information might be obtained

from the study of a particular polypeptide, xa. We know that an unknown helicity,

t, for polypeptide xa has a distribution of fxa(t) =
∫

Θ
N(t|ĥa,θ, σ) · f(θ)dθ. Again,

if we have a sample {θk} from the distribution on our model parameters, fxa(t) ≈
1
N

∑
k N(t|ĥa,θk

, σk). Notice that, if we are interested in the distribution of the

error in helicity, then we may generate samples from this distribution easily by
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sampling first from θ ∼ f(θ), then sampling yj ∼ N(t|ĥa,θ, σ).

Λ∗
b ≈

∫
[0,1]

∑
i

wi(t)

(ĥb,θi
−
∑

k

wk(t)ĥb,θk

)2

+ σ2
i

 fxa(t)dt

≈
∫

[0,1]

∑
i

wi(t)

(ĥb,θi
−
∑

k

wk(t)ĥb,θk

)2

+ σ2
i

 1

N

∑
k

N(t|ĥa,θk
, σk)dt

≈ 1

N

∫
[0,1]

∑
i

N(ĥa,θi
|t, σi)

(ĥb,θi
−
∑

k

wk(t)ĥb,θk

)2

+ σ2
i

 dt
=

1

N

∫
[0,1]

∑
i

N(ĥa,θi
|t, σi)

(
ĥb,θi

−
∑

k

wk(t)ĥb,θk

)2

dt+
1

N

∫ ∑
i

N(ĥa,θi
|t, σi)σ

2
i dt

=
1

N

∫
[0,1]

∑
i

N(ĥa,θi
|t, σi)

(
ĥb,θi

−
∑

k

wk(t)ĥb,θk

)2

dt+
1

N

∑
i

σi

Notice that both Λ̂b and Λ̂∗
b contain mean({σi}). This stems from our as-

sumption that the addition of a single new point will have little affect on the

parameters, σi. Therefore, our estimator for the change in expected squared error

in estimating the helicity of xb due to studying polypeptide xa is

Λ̂b − Λ̂∗
b =

1

N

∑
i

(ĥb − ĥb,θi
)2 − 1

N

∫ ∑
i

N(ĥa,θi
|t, σi)

(
ĥb,θi

−
∑

k

wk(t)ĥb,θk

)2

dt

Suppose that we are studying a subset of X that is of order M , and that we

are interested in choosing from among A possible polypeptides to study. Further

define N to be the number of samples from our parameter distribution and T to

be the number of steps in the calculation of the integral over t. We must calculate∑
k wk(t)ĥb,θk

for every combination of these parameters, so brute force calculation

takes place in order M · A ·N · T time.
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9.2 Points with High Potential Information

With the techniques outlined in the previous section, we are now able search for

influential points in the study of a particular subset of polypeptides. We have

taken a random sample of polypeptides from our data set and used our algorithm

to calculate the expected gain in predictive accuracy for each of them assuming

that just one of them is studied. Figure 9.1 shows the results of this experiment.

Notice that the diagonal is generally darker, which signifies that the greatest

Figure 9.1: Improvement in predictive accuracy of a polypeptide in question
(y-axis) from obtaining the helicity of another polypeptide (x-axis). Notice that,
not surprisingly, the diagonal is generally darker. This signifies that the greatest
improvement in predictive accuracy for a particular polypeptide can most often
be had by studying the polypeptide itself. There are blocks visible on the diagonal
due to the alphabetical ordering of the polypeptides on the x and y axes.

improvement in predictive accuracy for a particular polypeptide can most often

be had by studying the polypeptide itself. Also, There are blocks visible on the
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diagonal due to the alphabetical ordering of the polypeptides on the x and y axes.

These were randomly chosen from our data set, and therefore contain subsets

of temperature and pH curves. It is not surprising that one can learn about

how xi behaves at a given pH or temperature by studying it at different pH’s or

temperatures.

9.2.1 Case Study: Influential Points

One of the dark points that is not on the diagonal in figure 9.1 corresponds to

the polypeptide ‘PANLKALEAQKQKEQR’. We find that the expected change

in squared error of helicity prediction from studying this polypeptide is .022,

while if we study ‘Y(AEAAKA)8F’ (where (AEAAKA)8 means that the sequence

‘AEAAKA’ is repeated eight times) we get an expected improvement in the predic-

tion of the helicity of ‘PANLKALEAQKQKEQR’ of over a third of that. Ignoring

the temperature parameter, ‘PANLKALEAQKQKEQR’ has only the individual

amino acid parameters and the following i-(i+3) interaction parameters in our

model: K-E, E-K, K-R, L-L, and of these, K-E and E-K are repeated seven and

eight times respectively in the longer polypeptide.

Figures 9.2, 9.3, 9.4, and 9.5 show the histograms of the interaction parameters

from ‘PANLKALEAQKQKEQR’ that are included in our model for polypeptide

helicity. Of the four, the L-L interaction parameter is arguably zero. Thus it is

no surprise that the study of a polypeptide with multiple repeats of important

parameters would lead to improved understanding of ‘PANLKALEAQKQKEQR’.
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Figure 9.2: A histogram of the K-E interaction parameter at the i to i+3 distance.

9.2.2 Case Study: A Proposed Point Mutation

Suppose that one is particularly interested in polypeptides with low helicity, and

is looking for one or some of 20 possible point mutation experiments to perform.

From our database of 1187 polypeptides we extracted all with a temperature be-

tween 273 and 280 (because all polypeptides have low helicity at high temperature)

which also have a helicity < .3. This leaves us with 335 polypeptides which we

will use as our measure set. We will examine point substitutions at the position

labeled ‘X’ in the polypeptide ‘APAELKAAXAAFKRHGPY’ at pH’s of 4, 7, and

10. This gives a “query set” of order 60.
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Figure 9.3: A histogram of the E-K interaction parameter at the i to i+3 distance.

Figure 9.4: A histogram of the K-R interaction parameter at the i to i+3 dis-
tance.
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Figure 9.5: A histogram of the L-L interaction parameter at the i to i+3 distance.
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(a)

(b)

Figure 9.6: Heatmaps of the expected utility for the polypeptides in the measure
set from studying the polypeptides in the query set. Figure (a) shows the results
from querying at pH 4 and (b) shows the results from querying at pH 10. There
is little difference between figure (a) and the corresponding figure for pH 7, so the
pH 7 figure was omitted.

Figure 9.6 shows the expected utility for the polypeptides in the measure set

from studying the polypeptides in the query set. It is apparent that at positions

120 and 298 there are two polypeptides in the measure set that are highly related

to the query polypeptides. In fact, the query polypeptide was generated from

one of the peptides in the measure set, ‘APAELKAAEAAFKRHGPY’, and this

polypeptide is located at position 120 of the measure set. This particular point

mutation is at position 17 in the query set, thus the bright red position (120, 17)
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is not surprising.

The polypeptide at position 298 of the measure set is ‘YGKFRFEQQKKEKEARKK’.

There are a number of parameter overlaps between these two polypeptides, includ-

ing a number of ∆Sr parameters, i to i+3 parameters, and i to i+4 parameters.

The polypeptide at position 124 of the measure set becomes highly prominent

when the query set is studied at pH 10, but is much less so at pH’s 4 and 7. This

polypeptide is ‘YGGKAVAAKAVAAKAVAAK’. It contains numerous repeats of

the amino acid Lys (K), which has a pK of just over 10. Also, the pK of Tyr (Y), is

between 7 and 10. Thus the parameters that become relevant for this polypeptide

at higher pH are ∆∆SY , ∆∆SK , ∆pKY and i to i + 3 for the Y - K interaction.

It is difficult to determine which of these parameters are most important for this

observed change in utility with pH, but three of these four parameters are also

shared by the query polypeptides.

Another interesting feature of these heatmaps is the fact that there is generally

more information to be gained by performing this point mutation experiment at

higher pH. Of the 20 different point mutations, three quarters provide the most

information at pH 10. The root cause of this may be that the pK of Lys is around

10. This means that at a pH of 10, we are effectively querying both ∆∆SK

and ∆SK parameters. Not surprisingly, the ability to effectively update more

parameters will lead to a higher expected utility.

The two that offer the lowest expected gain in utility are ‘G’ and ‘P’. These

are at positions 1 and 2 of the query set (see Figure 9.6). Interestingly, these

are the two least helical amino acids. Proline in particular is known as a helix

breaker. Our measure set was chosen to target lower helicity amino acids, however,

placement of either ‘P’ or ‘G’ directly in the center may well produce a polypeptide
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with a helicity indistinguishable from zero. In this case, it is not surprising that

studying these two polypeptides offers such low expected utility.

The two point mutations that offer the largest expected gain in utility are the

point mutations ‘I’ and ‘L’, at positions 5 and 6 in the query set. Both of these are

hydrophobic and have the potential to interact with ‘F’ in the i to i+ 3 position

as well as ‘L’ in the i−4 to i position. Figure 9.7 lists the number of polypeptides

in the measure set with hydrophobic interactions in these positions relative to

‘F’ and ‘L’. The rows represent all of the five amino acids in the hydrophobic

interaction group. Within the measure set, there is a relative abundance of ‘I’ and

Interaction count interaction count
I · ·F 3 L · · · L 7
L · ·F 5 L · · · I 8
V · ·F 1 L · · · V 5
M · ·F 0 L · · ·M 0
F · ·F 2 L · · · F 2

Figure 9.7: Interaction counts from the measure set. There are substantially
more interactions involving ‘I’ and ‘L’ than any of the other hydrophobic amino
acids.

‘L’ compared to the other three hydrophobic amino acids. Because of this relative

overabundance in the measure set, we expect that these two point mutations will

be deemed more important than ‘V’, ‘M’, or ‘F’. Because both of the top two

point mutations originate from the set of five hydrophobic amino acids, there is

the suggestion that understanding these hydrophobic interaction parameters has

the potential to improve our understanding of lower helicity polypeptides.

This feature of our expected utility measurements demonstrates that the choice

of the measure set may be of critical importance in the determination of which

polypeptides to single out for future study.
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9.3 Summary

We have described a technique for using the results from our model for polypeptide

helicity to inform future studies. This will allow a directed approach to choosing

polypeptides of interest for biologists, and allow a faster convergence to the model

parameters that are best suited for accurate helicity prediction.

The approach to experimental design put forth in this chapter is general, and

will work, without modification, for any model with a Gaussian error. Because

errors associated with taking measurements of many kinds are assumed to be

Gaussian, this approach is appropriate in many applied problems.
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Chapter 10

Conclusions and Future Work

We have discussed a number of aspects of variable selection priors as they ap-

ply to high dimensional systems. In the general field of hierarchical modeling,

we have demonstrated improvements in prior structure that lead to a decrease in

false discovery as well as a technique for including sparsity in variance modeling.

In the field of gene microarrays, we have demonstrated a method for correcting

widespread systematic bias, and in the field of highly multivariate non-linear mod-

eling, we have demonstrated a technique for fitting parameters with point mass

priors.

While these are significant advances, there are still many issues to be explored.

10.1 Latent Factors for Microarrays

In our treatment of error correction for microarrays, we have touched on latent

factors. However, these factors have dimension equal to the number of observa-

tions, and run along the short edge of the data matrix. One of the great hopes

for gene microarrays is to bring them into the clinical setting. If this is to ever
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be achieved, some technique for error correction and signature detection must be

developed for a single array.

(a) (b)

Figure 10.1: The dot product of the 2000-dimensional correction vectors from
the oncogene and MAQC data sets. Figure (a) shows the actual values of the
dot product and Figure (b) is an indicator of whether the dot product is greater
than .1. The probability that two randomly generated 2000-dimensional vectors
will be greater than .1 is zero to machine precision. The vectors are ordered from
left to right (x-axis) and top to bottom (y-axis) according to their importance as
correction factors for their respective data sets.

During the processing of the oncogene upregulation data and the MAQC data

(see Chapter 4.8 for details of these data sets), we generate correction vectors from

the principal components of the housekeeping genes (5 and 6 of them respectively).

These are then added/subtracted to the genes under study to correct systematic

bias, leading to a separation of the raw data into a true signal and a lab bias signal.

Let us consider this lab bias signal. Specifically, let us consider the principal

components of this correction signal in the gene (long) direction. We know, for

example, that the oncogene corrections were generated from 5 vectors, therefore

there are exactly 5 non-zero principal components (each of dimension 10,777 in

the case of the oncogene data).

We have supposed that these correction vectors are indeed accounting for
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changes in a few environmental conditions such as pH and temperature. If this

is truly the case, then the hyperplane generated by the five oncogene correction

principal components and the hyperplane generated by the six MAQC correction

principal components should be close in some sense.

Figure 10.1 shows the pairwise dot products two sets of correction vectors,

calculated on a subset of 2000 genes shared in the analysis of each. Recall that

the two sets of vectors were generated completely independently of each other.

Also, they are ordered according to their importance as correction vectors for

their respective data sets. It is straightforward to calculate that the probability of

two randomly generated 2000-dimensional unit vectors having an inner product

greater than .1 in absolute value is < 10−15. Clearly, then, there is strong evidence

that these correction vectors are being generated from a much lower dimensional

space.

In future work, we will explore latent factors with strong priors (generated

from some seed data sets such as these) as a potential mechanism for correcting

out systematic error in just a single gene array. Similar latent factors might be

designed for important cellular pathways such as the oncogene pathways or the

lactic acidosis and hypoxia pathways discussed in earlier chapters.

10.2 Covariance

As discussed in Section 8.5, one of the features of variable selection techniques

discussed thus far is the independence of the prior distributions. This structure

precludes the use of prior knowledge of dependence structure, and can lead to

overestimation of the significance of a particular variable. Consider, for example,

Figure 10.2. This shows the posterior for two parameters that are clearly corre-
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lated. Not only that, but the density cloud encompasses zero for both variables.

The standard variable selection priors will place independent prior masses, px and

py, at zero for each of these variables. The prior mass for both variables being

zero is clearly the product px · py. However, when there is prior knowledge that

these two variables may correlate, this type of prior is somewhat unsatisfying.

Figure 10.2: The posterior marginal density of two variables, each of which
is given a variable selection prior. As the names would suggest, there is prior
knowledge that these variables may describe the same phenomenon, thus the
independent prior structure is insufficient.

A second type of interaction is shown in Figure 10.3. Of the two, only ∆∆Sy

is given a variable selection prior. Again, as suggested by the naming, there is

prior knowledge that the two may be highly correlated. Because the point cloud

covers the point ∆∆Sy = 0, and because of the high correlation, there is stronger

evidence for a posterior value of ∆∆Sy = 0 than the prior distribution will allow.
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Figure 10.3: The posterior marginal density of two variables from a certain
Gibbs energy model. Only ∆∆Sy is given a variable selection prior, but there is
prior knowledge that the two may be correlated. The high posterior correlation,
and the fact that the cloud covers the point ∆∆Sy = 0 lends greater evidence for
a zero parameter than our independent prior will allow.

In these examples, it may be that we want to create a hierarchy that allows

the inclusion of one variable only when another, more important variable gets far

from its believable range. For example, in both Figures 10.2 and 10.3, we know

that there is a good chance of correlation between the two variables, and that one

should be chosen over the other whenever possible.

In the case of our structural biology problem, we have an informative prior

distribution for ∆Sy. We reiterate the prior structure introduced in Section 8.5,
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for the parameter shown in Figure 10.3.

∆∆Sy ∼ (1− r)N(∆Sy|µ, σ)

(1− r)N(∆Sy|µ, σ) + r
δ0 +

r

(1− r)N(∆Sy|µ, σ) + r
N(m, v)

∆Sy ∼ N(µ, σ)

That is to say, the farther the parameter ∆Sy ranges from its prior distribution,

the more likely we are to allow the inclusion of the less important variable, ∆∆Sy.

In fact, the coupling of these two variables need not be in the form of inserting

the prior for one into the prior for the other. In general, any function might be

used

∆∆Sy ∼ (1− r)g(∆Sy,∆∆Sy)

(1− r)g(∆Sy,∆∆Sy) + r
δ0 +

r

(1− r)g(∆Sy,∆∆Sy) + r
N(m, v)

One special case of this type of prior has already been explored by Yuan and

Lin (2005) for the purpose of excluding one of two highly colinear explanatory

variables in a standard generalized linear models setup. Another use for this type

of prior is for the exclusion of the product of two explanatory variables whenever

one or the other has been excluded singly. Such a use has the potential for better

elucidating posteriors in the case of log-linear (and other) models.

10.3 Random Walks with a Point Mass

The burnin algorithm discussed in Section 7.3 is not a Markov chain. However,

after some testing, it is clear that it does well at fitting the posterior probability of

inclusion of a variable with a point mass prior. Additionally, when a distribution is

poorly approximated with a normal distribution, the ability to use a random walk

rather than a blanket proposal distribution produces faster convergence. With
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this in mind, it is natural to ask whether the algorithm converges at all, and if so,

what it converges to.

Figures 10.4a, b, and c show the behavior of the random walk burnin algorithm

taken by itself, without any subsequent updating by sampling from a blanket dis-

tribution. The toy example of Section 7.4 was repeated 200 times with uniformly

generated observation numbers between 5 and 45 and with observation means

generated from a N(1,.4) distribution. There is very high agreement between the

probabilities, means, and variances generated by the random walk algorithm and

those calculated directly.

(a) (b) (c)

Figure 10.4: The behavior of the random walk burnin algorithm from Section 7.3
by itself on 200 randomly generated toy examples (comparable to that described
in Section 7.4). Figure (a) compares posterior probability of a change in mean
and Figures (b) and (c) compare the poster mean and variance given a non-zero
mean.

In some sense, the property of Markov chains that requires restriction of mem-

ory to a finite number of previous steps is counterintuitive. There is little or

no computational benefit to doing so, and one is potentially throwing away sig-

nificant amounts of information in the process. The use of this information to

produce better and faster estimates of posterior distributions is intriguing and

worth exploration.
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