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Abstract 
 

The consequences of short-term blood pressure variability, specifically renal damage, during non-

cardiac surgeries are understudied. We investigate whether intraoperative mean arterial blood 

pressure variability during non-cardiac procedures influences renal outcomes, specifically percent 

changes in creatinine. We utilize generalized additive models to model this relationship and find a 

positive, clinically significant nonlinear relationship between generalized average variability for 

ranges outside of healthy norms and percent change in creatinine after taking into account 

demographic and other intraoperative confounders. Another model with a logarithmic transformed 

response fit model assumptions of normally distributed errors better than the first, but did not find 

a significant relationship. However, because not all modeling assumptions are upheld in the first 

model, we do not yet have enough evidence to verify this relationship without more advanced 

analysis or more advanced functional feature extraction for variability. 
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1. Introduction 
 

Long-term blood pressure variation has been considered a risk factor for cardiovascular disease [1, 

2] and previous studies have found that long-term blood pressure variability is correlated with 

target-organ damage independent of mean blood pressure [3]. However, consequences of short-

term blood pressure variability during non-cardiac surgeries are understudied. To discern whether 

prompt intraoperative interventions to combat short-term intraoperative blood pressure variability 

is necessary, it is important to determine the significance of volatile blood pressure deviations in 

the operating room. 

 

Renal end-organ damage specifically is a complication of interest. Previous studies [4] have 

demonstrated that “surgical patients experiencing Acute Kidney Injury (AKI) postoperatively are 

eight times more likely to die within 30 days of surgery.”  Such studies have also found an 

association between hypotension from sustained mean arterial pressure of less than 55-60 mmHg 

during operations and postoperative acute kidney injury [4]. However, the effect of blood pressure 

variability during such operations is not as clear. AKI is a condition that is commonly measured 

from levels of creatinine, which the kidneys normally filter out. Hospitalized patients experiencing 

an increase of over 50% in creatinine are 6.9 times more likely to die [4]. Because of this, creatinine 

is a measure of interest for quantifying renal changes and potential complications following a 

surgical procedure.  

 

We thus look to examine the effects of intraoperative blood pressure variability on changes in 

creatinine and attempt to capture accurate predictors of blood pressure variability in a low signal-

to-noise environment. We focus specifically on non-cardiac procedures and consider the blood 

pressure trajectory curve, type of surgery, surgery time, intraoperative drug-classes, lab results, 

and demographic information to determine if there is a clinically significant relationship between 

various functions of blood pressure variability and changes in creatinine.  
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2.  Data  

 

2.1 Overview 

 

Lab, demographic, and intraoperative information for over 431,480 different surgical cases 

performed at the Duke University Hospital were retrieved from Duke’s electronic heath records 

and the Innovian Database of the Department of Anesthesiology stored within the Duke Hospital 

Information System. However, only 80,065 of the noted cases have both demographic information 

and mean arterial blood pressure measurements recorded over the course of a surgical procedure.  

 

The 80,065 cases with both blood pressure (BP) and demographic information were taken from as 

early as June 19, 2000 and to as late as December 8, 2014. Each case has on average approximately 

560.49 and a median of 525 measurements of MAP over time. Consecutive measurements are 

roughly half a minute apart, for a total of 44,875,910 data points measured for MAP.  

 

2.2  Non-Cardiac Procedures 

  

Since cardiac surgeries are often considered separately from non-cardiac surgeries, we filter the 

80,065 cases with MAP measurements to 40,900 non-cardiac cases based on ICD-9 codes parsed 

from the procedure type dataset. We matched these cases with cardiac codes from the 2014 ICD-

9-CM for Hospitals [5] and utilized the remaining non-cardiac subset.  

 

2.3  Cleaning 

 

Many patients’ BP measurements displayed extreme spikes to ranges outside of what is considered 

normal for human blood pressure. Because intraoperative blood pressure measurements usually 
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utilize invasive approaches during a surgical procedure, we may observe spikes in the data caused 

by flushing, which passes fluid externally through the measuring medical device and can cause 

dramatic and short-lived deviations that are not accurate readings of a patient’s blood pressure. 

These artifacts are common in electronic anesthesia records and we clean these by removing 

improbable mean with MAP ranges below 10mmHg and above 250mmHG as suggested by our 

clinical collaborators.  

 

Both an uncleaned and cleaned blood pressure trajectory curve are in the figure below, where 

extreme spikes in improbable ranges have been removed.  

 

Figure 1. Uncleaned BP Trajectories  vs. Cleaned BP Trajectories 

 
 

After cleaning, we remove cases where no blood pressure measurements were remaining (likely 

due to measurement errors or lack of data) and are left with 38,799 cases in the final dataset of 

blood pressure measurements. The cleaned MAP curves of these non-cardiac cases form the basis 

of our analysis in extracting features that best model variability affecting changes in creatinine.  
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2.4  Datasets 

 

In addition to the blood pressure data for each case, supplementary datasets were utilized to 

account for additional factors.  A selected summary of datasets utilized for each patient and 

referenced later in the report are compiled in Table 1.  

 

Table 1. List of Datasets 

Label Data Type Use 

Mean arterial 

pressure 

Continuous measurements of blood 

pressure over time  

Dataset that measures of 

variability are generated 

from  

Procedure Type Categorical labels for ICD-9 codes Dataset that non-cardiac 

procedures are based on  

Intraoperative fluids Different types of intraoperative fluids. 

For each type, there is a continuous 

value depicting its dosage 

Dataset used to determine 

whether a patient received 

insulin intraoperatively 

Case Demographics Different types of demographic 

information. For each demographic, 

there is continuous data describing 

patient characteristics matching the 

surgical case in question 

Dataset used to determine 

age, height, and weight  

Case Demographics: 

Gender 

Categorical data describing patient 

gender 

Dataset determining gender  

Creatinine Continuous data describing creatinine 

lab results with time labels 

Dataset used to determine the 

response variable 

Lab results Fifferent type of lab results. For each 

lab, there is a time label with a 

Dataset used to filter by HDL 

cholesterol, fasting glucose, 
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continuous value quantifying a lab 

result 

and A1c (glycated 

hemoglobin) results 

Admission/Discharge 

Date 

Timestamp denoting admission and 

discharge dates. 

Dataset used in calculating 

differences in creatinine and 

preoperative lab results 

Postoperative 

Outcomes 

Continuous data denoting length of 

stay in hours and binary data indicating 

death 

Dataset used for length of 

stay, which is used for 

exploratory data analysis 

 

2.5  Subsetting the Data 

 

We are interested in obtaining a more homogeneous population of patients at greater risk of kidney 

complications. This would reduce heterogeneity that could affect our modeling and potentially 

allow us to see more signal suggesting increased changes in percent creatinine difference. We 

include some considerations below. 

 

2.5.1  Patients at Risk of Metabolic Syndrome 

 

Our clinical collaborators suggested looking at a subset of patients with metabolic syndrome. 

Metabolic syndrome is a risk factor for diabetes and cardiovascular disease and is also associated 

with increased risk for chronic kidney disease in nondiabetic adults. [5] 

 

The dataset that we are utilizing does not include labeling for metabolic syndrome, so we instead 

consider a possible subset of patients who are at risk for metabolic syndrome. Using guidelines set 

by the International Diabetes Federation (IDF) and the American Heart Association (AHA), we 

selected 24,419 patients that we refer to as our 𝑎𝑡𝑅𝑖𝑠𝑘 subset who matched at least one of the 
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following that are used in diagnosis or that are acknowledged as causative factors of metabolic 

syndrome:  

• Obesity: BMI > 30 (IDF)  

• HDL cholesterol < 40 mg/dL in males (IDF)  

• HDL cholesterol < 50 mg/dL in females (IDF)  

• Fasting plasma glucose > 100 mg/dL (IDF, AHA)  

These selection criterion do not involve physician interpretation and risk being too conservative in 

subsetting patients that are potentially at risk. 

 

2.5.2  Patients with A1c Measurements 

 

Both to address the concerns of the subset discussed in 2.4.1 and to utilize A1c90day as a predictor, 

we also considered a subset of 3,323 patients who had A1c lab exams requested within 90 days 

before surgery. This measurement is referred to as 𝐴1𝑐90𝑑𝑎𝑦 which is discussed in more detail in 

Section 3.2.5. The presence of A1c90day could be an indicator of additional risk factors that 

physicians find suspicious, allowing for a more selective and homogenous dataset.  

 

As we can see in the boxplots of Appendix A, patients who had A1c measurements tended to be 

older, more overweight, and more often male. They also tended to have more repeat surgeries, 

longer postoperative stays, higher glucose average from the day of surgery and the first post-

operative day (𝐺𝑙𝑢𝑐𝑜𝑠𝑒𝑃𝑂𝐷1 ), and higher 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓  and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 , which 

suggest adverse postsurgical outcomes. Thus, we have reason to believe that subsetting by patients 

with A1c measurements may allow us to observe patients who are more at risk. 
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3.  Predictors 
 

This section describes the various predictors extracted from the data discussed in Section 2.   

 

3.1  Variability Feature Extraction 

 

Quantifying variability across time series in medical data can be challenging. It can be difficult to 

determine whether several severe spikes, prolonged variability above a certain threshold both in 

time and amplitude, circadian patterns, or a countless number of other combinations may 

significantly affect outcomes. Because of this, simple measures like standard deviation may not be 

able to capture enough information within widely volatile and disparate blood pressure curves, and 

thus we look to other measures of quantifying variability.  

 

3.1.1  Generalized Average Realized Variability (gARV) 

 

We utilize a variability metric researched in detail in Hansen et. al [10], which found that average 

realized variability (𝐴𝑅𝑉), which measures short term blood pressure variation given ordered 

measurements taken equal time intervals apart and estimates variability better than standard 

deviation in times-series data. 𝐴𝑅𝑉 can be formalized as 

𝐴𝑅𝑉 = 	
1
𝑇 𝑡 𝐵𝑃@AB − 𝐵𝑃@

DEB

@FB

 

where N is the number of blood pressure measurements, T is the total time from the first to the 𝑁HI 

blood pressure reading, 𝐵𝑃@ is the blood pressure reading at the 𝑘HI measurement, and t is the time 

interval between each reading.  
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However, Sun et. al notes that 𝐴𝑅𝑉 will overestimate the variability of steep changes in blood 

pressure for uneven time intervals and proposes utilizing generalized average realized variability 

(𝑔𝐴𝑅𝑉), which is robust to varying distances between readings [2]. Generalized 𝐴𝑅𝑉 is defined 

by 

𝑔𝐴𝑅𝑉 = 	
1
𝑇 𝐵𝑃@AB − 𝐵𝑃@

DEB

@FB

 

 

After cleaning the dataset to remove improbable values, our dataset does not involve readings at 

equal time intervals apart, and thus we utilize 𝑔𝐴𝑅𝑉 as a measure of blood pressure variability.  

 

3.1.2  gARV Outside of Healthy Ranges (gARVOutsideRange) 

 

Because of the complex nature of blood pressure, we developed our own extensions of 𝑔𝐴𝑅𝑉 and 

extracted additional variability features that would be more relevant to renal outcomes. We 

explored individual case BP curves with a focus on features quantifying measures of 𝑀𝐴𝑃 

variability outside ranges deemed healthy by clinicians. In cardiac surgery patients, past research 

has found a relationship between intraoperative blood pressure deviations outside of a targeted 

range and mortality [11,12]. These deviations are measured by magnitude and duration and provide 

impetus to explore blood pressure excursions out of known healthy ranges, especially in models 

looking at potential outcomes affecting the kidneys. 

 

Previous medical literature has supported the kidney’s ability to auto-regulate within a given range 

[13] and our clinical collaborators suggested that blood pressures below 70 and above 110 were 

considered potentially unhealthy and outside such ranges. These numbers were used as thresholds 

to derive additional measurements of variability potentially having greater impact on kidney 

complications.  
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While 𝑔𝐴𝑅𝑉  taken for an entire BP curve is a measure of global variability, we define an 

alternative version. We instead take an aggregate of 𝑔𝐴𝑅𝑉 ’s computed on subsets of BP 

trajectories that are outside of the healthy range. Measurements of 𝑔𝐴𝑅𝑉outside the range are 

considered by determining the variability of “hills” and “dips” outside the healthy range. The 

𝑔𝐴𝑅𝑉  is calculated for each individual hill, which is defined by a consecutive sequence of 

measurements above the healthy range, and each individual dip, which is defined by a consecutive 

sequence of measurements below the healthy range. The mean for the resulting 𝑔𝐴𝑅𝑉’s weighted 

by the time spent in each hill or dip is then calculated. This can be formalized as 

𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 =
1
𝑛𝑇 𝑡L𝑔𝐴𝑅𝑉 𝑖

M

LFN

 

where 𝑛 represents the total number of hills and dips, 𝑖 represents the 𝑖HI hill or dip in the blood 

pressure measurements, 𝑔𝐴𝑅𝑉(𝑖)	represents the 𝑔𝐴𝑅𝑉of the 𝑖HI hill or dip, 𝑡L represents the time 

spent outside the range for the 𝑖HI hill or dip, and 𝑇 represents the total amount of time spent in 

surgery. This feature measures 𝑔𝐴𝑅𝑉 outside the healthy range, which we will refer to as 

𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒.  

 

3.1.3  Relative Time Spent Outside of Healthy Range (relTime) 

 

Another feature of interest is the relative time a patient’s MAP spent outside of the healthy range 

compared to the total time that the patient was operated on during the procedure. Using the same 

notation as above, this can be represented as the sum of times for all the existing hills and dips 

divided by the total amount of time in surgery. 

𝑟𝑒𝑙𝑇𝑖𝑚𝑒	 =
𝑡LM

LFN

𝑇  

 

This predictor provides another frame of reference on how severe a patient’s variability may be. 

For example, two patients with the same 𝑔𝐴𝑅𝑉 may be differentiated by the relative time spent 
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outside of the healthy range. The patient who had a higher relative time would be hypothesized to 

be more at risk of developing complications.  

 

3.1.4  gARV Above and Below Healthy Ranges (gARVAboveRange and gARVBelowRange) 

 

We also considered differences in being considered outside of a healthy range by recalculating 

𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 but only utilizing one of the two original ranges: above the healthy range, 

which included blood pressure measurements above 110 inclusive, or below the range, which 

included blood pressure measurements below 70 inclusive. The same calculations as in Section 

3.1.2 were performed on only hills for obtaining 𝑔𝐴𝑅𝑉𝐴𝑏𝑜𝑣𝑒𝑅𝑎𝑛𝑔𝑒 and only dips for obtaining  

𝑔𝐴𝑅𝑉𝐵𝑒𝑙𝑜𝑤𝑅𝑎𝑛𝑔𝑒. 

 

3.1.5   Relative Time Above and Below Healthy Ranges ( relTimeAbove and relTimeBelow) 

 

Similarly to 𝑔𝐴𝑅𝑉𝐴𝑏𝑜𝑣𝑒𝑅𝑎𝑛𝑔𝑒  and 𝑔𝐴𝑅𝑉𝐵𝑒𝑙𝑜𝑤𝑅𝑎𝑛𝑔𝑒 , relative time was calculated for 

exclusively blood pressure measurements made above 110 inclusive to obtain the relative time 

spent above healthy ranges, which we refer to as 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑏𝑜𝑣𝑒 , and for exclusively blood 

pressure measurements below 70 inclusive to obtain the relative time spent below healthy ranges, 

which we refer to as 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑇𝑖𝑚𝑒𝐵𝑒𝑙𝑜𝑤. 

 

3.1.6  Mean Blood Pressure Above and Below Healthy Ranges (meanBPAbove and 

meanBPBelow) 

 

Mean blood pressure was also calculated for only blood pressure readings above 110 inclusive to 

obtain 𝑚𝑒𝑎𝑛𝐵𝑃𝐴𝑏𝑜𝑣𝑒  and below 70 inclusive to obtain 𝑚𝑒𝑎𝑛𝐵𝑃𝐵𝑒𝑙𝑜𝑤 . These provide 

additional information on the average magnitude and amplitude of blood pressure variability 

deviations above or below the healthy range.  
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Thus, we consider and test 𝑔𝐴𝑅𝑉 , 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 , 𝑔𝐴𝑅𝑉𝐵𝑒𝑙𝑜𝑤𝑅𝑎𝑛𝑔𝑒 , and 

𝑔𝐴𝑅𝑉𝐴𝑏𝑜v𝑒𝑅𝑎𝑛𝑔𝑒, 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑏𝑜𝑣𝑒, 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐵𝑒𝑙𝑜𝑤, 𝑚𝑒𝑎𝑛𝐵𝑃𝐴𝑏𝑜𝑣𝑒, and 𝑚𝑒𝑎𝑛𝐵𝑃𝐵𝑒𝑙𝑜𝑤 as 

predictors that measure variability.  

 

3.2  Confounders 

 

3.2.1  Mean Blood Pressure (meanBP) 

 

The relationship between mean blood pressure and organ damage has already been well-studied. 

Previous studies have found that mean blood pressure that deviates outside of a targeted range is 

known to relate to more adverse outcomes. [1, 7-9]  

 

The mean of the cleaned MAP curves was calculated for each patient and utilized as an aggregate 

metric for the patient. While this value does not provide much information about variability, it can 

be useful in differentiating patients from each other or provide supplemental information to later 

measures of variability.  

 

3.2.2  Demographics 

 

Additional variables were added to the model to control for confounding factors. General 

demographic features were considered in formulation of the model and these included gender, age, 

and BMI. Gender is coded as one if female and zero if not, while age and BMI are both continuous.  

 

3.2.3  Length of Stay 

 

We considered length of stay in our exploratory data analysis. While it could potentially be utilized 

as an outcome variable to model complications during surgery, it does not directly measure renal 
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outcomes and thus is just used to determine differences in patients who have and do not have A1c 

measurements in Appendix A.   

 

We use the variable LOS30, which is a continuous variable that lists the length of stay in minutes. 

We delete any cases with a length of stay greater than 30, since these are likely outliers or in areas 

of sparse data that are difficult to include and interpret. A histogram of length of stay shows 

elimination of extreme outliers on the right tail after applying this correction. 

 

Figure 2. Comparison of Histograms of Length of Stay and LOS30 

  
 

3.2.4  Insulin  

 

We observed a binary variable classifying whether a patient received insulin intraoperatively 

during a procedure. The variable we utilize in our models is coded as true if a patient received 

insulin via intraoperative fluids during a procedure and false if not. 

 

3.2.5  Glycated Hemoglobin (A1c90day) 

 

As mentioned in Section 2.5.2, we also observed the mean of glycated hemoglobin or A1c lab 

results between 90 days pre-surgery and the day of surgery, which we refer to as 𝐴1𝑐90𝑑𝑎𝑦. We 
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are suspicious of patients at risk of metabolic syndrome and we have reason to think that A1c 

results (and insulin) may affect the outcome.  

 

However, as in the case with any elective medical lab, A1c measurements only exist for a portion 

of patients. In fact, only 8.6% of the cleaned 38,799 cases had measurements available for A1c. 

Including this variable as a predictor would subset the data further to only patients who had A1c 

measurements within 90 days before their surgery, which could be suggestive of an at-risk patient 

who a physician would request the elective lab for.  

 

3.2.6  Plasma Glucose and HDL Cholesterol  

 

We utilized lab results on plasma glucose and HDL cholesterol to filter the dataset down into the 

𝑎𝑡𝑅𝑖𝑠𝑘 subset described in Section 2.5.1, but these values were not considered as predictors. 

 

3.2.7  Total Time 

 

We also considered looking at total time spent during a procedure, but discovered that it was 

collinear with predictors of interest. Additionally, because total time is not flexible enough to be 

controlled in an operating room, we decide to not include this variable in later analysis.  

 

3.3  Response Variables (creatinineDiff and percentRecovery) 

 

Medical classification and staging systems like AKIN and RIFLE classify acute kidney injury 

based on ranges of percent increases in creatinine [17]. We evaluated the data to determine an 

appropriate response variable to reflect changes in creatinine during a procedure.  
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We compared the creatinine measurement prior and nearest to the start of surgery, 𝐶N, to the peak 

creatinine between the end of surgery and discharge, 𝐶V . The percentage difference 

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 was then calculated and utilized as the response variable.  

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 =
𝐶V − 𝐶N
𝐶N

 

 

As suggested by our clinical collaborators, we also considered percent recovery as a response 

variable, which we refer to as 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦. This was defined as the percent difference 

between the maximum creatinine reached post-surgery, 𝐶V  , and the creatinine measured right 

before discharge, 𝐶W.  

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦	 = 	
𝐶V − 𝐶W
CY
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4.  Modeling Approaches  
  

4.1  Generalized Linear Model 

 

We performed our preliminary, exploratory analysis using linear models, which involve some 

combination of our measures of BP variability and confounders.  

 

A generalized linear model (GLM) is composed of linear predictors 

𝑔 𝐸 𝑌L = 	𝛽N +	𝛽B𝑥BL + ⋯𝛽`𝑥`L 

where 𝐸(𝑌L)	is the response variable for the	𝑖HI  patient, 𝑔(𝑌) is a link function that allows a 

function of the response variable to vary linearly with the linear predictor, and 𝑥aL  are the 

corresponding data associated with the 𝑗HI predictor (which could be a measure of BP variability 

or a confounder in our application), and 𝑝 is the total number of parameters in our model excluding 

the intercept.   

 

4.2  Generalized Additive Model 

 

Because of the complexity involved in modeling variability, we turn to an approach allowing more 

flexibility than GLMs that removes the restriction that each predictor’s marginal effect is linear. 

Generalized additive models (GAM) allow for more adaptable predictor functions that are still 

relatively interpretable and can reveal nonparametric trends that linear models are incapable of 

detecting. 

 

GAMs can be used to model relationships between predictors and response variables that follow 

smooth functions that can be either linear or nonlinear. These smooth relationships can be 

estimated simultaneously and the response can be determined additively. [14] 
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A generalized additive model can be written as  

𝑔 𝐸 𝑌L = 	𝑎 + 𝑠B 𝑥BL + …+ 𝑠` 𝑥`L  

where 𝑠@ denotes the smooth, nonparametric function for the 𝑘HI predictor variable.  

 

GAMs allow us to determine the marginal additive impact of a single variable while also giving 

us the ability to regularize the smoothness of the nonparametric functions to avoid overfitting. We 

can thus observe either parametric and non-parametric effects depending on which variables we 

add in that include a smoothing function s.  

 

4.3  Model Fitting 

 

The most basic linear model utilizes an identity link function with normally distributed errors. We 

continue to utilize this link function and assumption of normally distributed errors in our GAMs. 

We utilize the R package ‘mgcv’ [15] for fitting GAMs, which adaptively smooths and utilizes a 

Bayesian approach to variance estimation. We are particularly interested in the resulting 

coefficients or smooth functions for the variables discussed in Section 3.1. 
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5.  Results 
 

We built several generalized additive models after selecting differing combinations and measures 

of changes in creatinine, MAP variability, subsets, and confounders of the variables described in 

Section 3.  

 

We chose to utilize 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 as the response variable in our final model due to easier 

medical interpretability over 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 . The calculated values of 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 

contained a disproportionately large number of zeroes in the response (35%) likely due to only one 

creatinine observation post-operation, which in fact would not provide us any information about 

recovery. Additionally, modeling these non-normally distributed errors, even with transformations, 

added additional complexity that could be minimized with the use of 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓. 

 

We found greater significance in models utilizing 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 and 𝑟𝑒𝑙𝑇𝑖𝑚𝑒 than when 

variability measures were split into 𝑔𝐴𝑅𝑉𝐴𝑏𝑜𝑣𝑒𝑅𝑎𝑛𝑔𝑒  and 𝑔𝐴𝑅𝑉𝐵𝑒𝑙𝑜𝑤𝑅𝑎𝑛𝑔𝑒  or 

𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑏𝑜𝑣𝑒 and 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐵𝑒𝑙𝑜𝑤, which can be seen in Appendix B. This suggests that with 

the approaches that we used, differentiating between hypotensive and hypertensive variability may 

not be beneficial in modeling changes in creatinine.   

 

We examined the subset of patients at risk of metabolic syndrome, which as defined in Section 

2.5.1 was determined by having at least one of the mentioned risk factors. However, models built 

utilizing this dataset did not show any significant results, most likely because the selection criteria 

were too conservative leading to too large and heterogeneous of a population. 

 

Instead, we examined the subset of patients with A1c measurements, which resulted in more 

promising figures. This again is likely due to physician involvement, since physicians request A1c 
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labs for patients who they determine may need A1c monitoring after holistic examination, as 

opposed to using a crude, quantitative method which is only based on numbers. 

 

Using these datasets, we observe heavy skew in several variables as can be seen in Figure 3. 

 

Figure 3. Boxplots of log(𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒), Age, and BMI 

 
 

Due to the heavy skew, we decide to remove cases with 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 values that are 

greater than 0.5 (𝑙𝑜𝑔(0.5) 	= 	−0.7). Most of these are due to a single short spike outside of the 

healthy range, which can be seen in Appendix C, resulting in a high 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒. These 

curves are difficult to compare to those with more data and contain remnants of the artifacts 

mentioned in Section 2.3 that were not fully removed.  

 

Additionally, due to medical differences and the unlikelihood of the following occurrences, we 

make conservative removals of patients with age greater than 110 years, BMI greater than 70, and 

BMI less than 5 before proceeding with the analysis. In the following sections, we present several 

final selected models of interest for discussion.  
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5.1  Variability Outside Healthy Ranges on Patients with A1c Measurements 

 

We fit the following GAM with confounders 

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 = 	𝛽N + 𝑠 𝑚𝑒𝑎𝑛𝐵𝑃 + 	𝑠 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 + 𝑠 𝑟𝑒𝑙𝑇𝑖𝑚𝑒 	+ 

	𝑠 𝐵𝑀𝐼 + 𝑠 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 + 𝑠 𝐴1𝑐90𝑑𝑎𝑦 + 	𝜀 

 

5.1.1 Model Results and Analysis 

 

The results of the GAM are displayed in Table 2 and the nonparametric component smoothing 

functions on the scale of the linear predictor are displayed in Figure 4. 

 

Table 2. Parametric and Nonparametric Effects of Model 5.1 

Sample size = 2477 

Parametric Effects Estimate t value 

Intercept 3.2	 ∗ 	10EB 12.20	 ∗∗∗ 

Gender 4.5	 ∗ 	10Em 1.17 

Insulin 2.5	 ∗ 	10EB 3.50	 ∗∗∗ 

 

Nonparametric Effects F statistic 

s(𝒎𝒆𝒂𝒏𝑩𝑷) 2.23 ∗ 

s(𝒈𝑨𝑹𝑽𝑶𝒖𝒕𝒔𝒊𝒅𝒆𝑹𝒂𝒏𝒈𝒆) 5.20 ∗∗∗ 

s(𝒓𝒆𝒍𝑻𝒊𝒎𝒆) 0.69 

s(𝑩𝑴𝑰) 0.45 

s(𝒂𝒈𝒆) 18.16 ∗∗∗ 

s(𝑨𝒍𝒄𝟗𝟎𝒅𝒂𝒚) 1.94 ∗ 

∗ 		p-value < 0.05, ∗∗ 		p-value < 0.01, ∗∗∗ 		p-value < 0.001 
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Figure 4. Plots of the Component Smooth Functions of Model 5.1 

 
 

The model detects the parametric effect of receiving insulin during the procedure as well as the 

nonparametric effects of 𝑚𝑒𝑎𝑛𝐵𝑃, 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒, 𝑎𝑔𝑒, and 𝐴𝑙𝑐90𝑑𝑎𝑦 as significant. We 

observe the marginal plots for their marginal effects and see that 𝑚𝑒𝑎𝑛𝐵𝑃 seems to have a slight 

dip in 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 at blood pressure values closer to the mean, which we would expect based 

on literature mentioned in Section 3.2.1. For example, we see a difference of 20 percentage points 

between a 𝑚𝑒𝑎𝑛𝐵𝑃 of 70 (𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓	 = 	0.40) and a 𝑚𝑒𝑎𝑛𝐵𝑃 of 95 (𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓	 =

	0.20).  

 

It also appears that with increased relative time outside of healthy ranges, which is utilized as a 

measure of variability, 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 increases slightly (a difference of 28 percentage points in 

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 between the 1st and 3rd quartile of 𝑟𝑒𝑙𝑇𝑖𝑚𝑒); however, this nonparametric effect 

was not found to be significant. The nonparametric effect of 𝑎𝑔𝑒 was also found to be significant, 

and we see a difference of 11  percentage points between the 1st and 3rd quartile of age. 𝐴𝑙𝑐90𝑑𝑎𝑦 
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too was found to have significant nonparametric effects, and we see higher 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓s from 

A1c90day approximately below 6, although the relationship is less clear and supported by less 

data. 

 

Additionally, the parametric effect for receiving insulin during a procedure is statistically 

significant and patients receiving insulin tended to have 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓𝑠 that are 25 percentage 

points higher than those without. Insulin breaks down glucose in patients with hyperglycemia, and 

receiving insulin may be related to patients that are more at risk, so the result that we see may be 

suggestive that patients more at risk may have more adverse outcomes.  

 

We can see that the relationship between 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 and 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 is positive 

and appears to increase linearly for 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 values approximately past 0.27. Before 

that point, it is difficult to quantify any clinical significance in the given relationships. 

 

We can estimate 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓  using this model while keeping all variables other than 

𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 at their mean values. We then find the estimated 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓’s at the 

listed percentiles for 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 in Table 3. 

 

Table 3. 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 values with changing 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 percentiles. 

𝒈𝑨𝑹𝑽𝑶𝒖𝒕𝒔𝒊𝒅𝒆𝑹𝒂𝒏𝒈𝒆 Percentile Value Estimated 𝒄𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆𝑫𝒊𝒇𝒇 

25th 0.0047 0.29 

50th 0.0085 0.29 

75th 0.017 0.27 

95th 0.062 0.26 

99th 0.19 0.42 

99.5th 0.27 0.34 

99.9th 0.41 2.11 
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For cases with 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 at the 99.5th percentile, or 0.27, patients experienced a 34% 

increase in creatinine at the peak post-operation level relative to the pre-operative baseline. For 

cases with 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 at the 99.9th percentile, or 0.41, patients experienced a 211% 

increase. An additional 0.27 added 177 percentage points, which is very clinically significant. 

According to both the RIFLE and AKIN class classification of staging systems for AKI [17], a 

creatinine increase of 1.5-fold to 2.0-fold is considered at risk for AKI and a creatinine increase of 

2-fold to 3-fold is considered in the stage of kidney injury. 

 

We notice that the relationship does not start until some of the highest percentiles, specifically 

after 0.27 where there are only 13 data points out of the 2477 in the model, which makes up 0.5% 

of the dataset. While this is a very small percent, AKI has also been found in previous studies to 

occur in approximately 1% of patients after non-cardiac surgery, so this number may not be all too 

surprising or uninformative. [16] 

 

While it is important to take caution in interpreting clinical significance in only 0.05% of the 

dataset, only a small proportion of cases experience severe kidney complications after surgery, so 

this number may still be of interest. Within our dataset of 2477 patients, a total of only 150 patients, 

or 6.05% of the dataset, have 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 above or equal to 1.5-fold, and it is possible that 

further investigation into this subset may reveal more information.  

 

5.1.2 Model Diagnostics 

 

We also check our model diagnostics but notice some problems, which are displayed in Figure 5.  
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Figure 5. Model 5.1 Diagnostic Plots

 
 

As we can see from both the QQ plot, which does not follow the 𝑦 = 𝑥 trend line and suggests 

right skew, as well as the skewed histogram of residuals, the model does not uphold the assumption 

of normality. The residual plot is not randomly distributed about 𝑦 = 0 and the response vs. fitted 

values do not seem to closely follow the 𝑦 = 𝑥 line.  

 

While this model does seem to suggest some interesting results for a small subset of values 

following a range of 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒, the assumptions of normality do not appear to be 

upheld. We should take even greater caution when interpreting these results.  

 



 

 

 

 

27 

5.2  Using a Logarithmic Transformation for creatinineDiff 

 

As we have seen in the model diagnostic plots in Figure 5, assumptions that errors are normally 

distributed are not fully upheld. To try improving this by removing skew, we add 1 to 

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓  to ensure that values are greater than 0 and then take the log of 

(𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓	 + 	1). We can see the results of this transformation in Figure 6.  

 

Figure 6. Comparison of Distributions of 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 and 𝑙𝑜𝑔(𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 + 1) 

 
 

With this transformation, we try to fit the generalized additive model  

log	(𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 + 1) = 	𝛽N + 𝑠 𝑚𝑒𝑎𝑛𝐵𝑃 + 	𝑠 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 + 𝑠 𝑟𝑒𝑙𝑇𝑖𝑚𝑒 	+ 

	𝑠 𝐵𝑀𝐼 + 𝑠 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 + 𝑠 𝐴1𝑐90𝑑𝑎𝑦 + 𝜀 

 

5.2.1 Model Results and Analysis 

 

The results of the GAM are displayed in Table 4 and the nonparametric component smoothing 

functions on the scale of the linear predictor are displayed in Figure 7. 
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Table 4. Parametric and Nonparametric Effects of Model 5.2 

Sample size = 2477 

Parametric Effects Estimate t value 

Intercept 1.8	 ∗ 	10EB 14.40 ∗∗∗ 

Gender 1.5	 ∗ 	10Em 0.84 

Insulin 1.3	 ∗ 	10EB 4.98	 ∗∗∗ 

 

Nonparametric Effects F statistic 

s(𝑚𝑒𝑎𝑛𝐵𝑃) 4.49 ∗∗∗ 

s(𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒) 1.13 

s(𝑟𝑒𝑙𝑇𝑖𝑚𝑒) 0.50 

s(𝐵𝑀𝐼) 0.04 

s(𝑎𝑔𝑒) 4.85 ∗ 

s(𝐴𝑙𝑐90𝑑𝑎𝑦) 1.89 

∗ 		p-value < 0.05, ∗∗ 		p-value < 0.01, ∗∗∗ 		p-value < 0.001 
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Figure 7. Plots of the Component Smooth Functions of Model 5.2 

 
 

We see a similar but stronger relationship from our previous model for lower 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 

values when 𝑚𝑒𝑎𝑛𝐵𝑃 is near common or average values. The 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 component 

smooth function appears to be positive, but no significant nonparametric effects were found. This 

model was also rerun with 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 inputted as only a parametric effect; however, 

again no significance was found.  

 

Additionally, we can see that 𝐴1𝑐90𝑑𝑎𝑦 outside of common ranges seems to result in higher 

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 ’s, although this component smooth function too was not found to have a 

significant nonparametric effect.  Age appears to have significant nonparametric effects, where an 

increase in age from the 1st quartile (𝑎𝑔𝑒 = 53) to the 3rd quartile (𝑎𝑔𝑒 = 71) results in a decrease 

in 𝑙𝑜𝑔(𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓	 + 	1) from 0.19 to 0.17, or equivalently a decrease in 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 

of 2 percentage points from 0.21 to 0.19, which is not clinically significant. 
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5.2.2 Model Diagnostics 

 

We also examine this model to determine if our transformations have improved the issues with 

Model 5.1 by examining model diagnostics in Figure 8. 

 

Figure 8. Model 5.2 Diagnostic Plots 

 
 

As we can observe from the QQ and residual plots, the distribution now appears to uphold 

normality better than before, although the distribution is heavy tailed. Additionally, the residual 
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plot appears to be more randomly distributed about 𝑦 = 0 and the response vs. fitted values 

scatterplot appears to adhere closer to the 𝑦	 = 	𝑥 line with relatively equal variance.  

 

This model overall upholds assumptions much better; however, it no longer captures the signal 

that the previous model was able to find and does not provide us with clinically significant effects 

in percent change of creatinine.  
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6.  Future Directions 
 

The methods discussed thus far were not fully able to capture the data appropriately. This section 

considers some alternatives still to be explored. 

 

6.1  Quantile Regression 

 

Generalized additive models attempt to estimate 𝐸(𝑌L), but approaches like quantile regression 

allow us to estimate the median or other quantiles of 𝑌L. Quantile regression is more robust to 

outliers and considering the skew in our data, it may be more flexible and appropriate in capturing 

variation in a dataset that is more heterogeneous than we initially assumed. By looking at quantiles, 

we can gain a broader picture of the relationship between our predictors and the response. 

 

Quantile regression considers the relationship between the conditional quantile of the response and 

the covariates. The 𝜏HI quantile of 𝑦 can be written as 

𝑄� 𝑦 𝑥 = 𝐹EB(𝜏|𝑥) 

where 𝑞 is the quantile, 𝑦 is the dependent variable, 𝑥 is the independent variable, and 𝐹EB(𝜏|𝑥) 

is the conditional inverse CDF function.  

 

A linear quantile regression model can be written as  

𝑄� 𝑦 𝑥 = 𝒙�𝜷(𝜏) 

where 𝛽 𝜏 = 	𝛽N 𝜏 , … , 𝛽` 𝜏
�
is the quantile coefficient that denotes the marginal change in 

the 	𝜏HI quantile of y resulting from a marginal change in 𝑥. 

 

However, in order to continue evaluating nonparametric components, we can also consider 

nonparametric quantile regression, which can be written as 
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𝑄� 𝑦 𝑥 = 𝑔�(𝑥) 

where 𝑔�(𝑥) is a smoothing function which could be approximated by a linear combination of 

spline basis functions. A formula interface for nonparametric quantile functions can also be found 

in the ′rqss′ R package.  

 

6.2  Robust Regression 

 

We can consider robust regression to help capture errors that are not fully normally distributed, 

which is an issue that we have seen in our model. Replacing the assumption of normal distribution 

on the errors with a heavier-tailed t-distribution is one way of performing robust regression that 

could potentially address our issues with heavy tailed errors. Nonparametric Bayesian approaches 

can also be considered, for instance using a mixture of normal distributions to more flexibly model 

the error. Alternatively, a contaminated normal distribution where residuals are assumed to follow 

a mixture of two normal distributions is a simpler alternative. 

 

6.3  Extrema Weighted Features 

 

In all our current models, we focus on using some measure of generalized average realized 

variability to model blood pressure variability. However, as we have seen, utilizing 𝑔𝐴𝑅𝑉 in the 

approaches that we have explored have not resulted in highly promising results that are clinically 

significant in models that uphold assumptions. 

 

Exploring other features that could replace 𝑔𝐴𝑅𝑉 as a more robust measure of blood pressure 

variability in time series data with emphasis on deviations outside of healthy ranges can be 

explored. We are looking at extrema weighted features as a novel way of measuring variability in 

functions like blood pressure that allows for adaptive weighting of any predefined local measures 

of variability in the extremes or tails.  
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7.  Conclusion 
 

Duke electronic health records provide a rich set of data, much of which is currently underutilized. 

Using a combination of different datasets, we explored confounders and extracted generalized 

average variability of mean arterial pressure curves to determine the relationship of blood pressure 

variability and renal outcomes. Specifically, we chose to consider 𝑔𝐴𝑅𝑉 for ranges that are outside 

what is considered healthy and utilize the percent change in creatinine as a measure for renal 

outcomes. We utilized generalized additive models to determine marginal relationships between 

covariates and the response, and found an increasing, clinically significant smoothing function for 

𝑔𝐴𝑅𝑉  outside the healthy range in estimating the percent difference in creatinine, with the 

strongest relationship in an area of few data points. However, this signal was lost in the log-

transformed model that adhered more closely to model assumptions, and it is difficult to confirm 

whether signal does exist in the 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒  features that would help to predict an 

increase in 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓.  

 

Because of this, 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 is potentially not a sufficient measure of blood pressure 

variability, which is complex time series data with potentially greater effects in extreme ranges, 

and we may need to explore more advanced methods to gain enough evidence that blood pressure 

variability intraoperatively is or is not an important effect in renal outcomes.                                                        
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Appendix A. Comparison of Patients with and without 

A1c Measurements 
 

We found that approximately 44.78% of cases with A1c90day measurements were female and 

51.01% of cases without Alc90day measurements were female.  

 

We found statistically significant differences between each of the comparisons listed in Figure A.1 

using one-sided t-tests.  

 

Figure A.1 Comparison of Cases with and without 𝐴1𝑐90𝑑𝑎𝑦 Measurements 
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Appendix B. Variability Above/Below Healthy Ranges 

on Patients with A1c Measurements 
 

Below is a model containing features that measure variability above the healthy range separately 

from below the healthy range. Since we now utilize 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑏𝑜𝑣𝑒 and 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐵𝑒𝑙𝑜𝑤, we no 

longer include 𝑟𝑒𝑙𝑇𝑖𝑚𝑒  as in Section 5 (since 𝑟𝑒𝑙𝑇𝑖𝑚𝑒  would simply become a linear 

combination of 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑏𝑜𝑣𝑒 and 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐵𝑒𝑙𝑜𝑤). 

 

We fit the following GAM with confounders 

𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝐷𝑖𝑓𝑓 = 	𝛽N + 𝑠 𝑚𝑒𝑎𝑛𝐵𝑃𝐴𝑏𝑜𝑣𝑒 + 𝑠 𝑚𝑒𝑎𝑛𝐵𝑃𝐵𝑒𝑙𝑜𝑤 +

	𝑠 𝑔𝐴𝑅𝑉𝐴𝑏𝑜𝑣𝑒𝑅𝑎𝑛𝑔𝑒 + 𝑠 𝑔𝐴𝑅𝑉𝐵𝑒𝑙𝑜𝑤𝑅𝑎𝑛𝑔𝑒 + 𝑠 𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐴𝑏𝑜𝑣𝑒 + 𝑠(𝑟𝑒𝑙𝑇𝑖𝑚𝑒𝐵𝑒𝑙𝑜𝑤)	+ 

	𝑠 𝐵𝑀𝐼 + 𝑠 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 + 𝑠 𝐴1𝑐90𝑑𝑎𝑦 + 𝜀 

 

The results of the GAM are displayed in Table B.1 and the nonparametric component smoothing 

functions on the scale of the linear predictor are displayed in Figure B.1. 
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Table B.1 Parametric and Nonparametric Effects of Model B 

Sample size = 1781 

Parametric Effects Estimate t value 

Intercept 3.1	 ∗ 	10EB 10.90 ∗∗∗ 

Gender 2.3	 ∗ 	10Em 0.57 

Insulin 2.1	 ∗ 	10EB 3.68	 ∗∗∗ 

 

Nonparametric Effects F 

s(𝒎𝒆𝒂𝒏𝑩𝑷) 1.75 

𝒔(𝒎𝒆𝒂𝒏𝑨𝒃𝒐𝒗𝒆𝑹𝒂𝒏𝒈𝒆) 0.83 

𝒔(𝒎𝒆𝒂𝒏𝑩𝒆𝒍𝒐𝒘𝑹𝒂𝒏𝒈𝒆) 0.36 

𝒔(𝒈𝑨𝑹𝑽𝑨𝒃𝒐𝒗𝒆𝑹𝒂𝒏𝒈𝒆) 1.68 

𝒔(𝒈𝑨𝑹𝑽𝑩𝒆𝒍𝒐𝒘𝑹𝒂𝒏𝒈𝒆) 1.88 

s(𝒓𝒆𝒍𝑻𝒊𝒎𝒆𝑨𝒃𝒐𝒗𝒆) 2.59 

s(𝒓𝒆𝒍𝑻𝒊𝒎𝒆𝑩𝒆𝒍𝒐𝒘) 1.70 

s(𝑩𝑴𝑰) 0.26 

s(𝒂𝒈𝒆) 3.90 ∗∗∗ 

s(𝑨𝟏𝒄𝟗𝟎𝒅𝒂𝒚) 1.01 

∗ 		p-value < 0.05, ∗∗ 		p-value < 0.01, ∗∗∗ 		p-value < 0.001 
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Figure B.1 Plots of the Component Smooth Functions of Model B 
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Appendix C. Example Blood Pressure Curves of Cases 

with gARVOutsideRange > 0.5 
 

Figure C.1 Blood Pressure Curves of Cases with 𝑔𝐴𝑅𝑉𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑎𝑛𝑔𝑒 > 0.5 

 
 

 


