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Abstract

The tasks performed by medical image analysis technicians� including registration and

segmentation� have become increasingly di	cult with the advent of three
dimensional

imaging systems� To identify features in these large images� the technician must typ


ically engage in the tedious chore of examining numerous lower dimensional repre


sentations of parts of the data set� for instance slices though the volume or volume


rendered views� The pursuit of automatic image understanding� previously sought

after in two
dimensional images for objective anatomical measurement and to reduce

operator burden� therefore has become proportionally more valuable in these larger

image datasets�

A statistical framework is proposed to automate image feature identi�cation and

therefore facilitate the image understanding tasks of registration and segmentation�

Features are delineated using an atlas image� and a probability distribution is de�ned

on the locations and variations in appearance of these features in new images from

the class exempli�ed by the atlas� The predictive distribution de�ned on feature

locations in a new image from the class essentially balances the two notions that�

while each individual feature in the new image should appear similar to its atlas

representation� contiguous groups of features should also remain faithful to their

spatial relationships in the atlas image� A joint hierarchical model on feature locations

facilitates reasonable spatial deformations from the atlas con�guration� and several

local image measures are explored to quantify feature appearance� The hierarchical

structure of the joint distribution on feature locations allows fast and robust density

maximization and straightforward Markov Chain Monte Carlo simulation� Model

hyperparameters can be estimated using training data in the form of manual feature

observations�

iv



Given Maximum a posteriori estimates an analysis is performed on in vitro mouse

brain Magnetic Resonance images to automatically segment the hippocampus� The

model is also applied to time
gated Single Photon Emission Computed Tomography

cardiac images to reduce motion artifact and increase signal
to
noise�
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Chapter �

Introduction

��� Image Analysis Applications

The past decade has seen a surge in research aimed at automatically processing image

data� Some of the standard techniques are familiar� for instance data compression for

sending video over the internet or simple smoothing techniques to remove noise� Oth


ers are more specialized� for instance automatic �ngerprint recognition for security

monitoring� The Bayesian statistical community has made signi�cant contributions

to image analysis research by developing methodologies for problems of particular

interest in the medical sciences� among others� A brief overview is given in this sec


tion of the classical image analysis problems� image restoration� reconstruction� and

understanding�

The goal of image restoration is to reproduce the underlying �true� image con


tained in an observed realization corrupted with noise� The Bayesian solution to this

problem characterizes prior knowledge about the true image x in terms of a marginal

distribution p�x� and states that the corrupted realization y is drawn from a condi


tional distribution p�yjx�� Restorations of x are inferred from the posterior on the

true image given the realization� p�xjy� � p�x�p�yjx�� Several examples of image

�



priors and applications are given in Ripley ������� Titterington ������� Godsill and

Kokaram ������� Besag ������� and Geman and Geman ������

Image reconstruction is employed in the �computed tomography� medical imag


ing modalities �single photon emission computed tomography� SPECT� and X
ray

computed tomography� CT�� since the scanner merely outputs data in the form of

separate projected views of the body being imaged from di�erent perspectives� Data

in this form must be thoroughly massaged to produce a recognizable image for a clin


ician to examine� The true three
dimensional representation of the subject matter

is reconstructed by integrating together the set of lower
dimensional projections in a

manner dependent on the geometry of the scanning system� The Bayesian paradigm

can be applied here by again representing the unobserved true image as x and the

observed projection data as y� The system noise and geometrical characteristics are

incorporated in the conditional distribution p�yjx� and reconstructions of the true

image can be inferred from the posterior distribution p�xjy�� Example methodologies

and applications are given in Geman and McClure ������ and Bowsher et al� �������

The methods of image understanding aim to represent the image in a more mean


ingful way than the original array of pixel intensities� Image understanding methods

are invariably based on feature identi�cation� where a pre
de�ned feature possessing

known properties� for example an intensity pro�le� is located in the image� Target

tracking is an excellent example of this type of process� where for example the radar

pro�le of an airplane is located in the �rst image of a series and its position is tracked

through the rest of the series by imposing constraints on feature properties like the

speed of the feature and its possible feature pro�les� etc� �Grenander and Miller�

�����

Another image understanding task� more central to this paper� is image registra


tion� Here� the challenge is to map a set of features in one image to their homologous

�



locations in another for the purpose of averaging image information or for generating

an anatomical map of one of the images conditional on a pre
de�ned map of the other�

Applications for image registration are abundant in the medical imaging community�

For example� there has been recent interest in trying to produce a map of the hu


man brain which delineates function rather than anatomy� To this end� experiments

are run with the intention of mapping the regions of the brain responsible for one

type of thought process� For instance� a subject is shown a �test� �gure followed by a

�control� �gure while undergoing a Positron Emission Tomography �PET� scan� The

PET scan measures regions of high blood �ow in the brain� which are interpreted

as regions of thought activity� The image taken while the test �gure is shown is

subtracted from the control image� and the resulting intensity map is interpreted as

the di�erence in thought processing between the test and control states� A major

limitation of these experiments is that it is impossible to control all the extraneous

activity in a subject�s brain� which may cloud the activation regions truly associated

with the test state� As a result� experimenters turn to multi
subject studies to reduce

this e�ect by averaging each test state over several images taken of di�erent subjects�

However� care must be taken when comparing images across subjects because of their

widely di�ering brain shapes� A registration between subjects must be performed to

line up anatomical features of matching homology� Another limitation is the e�ect

of subject motion inside the scanner� This problem is less di	cult because the trans


formation needed to register scans of a single subject is just a six parameter family

in three
dimensions� three rotations and three translations�

Intra
subject image registration can become more di	cult when the two images

of the subject are taken with di�erent modalities� This kind of analysis is done� for

instance� to make available an anatomical MR map of a structure of interest that a

clinician is currently observing in a PET scan for its functional behavior �Studholme

�



et al�� ������

Another image understanding problem is automated image segmentation� where

the aim is to construct contours in the image to partition it into structures of in


terest� �In three
dimensional images the contours are surfaces and the regions are

volumes�� Image segmentation is commonly performed on medical images and is al


most exclusively done manually� The most automated currently accepted methods

for segmentation employ human
directed intensity thresholding
type operations� Al


though adequate results are achieved� the method is highly dependent on the skill of

the operator and therefore not reproducible� It is also extremely time consuming in

the case of three
dimensional images since a technician must typically examine nu


merous lower dimensional representations of parts of the data set� for instance slices

though the volume or volume
rendered views�

It should be pointed out that image segmentation can be a free by
product of

a registration analysis� This is because if one of the registered images has been

correctly segmented then� since the registration maps all the features in that image

into their homologous locations in the other� the segmentation of the �rst image is

also transfered to the unsegmented image� This is the approach taken in atlas
based

methods� discussed in section �����

In the next section� a brief review is given of some of the important contributions

made to this �eld of image analysis� with emphasis given to the challenges of image

understanding and also to the notable methodologies developed from a statistical

point of view�

��� Previous Work

Many of the algorithms and models in the current image understanding literature

can be classi�ed into a few categories� pixel
based methods� boundary
 and surface






based methods� and landmark
based methods� A short discussion of each of these

categories is given in the following sections� In each section an overview of some of

the methodologies will be given along with a more in depth description of one or two

particularly promising directions of research�

����� Pixel�Based Methods

The pixel
based statistical methods for image analysis grew out of Besag�s pioneering

work in ���� In it the author layed down the basic principles that must be adopted

when de�ning any joint probability distribution in terms of the conditionals of each

random variable given all the others� If these rules are not followed when constructing

a model through the conditional probability approach� then a valid joint probability

distribution on all the random variables cannot result�

A network of random variables x � �x�� 	 	 	 � xn� can have an associated �neigh


borhood system� N where the neighbor connections in N are de�ned by the full

conditional distributions on each element of x� If the full conditional on xi only de


pends on a subset fxk� k � Sig of the whole vector x� then the elements of this subset

are neighbors of xi� In this case the full conditional distribution on xi can be written

p�xijx�� 	 	 	 � xi��� xi��� 	 	 	 � xn� � p�xijfxk� k � Sig�	

In the paper� Besag re
expressed the Hammersley
Cli�ord theorem �due to an un


published ���� paper by these authors�� which de�nes rules on the form of the full

conditionals to ensure a valid joint distribution p�x� on the whole network� Essen


tially� the joint distribution on x was re
written

p�x� �
�

Z
exp

�
�
X
c�C

Vc�x�

�
�����

where Z is a partition function independent of x� The index of the sum is taken

over all the �cliques� in the network� where a clique is de�ned as a sub
set of x in

�



which every member is a neighbor of every other member� The potential function

Vc�x� only depends on x through the members of the clique c� This form of the joint

immediately speci�es constraints on the neighborhood structure and the form of the

full conditionals on elements in the network� Namely� the full conditional on xi must

include all the potential functions Vc�x� on cliques of which xi is a member�

In pixel
based statistical image models� each element of the random vector x usu


ally represents one pixel in the image� In restoration problems� the random variable

xi associated with pixel i is the �true� image intensity to be estimated from a noisy

realization y of the image� In segmentations analyses x is a set of region speci�ers to

be inferred from the observed image y� In both cases� statistical models �called priors

in the Bayesian literature� on x are usually formulated to enforce beliefs about the

smoothness of the true image or region speci�ers� where smoothness is quanti�ed by

correlating nearby pixels� Besag�s fundamental result illustrates how this correlation

notion must be formulated� If a full conditional speci�cation on every element xi is

proposed �eg� to correlate pixel i with the pixels closest to it�� then this speci�cation

must be expressible in terms of the cliques which contain pixel i and potentials on

those cliques�

Generally� when de�ning the neighborhood structure in these �Markov Random

Field� �MRF� models� only pixels close to one another are de�ned to be neighbors�

For example� a �rst
order neighborhood system in a square lattice in two dimen


sions indicates that each pixel has the four nearest pixels as neighbors� Under this

neighborhood system the largest cliques have two members� and models are gener


ally de�ned so that samples from the full conditional distribution on each pixel are

readily calculable for direct implementation of a Gibbs sampling algorithm �Geman

and Geman� �����

Johnson ����� investigated a MRF model with a neighborhood system equal to

�



the entire image� In that model the random variables x �on a hexagonal lattice par


tially because of its symmetry for de�ning cliques potentials� were region identi�ers

which� taken together� de�ned a segmentation of the observed image� Three clique

potentials were de�ned on con�gurations of region identi�ers� These potentials were

used to encourage segmentations which had ��� a small number of di�erent regions�

��� regularly shaped regions� and ��� no regions with disconnected sections� The �rst

potential was de�ned on a clique the size of the entire lattice�

V��x� � 
K� �����

where K is the number of distinct regions in the graph and 
 is an arbitrary hyper


parameter�

The second potential was de�ned on a circular ring clique one pixel wide made up

of the sites in the hexagonal lattice oriented at a radius d around a central site� The

potential on this �regularity� clique was set to an arbitrary value � if any pixel in

the ring with a given region identi�er was separated within the ring from other pixels

having the same identi�er� The clique potential was set to zero if this condition did

not occur� This regularity potential simply encouraged groups of region identi�ers to

have regular shapes by discouraging a region from growing �ngers thinner than the

size of the regularity clique� The threshold �nger size could be adjusted by the size

of the regularity clique used�

The �nal clique potential� again on a clique equal to the whole graph� made it

impossible for a region to split into two disconnected partitions� This in�nite potential

was necessary since splitting a region would require changing all the region identi�ers

in one of the sections� which violates the Markovian property of the underlying Gibbs

distribution�

A data model for the observed image intensity scene given a realization of region

identi�ers from the Gibbs distribution was set to be a Poisson�Gamma conjugate

�



pair� creating a three level hierarchical model for observed image data� The middle

level of the hierarchy was necessary to de�ne the intensity variability within each

segmented region� Full conditional distributions were derived for all the Poisson

and Gamma parameters� but full conditionals for the the Gibbs parameters ��� 
�

etc�� were intractable due to the unknown form of the partition function� Higdon

et al� ������ gives one solution to this problem� The model was quite successful at

segmenting a two dimensional test image and the Ho�man brain phantom �Ho�man

et al�� ������

����� Boundary and Surface�Based Methods

Many of the boundary
based methods are based on a simple image edge
detectors

like the squared gradient magnitude��
�Q�x� y�

�x

��

�

�
�Q�x� y�

�y

��

�����

in the two
dimensional image Q� or the negative absolute value of the image Lapla


cian�

�

����������
��Q�x� y�

�x�
�
��Q�x� y�

�y�

����������	 ����

These methods generally involve models for parameterized curves that are attracted

to regions in the image having a high value of ����� or ����� A possible boundary in

the image is characterized by a balance of the �t of the curve to its parameterization

with its �t to the edge
detector�

For example� Kass et al� ������ de�ned the �active contour model� for the place


ment of a line in an image under internal line continuity constraints and external

image forces� Image forces were set to be either proportional to the image intensity

or one of the image measures ����� or ���� so that the �snake� was drawn to regions of
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quickly changing intensity� The continuity of the line was maintained by an internal

force which was a function of its spline energy� de�ned as a weighted linear combi


nation of its �rst and second directional derivatives along its length� This constraint

essentially forced the snake to behave somewhat like a membrane and somewhat like

a thin plate� depending on the weights in the linear combination� Under these in


ternal line forces and external image forces� the snake was drawn to locations in the

image which were well
delineated contours of large intensity change� These regions

were deemed to be reasonable estimates for object boundaries�

Davatzikos et al� ������ used an active contour to delineate the boundary of the

human corpus callosum in a mid
sagittal MR image� The resulting boundaries of

eight males and eight females were used to de�ne an elastic warp on the interior

of the region which matched all subjects to a common corpus callosum shape� The

calculated warps allowed the authors to draw conclusions on gender di�erences in the

size and shape of the region�

Active contour models have been extended for mapping the human brain cortex

in two dimensions �Davatzikos and Prince� ����� and for mapping the deep sulci in

three
dimensions using higher
dimensional active ribbons �Le Goualher and Barillot�

�� Other applications of similar models can be found in Sandor and Leahy �������

Davatzikos and Prince ������� Thompson and Toga ������� Cootes et al� ������

Cootes et al� ������ and McInerney and Terzopoulos �������

There have been several models proposed in the statistical literature for outlin


ing shapes with parametrized boundary models� for example Grenander and Miller

������ Cli�ord and Nicholls ������ and Hurn and Rue ������� Much of the recent

work has been on creating e	cient Markov chain monte carlo �MCMC� jump dif


fusion samplers �Green� ����� for object recognition by boundary birth and death

proposals�

�



One particularly elegant and accessible statistical approach to segmenting images

by inferring boundaries was given by Phillips and Smith ������ To segment several

regions from face images �head� face� eyes� etc��� a parameterized curve was de�ned

to outline each region� and prior distributions were set on the parameters of each

curve� For instance� the curve outlining the head was set to be roughly elliptical by

parameterizing the lengths of the major and minor axes in the horizontal and vertical

direction from the center �four parameters�� and four additional control points on the

curve at directions diagonal to these axes� Normal priors were set on all distances with

expectations de�ned to incorporate prior knowledge about the size and shape of the

region with respect to the size of the image� A hierarchical model was implemented

by constraining the face boundary to lie inside the head boundary� the eyes inside

the face� and so on�

Given these segmented regions� an admittedly crude data model for the image

intensities was de�ned� The intensity at each pixel inside a particular region r was

modeled as an independent normal random variable with unknown region mean �r

and variance ��r � A Metropolis sampler was used for posterior inference on all the

parameters in the model including the region means and variances� and the tem


plate parameters for each region contour� Parameter full conditional distributions

were blocked appropriately by template contour to increase sampling e	ciency� The

method was quite successful even with the modest parameterization of the face and

the unsophisticated data model for the image intensities�

����� Landmark�Based Methods

These methods were initiated with the de�nitions of several types of landmarks pro


posed by Bookstein ������� and later discussed by Dryden and Mardia ������� Book


stein was mainly concerned with analyzing the shape of con�gurations of points in

��



images provided by a human observer� He de�ned three main types of anatomical

landmarks� type I landmarks found at the joints of tissues and bones� type II de


�ned by local image properties such as maximal curvatures� and type III de�ned at

extremal points� A fourth type� the quasi
landmark� could be located on a curve be


tween other landmarks and allowed to slip a small distance with respect to another

curve� Dryden and Mardia de�ned three very similar but slightly more general land


mark types� biological landmarks assigned by an expert in a biologically meaningful

way� mathematical landmarks located according to some mathematical or geomet


rical property of the image� and pseudo
landmarks constructed around an outline

between biological or mathematical landmarks�

The methods reviewed in this section outline automated procedures for detecting

landmark locations in an image� These methods generally provide the locations of a

small set of landmarks in an image which can be further analyzed by shape statis


tics as discussed in Mardia and Dryden ������� Lele and Cole ������� and Bookstein

������� or used as control points for various continuum
based image warping algo


rithms� eg� Bookstein ������� Bajcsy and Kovacic ������� and Gee et al� �������

Landmarks located automatically are mainly Bookstein�s type II or III or Mardia

and Dryden�s mathematical type since the automated choice of landmark location is

based largely on local image intensities near the landmark� To locate more subtle

landmarks of other types� prior distributions are set to de�ne likely con�gurations of

a set of landmarks� In this way� landmarks which are poorly de�ned in a particular

image can be located by drawing strength from other well de�ned landmark locations�

Amit and Kong ����� manually de�ned a template orientation of landmarks by

pruning a pre
calculated set of local intensity maxima in a template image to include

only meaningful landmarks� The landmarks were then connected into a graph of

triangular cliques� Given a set of local intensity maxima sites in a new image� a dis
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tribution was de�ned to assign relative probabilities to every possible con�guration

of the template landmarks on these candidate sites� The distribution essentially re


warded triangular cliques having similar shape to the template orientation regardless

of size� rotation� or translation� Constraints on the structure of the graph permitted

the generation of high probability orientations in polynomial time� meaning that a

set of �� landmarks could be located in a new image in a few minutes on a modern

computer�

Wilson ������ took a similar course in de�ning a probability density on all possible

con�gurations of a set of landmarks in a new image� given a template orientation

de�ned manually� The distribution was de�ned as a MRF on a graph where the

arcs in the graph were manually set in the template to de�ne the neighborhood

structure of the �eld� and the random variable at each node in the graph represented

the location of one of the landmarks in the set� Landmark locations were actually

de�ned in the whole scalespace of the image �eg� Lindeberg ���� ter Haar Romeny

et al� ����� and Koenderink ���� and the clique potential on the exclusively two

member cliques were de�ned in terms of the scalespace distance between the two

neighbors� The scalespace metric� de�ned in Eberly ������ is too involved to be

included here� but it was essentially used to invoke invariance to the size of the

landmark con�guration� Let the scalespace distance between landmarks i and j be

dss�xi� xj� and the analogous distance in the template ���� 	 	 	 � �n� be dss��i� �j��

Then the density on any landmark con�guration was de�ned as

p�x�� 	 	 	 � xn� �
�

Z
exp

�X
c�C

Vc�x�� 	 	 	 � xn�

�
�����

where the potential function on each two member clique c � fi� jg was de�ned as

Vi�j � �k��dss�xi� xj��
� � �dss��i� �j��

�

� �dss�xi� xj�dss��i� �j� cos�xi � xj� �i � �j��	
�����
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In this equation� cos�xi � xj� �i � �j� is the cosine of the angle between the vectors

xi � xj and �i � �j� and k is an arbitrary hyperparamter� This potential rewarded a

clique orientation for having its connecting vector �xi � xj� similar to the template

vector ��i � �j��

Each landmark was also given a feature type 
 �boundary�� �middle� or �corner��

These names referred to the function on the image used to quantify relative proba


bilities of candidate landmark locations� For instance� a boundary landmark would

be attracted to regions in the image having a high value of the gradient magnitude

feature function given in equation ������ The predictive density on a landmark con�g


uration was de�ned to be a product of the feature function component and the shape

component �equation ����� where weighting parameters on the two components were

set manually�

McCulloch et al� ������ extended these scalespace landmark models by de�ning

new clique potentials on larger cliques in the con�guration� The Procrustes distance

�Sibson ���� and Stoyan ���� was used as a metric on clique shape similarity between

the proposed clique orientation xc and its corresponding template orientation �c�

Under this potential� cliques in the MRF could be de�ned to have any number of

members greater than two� In this way� it was possible to represent perceived objects

in the image more naturally by cliques in the MRF�

Similar work was undertaken in Mardia et al� ������ in which the shape distribu


tion was made invariant to arbitrary rotation� translation� and scaling by multiplying

the n� d matrix of landmark locations by the Helmert sub
matrix�

����� Atlas�Based Methods

The methods presented thus far have either incorporated limited information from a

template image� or have been entirely �atlas
free�� On the other hand� the methods
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in this section are concerned with registering the image to a similar but di�erent

atlas image� These �atlas
based� methods have been very successful in image under


standing applications because the atlas image injects a great deal of structure into

the model� and because the higher tasks of feature identi�cation and segmentation

are consolidated into the problem of image registration� Given a correct registration

of the new image to a pre
analyzed atlas image� the analysis of the atlas can be di


rectly transferred to the new image� The choice of atlas has received some attention

�Mazziotta et al� ����� Greitz et al� ����� and Talairach and Tournoux ����� but in

many applications the atlas is taken to be simply one image from the class of images

to which all other images are registered�

Medical image registration problems� on which atlas
based methods are founded�

can be divided into two categories� intra
subject and inter
subject registrations� For

intra
subject registration� generally one image is rotated and translated with respect

to the other until some match criterion is maximized� In single modality registration�

the image match criterion for a candidate registration is usually based on a correlation

measure comparing each pixel in the atlas image with the overlaid pixel in the other

image after it has been rotated and translated �Woods et al�� ������ For multi


modality registration problems the match criterion is more subtle� several possibilities

have been investigated �Studholme et al�� ������

Inter
patient registration is a much more di	cult task because of the necessity of

a nonlinear transformation to map the atlas to the new image due to the morphome


tric variability between subjects� Much work has been done to model this nonlinear

transformation by various physical models on a continuum� such as the thin plate

spline �Bookstein� ������ the elastic solid �Bajcsy and Kovacic� ������ and the vis


cous �uid �Christensen et al�� ������ Amit et al� ������ modeled the registration

deformation as a two
dimensional Gaussian �eld on the domain of the atlas image�

�



Multi
resolution techniques �Bajcsy and Kovacic ����� Studholme et al� ����� and

Lifshitz and Pizer ����� have been useful in the inter
subject registration problem

by directing the optimization over the numerous parameters in the nonlinear trans


formation to locate large scale image features before turning to the more variable

local features� Scalespace is the usual choice for implementing the multi
resolution

optimization� high scale� blurred versions of the two images are registered �rst� after

which lower scale representations are incorporated which recapture the �ner details

of the original images�

Collins et al� ����� and ����� implemented a multi
scale nonlinear registration

procedure on three
dimensional MR brain images� Several grids of varying densities

were laid down in the atlas image and the new image to be analyzed� and each grid was

associated with one scale in the pre
calculated scalespace of the images� The atlas

grids were �xed� and the registration was accomplished by spatially transforming

each grid in the new image to maximize a correlation measure on the intensities in a

neighborhood around each grid point�

Starting with the coarsest grid and most strongly blurred image� the correlation

objective function on the location of each grid point was maximized in turn� Let �

be the location of the grid point in the atlas image Q�� let the set of its neighboring

pixels be N�� let x be the grid location in the new image Q� and let the mapping

of N� to the neighboring pixels around x be N�x�� Then the following correlation

function of the neighboring pixel intensities around each grid point was used as the

objective function�

R�x� �

P
i�N�

Q��i�Q�fN�x�gi�

�
P

i�N�
Q��i������

P
i�N�

Q�fN�x�gi�����
	 �����

The maximization was constrained to retain the continuity of the grids by relaxing

the estimated mode back toward the average location of the neighboring grid points

by a manually chosen factor�
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Once the deformation of the coarse grid was estimated on the high scale image�

then this deformed grid was used to initialize the same optimization procedure for the

next �ner grid on a lower scale image� This procedure continued until the deformation

on the �nal lowest scale grid was optimized�

Impressive segmentation results were achieved by using the recovered image reg


istration to map a manual segmentation of one image onto the other�

��� Motivation

In this paper� a statistical framework is developed for automated image registration

and segmentation� The models draw on the strengths of several of the methods

presented in the previous section by de�ning a probability distribution on the location

and appearance of multiple image features in images from a common class� These

image features� called �facets�� can be thought of as generalized landmarks� They

could be de�ned to have special anatomical or topological meaning as landmarks

invariably have� but moreover they could also be de�ned implicitly by the use of an

atlas image� where the pre
determined location of a facet in that image de�nes its

meaning� The latter method for facet labelling transforms the statistical method

from a landmark based approach towards an atlas
based approach since the facet

distribution becomes a model of how an intelligent observer locates atlas features in

other images from the class� If a su	cient number of facets are used in the model to

represent all the salient features in the atlas� then a prediction of these facet locations

in a new image from the class is essentially a registration of the new image to the

atlas�

The registration of the new image to the atlas is frequently the end goal� However�

the registration also facilitates automatic segmentation of the new image given a

manual segmentation of the atlas� Each facet is given a segmentation label using the
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manual atlas segmentation� and the statistical model is used to predict the locations

of each facet in the new image� In this way� all the facets from a particular atlas

segmentation region can be used to automatically segment that region in the new

image� Both of these applications are explored in Chapters  and ��

By taking a statistical approach rather than merely deriving a numerical algo


rithm� the methods allow self
calibration through the use of training data� Any

tuning parameters� which would normally have to be set manually in a numerical

algorithm� are statistical model parameters which can be estimated via posterior dis


tributions given the training data� Furthermore� the often ignored reality of human

observer variability can be incorporated into the model to give a more reasonable

representation of human performance�

��



Chapter �

Model De�nition

��� Notation�Nomenclature

In this paper� a model is proposed of how an intelligent observer visually locates and

recognizes features in an image� The probability model proposed represents these

�features� through the new concept of �facets�� and the observer�s prior knowledge

about the image scene is represented through the concept of an �image class�� In

this section� the new nomenclature used hereafter in this paper is de�ned�

First� a d
dimensional image is considered a function Q on the �nite domain

D � Rd to the real line� Q � Rd � R� The domain D is the �nite extent of the image

dataset� and d is usually equal to � or �� For de�ning the probability model below�

it will be important that the image function is de�ned on all of Rd� so the function

is extended from D � Rd to Rd by de�ning that its value at Q�z�� z � RdnD is equal

to Q�z��� z� � D for which the Euclidean distance jjz � z�jj is minimized�

The image class concept is used to express the fact that� even on viewing an image

for the �rst time� a human observer immediately draws on a wealth of experience to

classify the image by a number of criteria� For example� s�he would immediately

realize if the image were a color photograph of a human face� and could also classify
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it by a number of other criteria such as gender� age� hair color� etc� For the purposes

of this paper� it is assumed that a pre
classi�cation has been performed and the

focus is restricted to identifying features in images taken from a common �class��

An image class is de�ned as a set of images of the same structure taken in di�erent

cases� where cases might be� for instance� di�erent individuals or di�erent images of

the same individual�

To illustrate a typical classi�cation� one image class of interest in this paper is a

set of three
dimensional magnetic resonance �MR� images of in vitro new
born mice

brains� These are all taken with the �T��� setting of the MR apparatus� and every

mouse brain is physically registered in the apparatus to a common frame of reference

before imaging�

In this example� since the brains have all been physically registered� any prob


ability distribution on feature locations in these images need not be invariant to

orthogonal transformations �ie� rotations� translations� and scalings�� On the other

hand� any invariances found in the image class must be incorporated in the prob


ability model� For example� typical class invariances include image brightness and

contrast�

A facet can be thought of as a generalized landmark� discussed in section ������

Whereas landmarks must be salient features in the image� facets can represent any

image feature no matter how pronounced it is� For example� in an image class

containing photographs of human faces� one facet might be de�ned as the left corner

of the mouth� In this case� the facet could surely be called a landmark �Bookstein

type I or Dryden � Mardia Biological� since it has an anatomically important feature

associated with it� However� another facet might be de�ned at a point on the cheek

that has no biological name� It is possible to de�ne this type of facet using an atlas

image by� for instance� laying down several facets in some regular array on this image
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and allowing the image to implicitly label all the facets� As in the case where the

facet is the corner of the mouth� a human observer could presumably locate these

new implicitly de�ned facets in a new image drawn from the class using the atlas

image for facet de�nitions� This implicit method of labeling facets is the substance

behind the methods in this paper because it allows the model to be applicable in

registration and segmentation problems�

Therefore� each facet i has a label �de�ned either explicitly or implicitly� and a

d
dimensional location xj�i in each image Qj from the class� Along with location�

each facet is de�ned to have a feature value fj�i in that image� The feature value

can be simply the image intensity� or some other possibly non
scalar measure of the

image� for instance the �rst spatial derivatives in orthogonal directions or a set of

intensities in a small region around the facet� A set of facet locations and feature

values in image j are denoted xj and fj� respectively�

Facets also have �template� properties which represent the average locations and

features of the facets� The template value for the ith facet location is written �i� and

similarly the feature template value is written �i� The vector of all template locations

and features are denoted � and �� The interpretation of the random variables � and

� can vary widely in di�erent models� for example in a multivariate normal model

on xj� � would denote the mean of the distribution� However� in a feature model on

fj that is invariant to image brightness and contrast� � might represent the mean of

the set of standardized features fj�

��� General Framework

The goal is to use training data gathered from a human who has observed J images

from the class and located p facets in those images to predict facet locations in a new

image from the same class� The template ��� �� can be assumed to be either fully or
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partially unknown� or entirely �xed� For the present discussion we assume that both

� and � are unknown� See section ��� for other cases� Note however that each facet

does have a label� de�ned either explicitly or implicitly using an atlas image�

The following paragraphs discuss the modeling assumptions used hereafter on the

process by which an intelligent observer quotes facet locations and feature values

using a training set of J images� The human observer has a list of facets in mind �ie�

facet labels� and identi�es their positions x�� 	 	 	 � xJ in a set of J images from the

class� The corresponding facet feature values are read from the image data� namely

fj�i � fQj
�xj�i� where fQ�x� denotes a feature function on the image Q at the location

x �e�g� the intensity at x� so that fQ�x� � Q�x�� see section ���� for others��

In this section the image Qj is assumed unknown� It is� of course� known to the

observer since this is the method by which one quotes feature values fj�i� However�

for modeling purposes� the feature value fj�i is a random variable separate from �but

not necessarily independent of� the facet location xj�i� For example� in the simple

case where the feature value is equal to the image intensity at xj�i� one could view

this kind of modeling as putting a distribution on the value of the image at xj�i�

Note that the image Qj itself is never modeled by a probability distribution� it is

simply compounded into the method by which the observer quotes facet locations

and feature values�

Therefore the data for p facets identi�ed in J images has the form

ff�x���� f����� 	 	 	 � �x��p� f��p�g 	 	 	 � f�xJ��� fJ���� 	 	 	 � �xJ�p� fJ�p�gg �

where xj�p is a d
dimensional vector� This long notation is shortened to

f�x�� f��� 	 	 	 � �xJ � fJ�g 	

Independence is assumed across images so that the data �xj� fj� are drawn from some

joint density p�xj� fjj�� �� �� where  is a scale parameter representing the variability
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of �xj� fj� around the template location and feature ��� ��� This joint distribution

can be written in two factors

p�xj� fjj�� �� � � p�xjj�� �� �p�fjjxj� �� �� �	

Conditioning on xj in the second term is natural since it can be used to model� for

instance� spatial dependencies in the feature vector fj� Note that p�fjjxj� �� is not

a point mass on �fji � fQj
�xji�� 			� fjp � fQj

�xjp�� since the conditional distribution

does not include Qj in its conditional arguments right of the bar� Conditional on xj

but not Qj� fj is a random variable�

Next�  is written in two components�  � �x� f�� The former represents the

variability of xj around � and the latter represents the variability of fj around ��

Under this assumption� the joint distribution is written

p�xj� fjj�� �� � � p�xjj�� �� x�p�fjjxj� �� �� f�	

Facet locations are assumed to be independent of template feature values�

p�xjj�� �� x� � p�xjj�� x�� This is reasonable since� for example� knowing that two

facets i and i� have similar template features �i and �i� actually tells nothing about

the locations of those facets xj�i and xj�i� since there can be several locations in an

image with similar feature values� And similarly� feature values are assumed indepen


dent of the template location� p�fjjxj� �� �� f� � p�fjjxj� �� f� since the information

contained in the locations xj of the facets in this particular image most likely negates

the information contained in the template locations ��

The joint posterior on the template and scale parameters given the whole set of

data �x� f� � f�x�� f��� 	 	 	 � �xJ � fJ�g is written

p��� �� x� f jx� f� �
�

Z
p��� �� x� f�

JY
j��

p�xjj�� x�p�fjjxj� �� f�

where Z is a normalizing constant independent of �� �� f � and x� The posterior
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predictive distribution for a new set of data � x�  f� is

p� x�  f jx� f� �

Z
p� x�  f j�� �� x� f �p��� �� x� f jx� f�d�d�dxdf 	 �����

However� remember that the goal of this analysis is to use the training data �x� f� to

predict facet locations  x in a new image  Q from the class� The distribution ����� does

not condition on that new image� and is therefore not quite the desired distribution�

Section ��� will show that a reasonable predictive distribution on locations in the

new image can be de�ned based on ������

��� Template De�nition

The model class allows for general template speci�cation� namely unknown � and�or

unknown �� If both � and � are unknown� and facet labels are de�ned explicitly

�not using an atlas image�� then every facet then can be called a landmark and a

morphometric analysis ensues similar to those outlined in Bookstein ������� Dryden

and Mardia ������� Dryden ������� and Lele and Cole ������� In this case� along

with seeking posterior distributions on the model scale parameters x and f � posterior

distributions on � and � can also be determined to describe average facet locations

and feature values in the class�

However� in the image understanding applications such as image registration and

segmentation with which this paper is concerned� a large number of facets is required

to adequately probe the structures of the images in the class� In these cases� the

length of the facet vector might approach the number of pixels in the image� and

it becomes impossible to explicitly label all the facets with anatomically meaningful

labels� Analysis can go forward if an atlas image from the class is used to implicitly

apply facet labels� Facets are simply arrayed in some regular fashion �for example

a d
dimensional grid� in the atlas image and their implicit labels are extracted from

��



their locations in that image� The data �x� f� gathered from a human observer are

still locations and feature values in other images from the class� but in this case

the observer looks for structures similar to those found in the atlas image� In these

applications it is usually preferred to de�ne � to be the facet locations on the array

used in the atlas� and always condition on �� This is the approach taken in this

paper� The atlas image can be used to de�ne the template feature values� so that �i

is the atlas image evaluated at �i� Then� once data has been collected to estimate x

and f � the resulting predictive density on facet locations  x in a new image  Q �given

in section ���� predicts a mapping of the atlas image features into the new image�

This is the framework used in Chapters  and �� Otherwise� the atlas image could

be used only as a �free� �rst datum where � is left to be estimated�

When using an atlas image� one must of course be prepared for missing data�

since there is usually an overwhelming number of facets for an observer to identify�

This is discussed in section ����

Note that the layout of facets in the atlas image is completely arbitrary� Ap


plications in this paper indicate that a grid should be used� however other schemes

have been investigated� See� for instance� McCulloch et al� ������ and Laading et al�

�������

��� Data Model in this Paper

In this section� a de�nition is given of the data model p�xj� fjj�� �� � used throughout

this paper� Under independent sampling of facet properties �xj� fj�� the model on

J samples is
QJ

j�p p�xj� fjj�� �� �� As mentioned in section ����  is separated into

�x� f � � �!x�!f�� where capital !x and !f are used to denote covariance matrices

de�ning the variability of the vector xj around � and fj around �� respectively� The

�



full likelihood for J samples is therefore

p�xj� fjj�� �� � �
JY

j��

p�xjj��!x�p�fjjxj� ��!f�	

In section ���� an attractive distribution for p�xjj��!x� is derived and in section

���� several useful feature distributions are discussed�

����� A Deformation Model

The deformation model derived in this section is meant for the situation in which

an atlas image is used to de�ne the template feature values � given a �xed template

orientation �� The application to keep in mind is image registration� A dense group of

facets is de�ned in the template image and the model given in this section quanti�es

reasonable deformations within that group of facets in new images from the class�

The set of template locations � is �xed to lie on a d
dimensional grid in the d


dimensional atlas� and the deformation model is p�xjj��!x� � N���!x � ��P ����

where N��� �� denotes the multivariate normal distribution� Throughout the following

derivation� the subscript j denoting image will be ignored�

The goal is to derive a normal distribution whose covariance matrix !x � ��P ���

exhibits desirable deformation properties� For example� facets close together should

be more highly correlated than those farther apart� Furthermore� the correlation

structure should be isotropic and homogeneous� meaning that the correlation between

two facets should be a function of the distance between them� but not have any higher

dependence on their absolute locations� Another desirable property that will become

apparent in subsequent chapters is the model�s ability to conform to a hierarchical

maximization scheme� Essentially� for this to be true� small groups of contiguous

facets should have some kind of common representation in the model� Finally� it

would be very useful to be able to derive the covariance matrix analytically and

��



therefore be able to produce exact samples from the model�

Many of these properties are implemented in the model de�ned in this section� A

hierarchical normal distribution is developed that exhibits nearly isotropic� homoge


neous covariance structure whose covariance matrix is derivable analytically and in

which exact sampling is easily implemented� The hierarchical nature of the model

facilitates the very successful hierarchical density maximization method discussed in

Chapter ��

The model is derived �rst in a one
dimension image for simplicity� �In this case�

�i is a scalar and the vector � is simply evenly spaced points�� Higher dimensional

analogues are easily derived from the one
dimensional case and are discussed at the

end of this section�

To derive the hierarchical normal distribution� the vector x is augmented to con


tain both observable and latent facets� The latent facets are simply placeholders in

a graph structure on which the hierarchical normal distribution is placed� Figure ���

shows a graphical representation of the random variables used in this model� Ob


servable facets are located on the bottom level of the graph and the remainder are

latent�

Facet locations are now written x � �x�� 			� xL� for L levels in the graph� so that

xL is the vector of observable facet locations� The mean of the normal distribution�

�� is augmented similarly� � � ���� 			� �L�� Latent facet means ���� 	 	 	 � �L��� are

organized on grids similar to the observable facet means� however these grids become

half as dense and half as numerous each level up in the hierarchy� The bottom level

must have an even number of facets and the graph is terminated at the top with a

single facet�

The random variable at each node in the graph is the one
dimensional location xl�i

of facet i on level l� The conditional independence structure in the model is also given

��
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Figure ���� The conditional independence structure de�ned in the model equation
������ In the �gure� xl�i denotes the location of facet i on level l� In the derivation of
equation ������ cyclic boundary conditions are used which imply connections between�
for example� x��� and x��� which are not shown in the �gure�

��



in Figure ���� The lack of an arc connecting two nodes implies conditional indepen


dence between the two nodes given the rest of the nodes in the graph� Throughout

the graph� parent facets are connected to the four children one level down whose

means �l�i are closest to it�

The random vector x � �x�� 			� xL� is distributed according to a hierarchical model

p�x�j�� � N���� ��c��
���

p�x�jx�� �� � N��� � A��x� � ���� ��c��
��I�

p�x�jx�� �� � N��� � A��x� � ���� ��c��
��I�

���

p�xLjxL��� �� � N��L � AL�xL�� � �L���� ��cL�
��I�

�����

where conditioning on � and � is suppressed� In equation ������ �c�� 	 	 	 � cL� are scalar

level weights �discussed below�� I is the identity matrix� and Al is a �l����l�� design

matrix de�ning the connections in the graph� The �rst three design matrices are

listed here for example�

A� �

�
w� � w�

w� � w�

�
�

A� �

	


�
w� w�

w� w�

w� w�

w� w�

�
� �

A� �

	










�

w� � � w�

w� w� � �
w� w� � �
� w� w� �
� w� w� �
� � w� w�

� � w� w�

w� � � w�

�
�
�
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where w� and w� are connection weights� These weights are constrained to be between

� and � and to sum to unity so that the conditional deviation on a facet�s location from

its template location in ����� is equal to a weighted average of its parents� deviations�

The weight w connecting facet ���l�i with facet ���l���j is de�ned in this paper to be

inversely proportional to j�l�i � �l���jj however other choices could be used to model

di�erent facet correlation structures� Note that for analytical convenience� cyclical

boundary conditions have been used at the edges� In practice the edge facets could be

connected only to their closest parents� however marginal variances and covariances

involving edge facets will be altered relative to facets on the interior of the graph�

The level weights �c�� 	 	 	 � cL� can be chosen to ensure that the marginal variances

of all facet locations xl�i are approximately equal� This property is very desirable since

the model is then scalable� ie� marginal variances on the observable facets are always

similar no matter how many levels of latent facets are used� Using this fact� the size

of the graph can be determined by practical considerations such as the desired facet

resolution and computational facilities�

To derive appropriate level weights ensuring that facet marginal variances are

equal� the marginal covariance matrix on facet locations on one level is derived� The

following simple identity �Gelman et al�� ����� is used to derive this single level

marginal covariance matrix� If vectors U and V are both multivariate normal such

that

U jV 	 N�AV�!U jV �

V 	 N��V �!V �

then the joint density on the vector �U V �� is�
U
V

�
	 N

��
A�V
�V

�
�

�
A!VA

� � !U jV !U jV

!�
U jV !V

��
	 �����

Due to the hierarchical form of the normal distribution ������ the marginal covari


ance matrix for facet locations on level l can be determined using the identity �����

��



recursively�

!l � Al!l��A
�
l � ��cl�

��I

� Al

�
Al��!l��A

�
l�� � ��cl���

��I
�
A�
l � ��cl�

��I

� AlAl��!l��A
�
l��A

�
l � ��cl���

��AlA
�
l � ��cl�

��I

���

� ��c��
���AlAl�� � � �A���A

�
� � � �A

�
l��� � � � �� ��cl�

��I

� ���

�
l��X
j��

c��j

�
i�lY
j��

Ai

��
lY

i�j��

A�
i

�
� c��l I

�
	

����

The notation
Qi�l

j��Ai in the last row represents the matrix product AlAl�� � � �Aj���

Setting w� � 	�� and w� � 	�� �according to the template facet spacing�� the

marginal variance on a facet location can be derived as a function of the level weights

�c�� 	 	 	 � cL�� For example� the marginal variance on facet ������ in �gure ��� is

����c��� � �	���c��� � c��� �	

The corresponding marginal variances for facets ������ and �����	 are

����c��� � �	���c��� � �	���c��� � c��� �� and

����c��� � �	���c��� � �	���c��� � �	���c��� � c��� ��

respectively� To ensure that facet marginal variances are approximately equal across

levels in the graph� the above three expressions are equated to generate the proper

relationship among the level weights� The resulting relationship�

c� � �	��c�� c� � 	��c�� and c� � �	��c�� �����

ensures that all facet marginal variances are approximately equal to ����c��� � c��� ��

Variances on other facets on the same level in the graph are very close to the val


ues given above� For example� under the constraint ������ level �ve facet marginal

variances are within approximately ��c��
������

��



This small calculation for a �ve level graph can be easily extended to larger graphs

by using equation ���� to derive the higher level marginal covariance matrices�

Higher dimensional models are constructed analogously to the one
dimensional

case� The template mean location vector � is now placed on a d
dimensional grid�

and the random variables on the graph in Figure ��� are d
dimensional locations�

Deformations in all dimensions are modeled equivalently so that the marginal co


variance matrix on each facet�s d
dimensional location xl�i is proportional to the

identity matrix Id� The vector x is written as the facet�s d
dimensional locations

strung together� so that for a �
level graph in �
dimensions� x would have length

�� ��� � �� � �� � � � �� � ���� The covariance matrix has a similarly increased

size�

Parent�child connections are set up analogously to the one
dimensional case� For

example� in two dimensions� each parent facet is connected to the �  � �� nearest

facets on the next level down� Figure ��� shows a �ve
level two
dimensional graph

viewed from the top� The sixteen children of one level � facet and of one level  facet

are outlined� In three dimensions each parent has � �  � � children�

In two
dimensions� the weight vector w has length � in �
dimensions it has length

�� and its elements are again set inversely proportional to the Euclidean distance

between parent and child mean locations� For example� under the grid geometry

shown in Figure ���� each facet has one close parent� two medium distance parents�

and one far parent�

The approximate marginal variance on a facet location in any direction can be

calculated as in the one
dimensional case using equation ����� Furthermore� the

relationship among level weights �c�� 	 	 	 � cL� similar to ����� can be derived to ensure

approximately equal marginal variances on all facets in the graph�

��



Figure ���� A two dimensional facet graph with �ve levels� The levels from top
to bottom are represented by� blue circle� green plus� yellow diamond� red square�
and black circle� Two sets of children are outlined on two levels below their circled
parents�

����� Feature Models

In this section the feature model p�fjjxj� �j� f� on facets in one image j is discussed�

For clarity the subscript j is dropped in the following discussion and the distribution

is written simply p�f jx� �� f�� Remember that only the bottom level of facets in

the hierarchical normal model is assumed to be observable� so the vector of features

discussed here is only as long as the number of facets on the bottom level�

The feature model describes our beliefs about the appearance of facets found in the

image class� where appearance is quanti�ed by the notion of a feature function� There

has been much work on deriving such functions to be useful in di�erent applications�

See� for example� Studholme et al� �������

For the purposes of this paper� a feature function fQ�x� is a function on d


dimensional space� fQ�x� � R
d � Rn� The subscript Q indicates that its functional

form depends on an image Q � Rd � R�� Also note that the range of fQ indicates

��



that it can be a vector
valued function in Rn�

The feature function is used to measure an image Q near the location x in such

a way that the measurement is comparable with the template feature value �� To

be comparable� � must have the same dimension as fQ�x�� namely � � Rn� A few

examples will illuminate the meaning of the feature function�

The canonical feature function� f �Q�x� � R
d � R�� is the image intensity at x�

f �Q�x� � Q�x�	 �����

In this case each template feature value �i is one
dimensional and� under an appro


priate feature distribution in the class could be thought of as the mean intensity value

of the observed facet features fi�

A useful extension of ����� is the function f �Q�x� � R
d � Rn� whose vector value

is the image intensity at several locations �z�� 	 	 	 � zn� in a small region centered at x

�ie� �
n

P
zi � x� and �xed with respect to x�

f �Q�x� � �Q�z��� 	 	 	 � Q�zn��	 �����

A second vector
valued feature function� f �Q�x� � R
d � Rd� can be de�ned as the set

of �rst spatial derivatives of Q at x�

f �Q�x� � �
�

�u�
Q�x�� 	 	 	 �

�

�ud
Q�x�� �����

where x � �u�� 	 	 	 � ud�� Numerous extensions and combinations of this short list of

feature functions might be found useful in application�

The feature distribution p�f jx� �� f� models the variability of each facet�s possible

feature value fi around the mean feature �i� In the following exposition� several

feature distributions are de�ned that show promise in application� In Chapters 

and �� two of these distributions are used with image data� In all but the last of

the following examples� variability is modeled using the normal distribution for its

��



parametric convenience� so that f is a covariance matrix !f � but more robust versions

of these distributions could be entertained� One non
standard distribution has been

found useful in some applications� and is described last in this section�

Using the �rst feature function f �Q�x�� a normal distribution can be de�ned which

captures the notion that� when an observer searches for a facet location in a new

image� they look for intensities in the image that are close to a mean intensity for

the facet� For every facet i� its intensity is normally distributed with mean �i and

variance ������ If all facets are treated independently� then the feature distribution

on the vector of facet features f has the form

p�f jx� �� � ������p�� exp

�
�
�

�

X
i

�fi � �i�
�

�
	 �����

However� it may be reasonable to assume that nearby facets have similar feature

values� This can be modeled by generalizing !f through a spatial normal model

as investigated by Cressie ������� For instance� in the �avor of an homogeneous

Gaussian process� !f could be parameterized such that the covariance between fi

and fk is determined by �xi � xk��

p�f j��!f�x�� � �����p��j!f �x�j
����exp

�
�
�

�
�f � ���!f �x�

���f � ��

�
	 ������

Using this feature density� the joint data model p�x� f j�� �� � can be written down�

although it has a non
standard form since !f is a function of x� A simpli�cation of

this model would parameterize !f in terms of the template locations � rather than

x� This would ease inference on !f and under small deformations would yield similar

results as the model in �������

Using the second feature function f �Q�x�� equation ������ one can model the notion

that perhaps an observer locates features by matching intensities in a small region

around the candidate location x to a template mean intensity pro�le represented by

�



�� If an independent normal distribution is assumed on the n
dimensional feature

vector around each facet� then the feature density on a whole set of features vectors

f � ��f���� 	 	 	 � �f��n� 	 	 	 � �fp��� 	 	 	 � �fp�n�

is

p�f jx� �� �� � ������np�� exp

�
�
�

�

pX
i��

nX
k��

��fi�k � ��i�k�
�

�
	 ������

The same kind of vector
valued feature function can be used to incorporate the

notion that an observer locates features by matching intensity pro�les as above� but

ignores the brightness or contrast of the pro�le� In this case the observer searches

not for absolute intensities� but rather patterns in intensity� For example� one facet

may always be found at a peak in intensity but the magnitude of that peak may not

be important� Using the standardized feature vectors �fi�
� and ��i�

�� where

�fi�
�
k �

�fi�k �
�
n

P
k�fi�kq

�
n

P
k�fi�

�
k � �

P
k�fi�k�

�
and ��i�

�
k �

��i�k �
�
n

P
k��i�kq

�
n

P
k��i�

�
k � �

P
k��i�k�

�
�

������

a density can be de�ned that is invariant to brightness and contrast� Under an

independent normal distribution� this has the form

p�f jx� �� �� � ������np�� exp

�
�
�

�

pX
i��

nX
k��

��fi�
�
k � ��i�

�
k�

�

�
������

Note that this feature model is indeterminate �and therefore improper� on the random

variable fi� However� under appropriate prior the posterior on � is proper given data

�x� f��

A �nal vector feature density is based on a standardized regression performed

on the feature vector ��fi��� 	 	 	 � �fi�n� using the mean vector ���i��� 	 	 	 � ��i�n� as a

covariate� This feature density will be invariant not only to brightness and contrast�

��



but also to the linear trend relationship between fi and �i� For each facet i� the linear

regression can be represented in the form

�fi�
�
k � ����i � ����i��i�

�
k � ��i�k �����

where ��i�k 	 N��� ����� The amount of linear trend invariance in the model can

be adjusted by a prior on the coe	cients ����i and ����i� after which the joint on

�fi� ����i� ����i� could be marginalized over these coe	cients� Or� a simple solution to

allow complete linear trend invariance is to set the coe	cients to their least squares

estimates and calculate the resulting distribution on �fi�� For each facet i� the re


sulting feature density is

p�fij�i� xi� �� � exp
�
�
n�

�
��� f �i

���i�
�
i
�f �i �

�
� ������

and an independent density over all facets is a product of these distributions� The

result of this heuristic plug
in method is a non
standard density for which posterior

inference on � is di	cult� but for a given � it has been found to be very e�ective in

some registration applications� The cardiac SPECT application in Chapter � uses

this density with great success�

��� Posterior and Predictive Distributions

Because of the simple normal forms of the shape and feature models given in section

��� under appropriate priors� posterior distributions on the hyperparameters �� �� �

and � are quite straightforward� Similarly posterior predictive distributions seem to

be as familiar� however the actual predictive distribution useful in application is more

subtle and interesting� and will be discussed near the end of this section�

A full exposition of all possible posterior and predictive densities for the normal

model class is not given here� see for example Gelman et al� ������� Instead� only

those distributions which are used in the later applications of Chapters  and � are

discussed�

��



For the registration applications in this paper the template facet location vector

� and feature vector � are always assumed known� A non
informative prior is used

on � and � � p��� �� � ������� In the following discussion� the shape distribution

p�xj�� �� considered is the model de�ned in section ���� and the feature model is

always assumed to be the intensity distribution ������

Data is in the form of manual observations of facet locations and their associated

feature values �x� f� in J images from the class� given their locations and features

��� �� in an atlas image� The posterior distributions discussed in this section assume

that every facet has been identi�ed manually so that there is no missing data� however

extension to the missing data case is relatively straightforward and is discussed in

section ����

The following discussion only deals with the observable facets on the bottom level

of the facet graph� so the level indicator is dropped� i�e� xL�i is written xi and the

associated feature value is written fi�

First� given manual observations of facet locations and features in J images�

f�x�� f��� 	 	 	 � �xJ � fJ�g � �x� f�� and using the intensity feature function ������ the

posterior distribution on the hyperparameters � and � is the product of two indepen


dent Gamma distributions� p��� � jx� f� �� �� � p��jx� ��p�� jf� ��� where

p��jx� �� � Gamma

�
dpJ

�
�
�

�

JX
j��

�xj � ���P �xj � ��

�
������

and

p�� jf� �� � Gamma

�
pJ

�
�
�

�

JX
j��

�fj � ����fj � ��

�
	 ������

The sums in ������ and ������ are taken over facet identi�cations in the images

��� 	 	 	 � J�� xj and � are vectors of length d � p� and fj and � have length p� The

precision matrix P is de�ned as ��!L�
�� where !L is given in equation ����� The

��



calculation of the second parameter in the posterior Gamma distribution on � is

discussed in section ����

The joint posterior predictive distribution for facet locations  x and feature values

 f in the image class is also a product of two independent distributions� p� x�  f jx� f� �

p� xj�� x�p�  f j�� f�� The posterior predictive distribution on  x is written

p� xj�� x� � MV tdpJ

�
��

�

pJ

�
��� "x��P ��� "x� �

JX
j��

�xj � "x��P �xj � "x�

��
P

�
�

������

where MVtn�y� Z� is the multivariate t distribution on n degrees of freedom with

center y and scale matrix Z� and "x is the arithmetic mean vector "x �
PJ

j�� xj�

Under the intensity feature density ������ the posterior predictive distribution on  f

is a product of scalar t
distributions�

p�  f j�� f� �
Y
i

tpJ

�
�i�

�

pJ

X
j

X
i

�fj�i � �i�
�

�
	 ������

The joint posterior predictive distribution p� x�  f jx� f� �� �� � p� xjx� ��p�  f jf� ��

on the facet properties � x�  f� characterizes these properties in the image class as a

whole� For instance� one could sample a posterior predicted set of facet properties and

display them as  f vs�  x to give the illusion of a predicted image in the image class�

It is only an illusion since this is not a realization of any image in the terminology

of section ��� because no function on Rd has been sampled� However� with su	cient

facets an image function could be approximated by� for instance� interpolation of  f

between the facet locations  xi�

To automate the task of feature identi�cation in a new image Q� for example to

segment that new image� a di�erent sort of predictive distribution is required� This

distribution must incorporate the variability seen in the training facet properties

��



�x� f�� while also paying heed to the fact that the predicted facet property pairs

� x�  f� must lie in the image Q�

In the formulation used so far on facet property pairs �x� f�� this constitutes a

constraint on every facet�s property pair� since the pair must be allowable in the

image Q� Namely� the constraint can be written as

fi � fQ�xi� 
i� ������

where fQ�xi� is the feature function de�ned in section ����� For example� using

the vector feature function ������ for each facet i� the vector fi must be the set

of intensities in the image at the locations ��zi��� 	 	 	 � �zi�n� centered at xi� The

constraint ������ becomes

�fi�� � Q��zi���� 	 	 	 � �fi�n � Q��zi�n� 
i	

However� under the joint density on �x� f�� the event in ������ has zero probability� To

understand this� refer to Figure ��� where a hypothetical joint density is displayed on

a �scalar� facet location x and �scalar� feature f � �This could be considered a posterior

predictive density or it could be just the data model given the hyperparameters�� The

image is represented by the function Q�x� on the graph and the constraint on �x� f�

implied by this image is that the pair �x� f� must lie on this line� This is clearly a

zero probability event under any of the joint models proposed thus far�

Therefore� to properly de�ne a predictive density on facet locations in a new

image� the image constraint is rede�ned so that the event it represents has non
zero

probability and then a family of distributions is de�ned whose limit is the desired

predictive density on facet locations� A formal discussion is given in Appendix A�

but essentially the image constraint ������ is re
written

jfi � fQ�xi�j � � 
i� ������

for the scalar feature case� or

j�fi�k � �fQ�xi��kj � � 
i� k ������

��
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Figure ���� The joint density on the properties �x� f� of one facet and the constraint
enforced by the one
dimensional image Q�x� from the class� The contours in the top
panel are iso
curves of p�x� f�� The bottom panel shows the shape of the predictive
distribution p�xjE�� on the facet location in the image Q�x� implied by the constraint
E� applied to the joint in the top panel� See the text for the de�nition of E��

�



for a vector feature function� All the elements of the feature vector fi must be within

� of the feature function on the image evaluated at xi� If the �non
zero probability�

event in equation ������ is written E�� then the resulting �conditional� distribution

on x given the event E� is written p�xjE�� ��� Let E� in the limit as �� � be written

E�� The limiting predictive distribution on facet locations in a new image from the

class is shown in Appendix A to be

p�xjE�� �� � p�x� ffi � fQ�xi� 
igj��	 ������

The distribution on x is proportional to the joint distribution on �x� f� in which each

random variable fi is set to the value of the feature function on the image Q at the

location xi� The density ������ can represent the constrained predictive density� in

which case ��� represents the training data �x� f�� or it can represent a constrained

data model� in which case ��� represents the parameters ��� ��� This result holds for

scalar and vector valued feature functions by employing the constraints ������ and

������� respectively�

Since the conditional predictive distribution ������ on facet locations in a new

image is known up to a normalizing constant� it can be maximized for point estimates

and sampled for variability� These issues are developed in Chapter ��

��	 Missing Data Considerations

When an atlas image is used to implicitly de�ne facet labels �see section ����� for the

purpose of image registration� it is generally necessary to use many facets �on the

order of the number of pixels in the image� to perform an adequate registration� Since

it is impossible to have a human observer identify such a large number of facets in

several images from the class� any posterior inference on the scale parameters x and

f must be based on missing data� To calibrate the model� it is perhaps reasonable

to gather from an observer locations of a subset of the facets�

�



Due to the normal form of the data model� under some conditions the appropriate

posterior can be derived semi
analytically� First� in the registration problem the task

involves always conditioning on the locations of facets in an atlas image where the

atlas implicitly de�nes the template feature values � from the �xed template locations

�� Given data �x� f�� the relevant posterior on the scale parameters is therefore

p�x� f jx� f� �� �� � p�x� f j�� �� x� f�p�x� f �	 �����

The last factor does not condition on ��� �� since there is no dependence on these in

the prior on �x� f ��

In this section� the data considered is one observer viewing one image from the

class� Generalizing these ideas to multiple image observations is straightforward if

the observations in the multiple images are assumed independent� as is the case in

section ���� The j
subscript is therefore dropped in this section and the data in one

image is written �x� f��

The data model is again assumed to be

p�f jx� �� �� � N��� ���Ip�

p�xj�� �� � N��� ��P �����
������

where the shape model is written in terms of its precision matrix P � ��!L�
��� For

this missing data analysis� let the complete data �x� f� be split by the index i into

the observed part f�xi� fi�� i � Dg� and the unobserved part f�xi� fi�� i �� Dg� Let

the observed data be written �xD� fD� and the unobserved data be �x�D� f�D�� Then

the desired missing data posterior is

p��� � jxD� fD� �� �� � p�xD� fDj�� �� �� ��p��� �� ������

where the data model can be written

p�xD� fDj�� �� �� �� � p�fDjxD� �� ��p�xDj�� ��	 ������

�



Under the data model ������� the �rst factor is straightforward�

p�fDjxD� �� �� � N��D� �
��Iq�	

for q observed data points� The mean �D is the subset f�i� i � Dg� of the complete

data mean �� This is a product of independent normal distributions on fi over

the subset of indices i � D� Under non
informative prior p��� � ��� the resulting

posterior on � is

p�� jfD� �� � Gamma

�
q

�
�
q

�

X
i�D

�fi � �i�
�

�
	

To derive the second factor in ������� note that the factor can be re
written

p�xDj�� �
p�xD� x�Dj��

p�x�DjxD� ��
������

where ��� � ��� ��� The numerator and denominator in this expression are both

normal distributions� For illustration� the numerator and denominator are given

explicitly

p�xD� x�Dj�� �� � ����dp���dp��jP j���exp

�
�
�

�

�
xD � �D
x�D � ��D

��
P

�
xD � �D
x�D � ��D

��

and

p�x�DjxD� �� �� � ����d
p�q����d
p�q���jP�DjDj
���

� exp
�
�
�

�
�x�D � E�x�DjxD��

� P�DjD �x�D � E�x�DjxD��
�

where P�DjD is the appropriate �p � q� � �p � q� conditional precision matrix� The

expression ������ is valid for any x�D and a convenient choice is to set x�D equal to

its conditional expectation E�x�DjxD�� The denominator then becomes �keeping the

dependence on � and xD only�

p �x�D � E�x�DjxD�jxD� �� � �d
p�q����

�



and the numerator is

p�xD�x�D � E�x�DjxD�j��

� �dp��exp

�
�
�

�

�
xD � �D

E�x�DjxD�� ��D

��
P

�
xD � �D

E�x�DjxD�� ��D

��
	

Since E�x�DjxD� is not a function of �� under non
informative prior p��� � ��� the

posterior on � given only the observed data xD is

p��jxD� �� � Gamma

�
dq

�
�
�

�

�
xD � �D

E�x�DjxD�� ��D

��
P

�
xD � �D

E�x�DjxD�� ��D

��
	

The only di	culty is setting x�D to the conditional expectation E�x�DjxD�� To

evaluate this posterior� this can be done numerically using the ICM method �Besag�

����� by setting xD to the observed data and iterating over the full conditional

distributions on all the unobserved elements x�D� This method is applied in Chapter

�

In the preceding discussion the data consisted of locations of facets and their asso


ciated feature values �xD� fD� in one image� When similar observations of these facets

are available in J images from the class� then the model equation ������ becomes

p��xD��� fD���� 	 	 	 � �xD�J � fD�J�j�� �� �� �� �
JY
j��

p�fD�jjxD�j� �� ��p�xD�jj�� ��	

The resulting missing data posteriors are

p�� jfD��� �� � Gamma

�
qJ

�
�

JX
j��

X
i�D

�fi�j � �i�
�

�

and

p��jxD��� �� � Gamma
�dqJ

�
�

�

�

JX
j��

�
xD�j � �D

E�x�D�jjxD�j�� ��D�j

��
P

�
xD�j � �D

E�x�D�jjxD�j�� ��D�j

��
	





Chapter �

Investigations of Distributions

��� Density Maximization

In this section a method is given for maximizing the constrained joint density ������

to produce a point estimate of facet locations x in a new image given their template

values � and � and the hyperparameters � and � � This point estimate of x is used in

chapters  and � as an estimated registration between two images and as a starting

point for MCMC sampling to demonstrate registration variability� The generated

point estimate would also be an e�ective starting point for sampling the constrained

posterior predictive density as long as a reasonable guess of the hyperparameters �

and � were available� In these registration applications � is always �xed and � is set

to the value of the atlas image evaluated at the locations ��

The density to be maximized is re
written as a function of x

p�xjE�� �� �� �� �� �
�

Z
exp

�
�
�

�
�x� ���P �x� ��

�
�

�

X
i

F �Q�� �L�i� Q� xL�i�

� �����

where Z is a normalizing constant independent of x� the summation is taken over

�



bottom level facets� and the function F �Q�� �L�i� Q� xL�i� �for atlas image Q� and new

image Q� depends on the feature density used in the joint model� For example� in

the �rst feature density given in equation ������ this function would be

F �Q�� �L�i� Q�� xL�i� � �Q�xL�i��Q���L�i��
� 	

The form of the objective function ����� indicates that the only feature densities

considered here are those which are products of marginal distributions over all facets

on the bottom level� The spatial feature models mentioned in section ���� are not

discussed further here�

For most of this section� the dependence of F on the �xed quantities Q�� �L�i� and

Q� will be suppressed� writing it as simply F �xL�i��

Of course� for � � �� such that no image information is incorporated� the density

����� has unique maximum at x � �� The di	culty therefore comes from the sum of

feature density functions
P

i F �xL�i�� Each term in this sum is a non
linear function

of xL�i which is highly multi
modal� The multi
modality of F can be reduced by an

appropriate choice of feature density� however the problem is always present when

applying the model in images of typical complexity�

The second concern in this optimization problem is the dimensionality of the

objective function� For three
dimensional image registration applications like those

explored in chapters  and �� the number of facets necessary approaches the number

of pixels in the image� typically between ����� and �������� This implies that the

number of random variables in the facet graph is on the order of ������ to ����������

Therefore� extreme care must be taken to derive e	cient methods for maximizing

this high
dimensional distribution�

Heuristically� an attractive course of action to maximize this high
dimensional

and multi
modal distribution is to work from large scale features to small� When

registering two images� certain large scale features are usually very similar in both

�



images and their locations can be found very easily� Then� once these large scale

features are registered� it is natural to condition on these locations to �nd smaller

scale features� As the scale is reduced the images become increasingly dissimilar

and some small scale features may not be present in both images� but a hierarchical

methodology should ensure robustness to these small scale variations�

The hierarchical structure of the shape model p�xj�� �� lends itself well to this

type of top
down conditioning� Essentially� small models containing only a set of top

levels of the facet graph are maximized �rst� then the next larger model containing

one more level in the graph is maximized conditional on the estimate of the smaller

model�s mode� Levels are added one by one and these incrementally larger models

are maximized conditional on the mode estimated in the previous step� For each sub


model containing� for instance� facets on levels �� 	 	 	 � l� the bottom level l is treated

as the image level for the sub
model and the original sum of log feature density

contributions�
P

i F �xL�i� in ������ is approximated by a smaller sum
P

i Fl�xl�i� taken

over facets on level l� The shape component in the sub
model is the marginal normal

distribution on levels �� 	 	 	 � l given in equation ������ This sub
model approach

signi�cantly reduces the dimensionality of each maximization step and implements

the pragmatic top
down approach�

Maximization proceeds as follows� First the d
dimensional objective function for

the sub
model containing only the single top level facet is maximized�

p�x���j����� ����� �� �� � exp
�
�
�c�
�

�x��� � �����
��x��� � ������

�

�
F��x����

�
	 �����

The function F��x���� used for this one level model is analogous to the original model�s

F �xL�i� but is modi�ed to reduce the sub
model�s multi
modality� The issue of for


mulating e�ective Fl functions is discussed below�

The Nelder
Mead simplex method �Nelder and Mead� ����� is e�ective for nu


merically maximizing functions like eq� ����� since it does not require the calculation

�



of derivatives with respect to x and is somewhat robust to a multi
modal objective

function� This method is used for all the required numerical maximizations in this

section�

Given the estimated maximum density location x��� from ����� the second largest

sub
model which includes levels � and � can be maximized� First� the conditional

distribution of level � facets given the top level facet is maximized numerically�

p�x�jx�� �� � exp
�
�
�c�
�

�x� � �� � A��x� � ����
��x� � �� � A��x� � ����

�
�

�

X
i

F��x��i�
�
�

�����

where ��� � ��� �� �� ��� The length of x� is d�
d� and the �xed d�d�d design matrix A�

is de�ned in section ����� Note that this is a product of independent �d
dimensional�

distributions on the elements x��i of x� and therefore can be maximized by sequentially

maximizing the marginal distributions on x��i� At this point� ICM iterations can be

used to maximize the joint density on �x�� x��� The conditional density on x� given

x� is normal and can be maximized analytically� The form of this conditional and

all other full
conditionals needed for ICM steps in the larger sub
models are given in

section ����

This procedure of maximizing sub
models on the top l levels continues as l is

increased� For each sub
model� �rst the facets on the bottom level l are numerically

maximized conditional on the results of the last sub
model� then all facets above

this level can be analytically set to their full conditional means inside a set of ICM

cycles� When l � L all facets in the true model are included in the maximization

step and� under the condition that FL�xL�i� equals the true model�s F �xL�i�� the true

density� eq� ������ is evaluated in this �nal step� The sub
model procedure described

thus far can be viewed as a method for generating a good guess of the mode of this

distribution before starting the ICM cycles on its implied full conditionals�

�



The sub
model feature density functions F��x��� 	 	 	 � FL�xL� are now discussed�

First� as l� L� these functions Fl�xl�i� should approach the feature density function

in the true model so that FL � F � One obvious way of doing this is to use the

same functional form in each sub
model� In this case� maximizing each sub
model

represents predicting the locations of a smaller set of facets in the image Q� �If using

one of the vector feature function densities ����� or ����� then the size of the region

surrounding each bottom
level facet in a particular sub
model� represented by the

vector zi in the notation of section ����� could be scaled appropriately to account

for the larger spacing between bottom level facets in the sub
model��

However� setting all the Fl functions equal has one considerable drawback� the

multi
modality of each function Fl�xl�i� is not reduced and therefore the joint density

on �x�� 	 	 	 � xl� under the sub
model on these levels has roughly as many modes �per

dimension� as does the true joint density on the whole graph �x�� 	 	 	 � xL��

The well
investigated tools of multi
scale image analysis �Lindeberg� ����� can

help reduce the multi
modality problem� In multi
scale image analysis� the

d
dimensional image is embedded in a �d � ��
dimensional �scale
space� where the

added scale dimension is denoted �� The scale
space of the d
dimensional image Q is

created by calculating the family of convolutions of the image with a d
dimensional

zero
mean spherical Gaussian kernel G of standard deviation ��

Q��x� �

Z
Rd

Q�x�G�
� x� ��d
� ����

and the family of generated images is indexed by �� There are several reasons for

using a Gaussian kernel to generate this family� see for instance Lindeberg �������

but the most important reason for this application is that the number of modes in the

generated image Q��x� is a monotonically decreasing function of �� As � increases�

the amount of local information contained in Q� decreases�

Scale
space therefore o�ers a promising method of de�ning the sub
model feature

�



density functions Fl�x�� Using the explicit notation de�ned at the beginning of the

section� let Fl�Q�� �l�i� Q� xl�i� � Fl�Q
�l
� � �l�i� Q

�l� xl�i�� where �� � �� � � � � � �L � ��

The bottom level feature density function is the original function de�ned in �����

and each sub
model feature function is a smoothed �less multi
modal� version of

the original� This set of functions is in keeping with the heuristic plan of top
down

maximization because estimating the mode in the smallest �highest
level� sub
models

represents locating large scale features in the image Q� and as larger and larger

sub
models are maximized they approach the true density ����� exactly at the Lth

sub
model�

The one remaining concern is the choice of ��� 	 	 	 � �L��� Collins et al� �����

approach a similar optimization problem from the perspective of spatially sampling

the image at di�erent resolutions� They point out that a Gaussian convolution is

essentially a low
pass spatial �lter with cut
o� frequency approximately equal to the

standard deviation of the kernel� Their methodology would suggest to use a scale

on level l equal to the atlas grid spacing on that level since this is approximately

the inverse of the Nyquist frequency of the spatial sampling for that level �Yaglom�

������ This choice of scales also seems to be reasonable in this paper�s model for the

following reason�

Consider that after a sub
model on levels ��� 	 	 	 � l� has been maximized� that the

rest of the facets in the true model on the levels between l � � and the bottom level

L are set to their conditional maxima under the shape model p�xl��� 	 	 	 � xLjxl� �� ���

This is a reasonable current guess for the maximum density locations of all the facets

in the graph under the true model� Next consider that higher order parent�child

connections are ignored� namely that all parent�child weights wi for i � � are set

to �� In this case the facet graph can be drawn as a tree and the maximum density

locations of the �d remaining children of any facet are completely de�ned by the

��



location of that one parent facet� �This would be a reasonable approximation to the

true density if w� were much larger than the higher
order weights��

Then the location of a facet on level l� the bottom level in the sub
model just

considered� a�ects a compact set of descendents on the bottom level L in the facet

graph� For instance in three dimensions� this set is cubic� centered at the location of

the level l facet� and has size �L�ls� �L�ls� �L�ls for a bottom level template grid

spacing s� If the higher order parent�child connections are not ignored then the set

of a�ected bottom level facets is larger� with facets near the edge of the cube being

less a�ected than those near the center� �This decreasing envelope of a�ection is

only true for decreasing parent�child weights as a function of parent�child template

distance� but this condition is always true in this paper��

Next� notice that the scale
space smoothing of the feature density functions

Fl�Q
�l
� � �l�i� Q

�l� xl�i� changes the two image inputs from the original images Q� and

Q by performing a weighted spatial average on each image� and the extent of the

non
negligible weights in the spatial average is de�ned by the standard deviation �l

of the Gaussian kernel� It is reasonable to roughly match the size of the scale
space

Gaussian kernel used on this level to the size of the region of a�ected bottom level

facets discussed in the last paragraph� This would suggest that �l � �L�ls� In prac


tice �L might be set to zero so that the bottom level of facets represents the original

image without any loss of information�

Remember that this set of semi
heuristic approximations to the true model �����

approaches and becomes the true model for the approximation on level L� This does

not guarantee that the method will converge to the global maximum of ������ but the

top
down approach has proven itself in practice to be quite robust to local maxima�

At every step during the top
down maximization the value of the true �unnor


malized� density ����� can be evaluated by plugging in the current estimated facet

��



locations� After the sub
model on levels ��� 	 	 	 � l� has been maximized a reasonable

estimate of the achievable unnormalized density� after the whole top
down procedure

is complete� can be calculated by analytically setting the facets on levels �l��� 	 	 	 � L�

to their conditional means under the shape model p�xj�� �� and calculating equation

����� for this graph con�guration�

��� Sampling Scheme

����� Joint Sampling of Facet Properties

Drawing a sample from the joint distribution on facet locations x and features f

is generally straightforward� Consider �rst drawing �x� f� from the data model

p�x� f j�� �� �� ��� Under both feature models used in this paper� ����� and �������

the data model is the product of two components p�xj�� ��p�f j�� �� that can be sam


pled separately for a full sample �x� f��

Conditional on � and � � the intensity feature model ����� is a product of normal

distributions over the bottom level facets with mean � and variance � � On the other

hand� the standardized regression feature model ������ is not a standard form that

would have to be sampled by Monte Carlo methods� It is also indeterminate on the

original feature values f and must therefore be constrained� for example by insisting

that the mean and variance of each facet�s feature vectors are � and �� respectively�

Since the shape model p�xj�� �� given in section ���� is a hierarchical normal

distribution� it is easily sampled using the method of composition� The top facet

is sampled from its marginal distribution� then the second level is drawn from its

conditional distribution given the top facet sample� and so forth� Equation �����

de�nes all the necessary conditional distributions� Each facet on a particular level

can be sampled independently since� conditional on the level above� the distribution

on all facet locations is a product of independent normals�

��



Figure ��� displays one sample of the �� � �� bottom level facets from a two


dimensional� � level graph under the shape model de�ned by equation ������ The

methods of section ���� were used to de�ne the level weights and parent�child con


nection weights� and the overall precision parameter � was manually set to discourage

facet overlap and facilitate viewing of the shape of the sample� One vertical line of

facets is shown in red to highlight the correlation between nearby facets�
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Figure ���� A sample from the prior on ����� �D facets �� level graph�

The posterior predictive joint density p� x�  f j�x� f�� after observing J samples

f�x�� f��� 	 	 	 � �xJ � fJ�g � �x� f� can be sampled using composition by �rst drawing

� and � from their posterior distributions ������ and ������ and then� conditional on

these parameters� drawing from the normal data model�

��



����� Constrained Predictive Density

When sampling facet locations in a new image from the class� conditional on either

the hyperparameters � and � or conditional on a set of manually identi�ed facet

locations and features from other images from the class� the predictive distribution is

only know up to a normalizing constant� See section ��� for a full discussion� However�

because of the form of the predictive distribution� full conditional distributions on all

facet locations� given the locations of their parents and children� are easily written

down�

Consider the constrained data model distribution given in equation ������ Since

the sum of feature functions is taken over only the bottom level of facets in the graph�

it is easily seen that the full conditional distributions on the locations of facets above

the bottom level in the graph are normal given their parents and children� However�

the full conditionals on the bottom level facet locations given their parents are non


standard due to the nonlinear function F �

One approach to sampling this density is to proceed facet by facet and sample

from each facet location�s d
dimensional full conditional distribution in the style of

Gibbs sampling �Geman and Geman� ����� To sample from the full conditional

distribution on bottom level facets� one must use a Monte Carlo technique due to

its non
standard form� The Metropolis algorithm with a spherical normal proposal

density has worked well in practice for these full conditionals� Analytical Gibbs

sampling can be used on locations of facets above the bottom level since these full

conditionals are known to be d
dimensional normals�

The full conditional mean on facet locations above the bottom level is

�cl�i � �l�i � ����
c

	
�X
k�Cl�i

cl��wi�k�xl���k � �l���k� �
X
k�Pl�i

clwi�k�xl���k � �l���k�

�
�
�����

�



where Cl�i and Pl�i are the sets of children and parents� respectively� of facet ���l�i and

wi�k is the parent�child connection weight between facets i and k� The full conditional

variance ����
c
is equal to

����
c
�

	
�X
k�Cl�i

cl��wi�k �
X
k�Pl�i

clwi�k

�
�
��

	 �����

If this facet
by
facet type of Gibbs sampling converges slowly due to excessive cor


relation between parent and child facets� then one can use the hierarchical structure

of the shape component to derive a more e	cient sampling algorithm� If the facets

are split into two groups� those on the bottom level and those on all the other upper

levels� then the full conditional distribution on the locations of all the facets in the

upper group given the lower group is known analytically and can be sampled exactly�

�This type of sampling does not improve the e	ciency of sampling on the bottom

level facets since these full conditionals are non
standard��� A Gibbs sampling scheme

can be employed which iterates between the full conditional on the bottom level facet

locations given the upper levels� and vice versa�

The joint distribution on all levels above the bottom conditional on the bottom

level can be factored in terms of its �backward� conditionals

p�x�� 	 	 	 � xL��jxL� �� � p�x�jx�� ��p�x�jx�� �� � � �p�xL��jxL� �� �����

where ��� � �� �� �� � � Each of these backwards conditionals are known analytically�

p�xljxl��� �� � p�xl��jxl� ��p�xlj���

where p�xl��jxl� �� is given in equation ����� and p�xlj�� is normal with mean �l and

covariance matrix given in equation ����� The resulting backward conditional dis


tribution is

p�xljxl��� �� � N��ljl���!ljl���

��



where the conditional covariance matrix is

!ljl�� � ��cl��A
�
l��Al�� � !��

l ���

and the conditional mean is

�ljl�� � !ljl��A
�
l���xl�� � �l����

where the design matrix Al is de�ned in section ����� The joint distribution on all

levels above the bottom can be sampled exactly using the method of composition on

these known backward conditionals� This result improves convergence of the Markov

chain to the true joint distribution in terms of the number of iterations required� but

each iteration is expensive to compute due to the matrix inversion required in the

backward conditional covariance matrix� In fact� for large facet graphs� the size of

this matrix could render this method infeasible�

Finally� to sample from the posterior predictive distribution on facet locations in

a new image given a set of manual facet identi�cations from images in the class� the

most straightforward course of action is to �rst sample � and � from their posterior

distributions and then� conditional on these draws� use one of the methods above to

sample from the constrained data distribution ������

��



Chapter �

Application� Neonatal Mouse Brain

Magnetic Resonance Microscopy

This chapter deals with a study being undertaken at the Duke University Medical

Center for in vivo Microscopy to quantify hippocampal shape and volume changes

in apoE
de�cient mice� A de�ciency in apolipoprotein E is a major risk factor for

Alzheimer�s disease� and the aim of the study is to determine if these mice display

the ��
��# reduction in hippocampal volume that has been noted in some human

Alzheimer�s patients� To quantify any hippocampal changes in these mice� the study

will follow several apoE
de�cient mice and an age matched control group of C��

black mice by taking regular MR scans throughout their lifetimes� Each scan will be

segmented to quantify morphological changes in the hippocampus�

The methods of this paper may be useful for quantifying the hippocampal shape

change by automatically segmenting the region in the control and apoE mice groups�

an attractive prospect because it is reproducible and not prone to the variability of

technician expertise� To demonstrate how the model can be used for segmentation�

two mice brains� one apoE and one control� were imaged and the facet model was

applied to register them� From this registration a manual hippocampal segmentation

performed on the apoE mouse could be transfered to the control mouse and tested
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for accuracy against a manual segmentation of the control mouse hippocampus�

For this in vitro experiment� the mice were perfused transcardially with ���#

�wt�vol� saline followed by �xative �bu�ered FORMA
SCENT �xative� ��# w�vol

formalin� PH ���
���� and the brains were removed from the skull and embedded in

fomblin �per�uoropoly ether� to keep them from dehydrating and to limit suscepti


bility e�ects at the surface� �Susceptibility artifacts in magnetic resonance imaging

have the appearance of washed out regions near interfaces of two materials with dif


ferent magnetic properties�� The cuvet holding the brain was oriented in a � cm

solenoid coil inside a Brucker CSI Magnetic Resonance Imaging �MRI� instrument

using shielded gradients capable of �� G�cm� The cuvet was registered physically

inside the instrument so that very little rotational misregistration between images

was encountered in the resulting images� Each T�� image was acquired in approxi


mately ��� hours with �ip angle ���� ���ms relaxation time� and �ms echo time� The

three
dimensional images consisted of ��� slices of ������� pixels� where each three


dimensional voxel had dimensions ����mm�����mm����mm� �The voxel anisotropy

must be incorporated into the model since facet locations are modeled in real space

rather than the arbitrarily sized image cube��

The manual and automatically generated hippocampus segmentations in this sec


tion are represented by an image of the same dimension as the original image� where

each pixel intensity represents whether or not the pixel belongs to the hippocampus�

To automatically generate a segmentation image of a new brain� the facet model

is applied to register the new image to a manually segmented atlas image� thereby

determining the locations in the new image of all the �hippocampus� facets� known

from the atlas segmentation image� The segmentation image for the new brain is

generated by simply de�ning that the pixels near each hippocampus facet belongs to

the hippocampus region� where the meaning of �near� will be de�ned in section ���
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The control mouse image was arbitrarily chosen as the atlas and facets locations

were predicted in the apoE mouse image� Image intensities were rescaled to match

the tenth and ninetieth quantiles of their empirical intensity distributions inside a

three
dimensional rectangle manually de�ned to cover most of the interior of the brain

in each image� Several choices of the rescaling rectangle were tested and it was noted

that the rescaling factors were insensitive to reasonable choices of this region� This

rescaling was done to facilitate the use of the intensity feature model� equation ������

which assumes that� after rescaling� homologous features have similar intensities in

both images� This simple feature model performed well in this application and was

computationally e	cient�

In this three
dimensional application the facet graph was set to have � levels for

a total of ��� facets� The template grid � was stretched in all three dimensions to

cover the hippocampus region more e�ectively� The resulting bottom level template

facet spacing was ���mm����mm����mm� The template feature values � were �xed

to be equal to the atlas image evaluated at the template locations�

The deformation model of section ���� was used and the associated level weights

were set using the methods of that section to ensure that all facets had equal marginal

variance under the shape model� The top level weight c� was set to a very low value

to ensure model insensitivity to translations of all facets as a group� since these

two images were translationally misregistered in all three dimensions� Parent�child

connection weights were set to be inversely proportional to the atlas distance from

parent to child and to sum to one over each set of parents�

In section �� the hyperparameter estimation methods of section ��� are high


lighted� To estimate these parameters� �fty randomly chosen facets were displayed

on the template image and their homologous points were manually located in the

new image�
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In sections �� and � the constrained data model density ������� given the esti


mated hyperparameters� is maximized and sampled using the methods of section ���

and ���� And �nally� in section �� segmentation images are predicted and the results

are compared with manual segmentations�

Throughout the discussion the control mouse image will be called the �atlas� and

the apoE mouse image the �new� image� Locations in these anatomical images will

be referred to by their geographical location� eg� N for the top of the image and E

for the right side� for the reader not comfortable with medical imaging terminology�

��� Parameter Estimation

To estimate the hyperparameters � and � � data was gathered in the form of manual

facet locations in the new image given their locations in the atlas image� Once the

template facet locations � were set to cover the hippocampus in the atlas image� �fty

facets were chosen at random from the bottom level of facet template means �� in

the � level graph� These facets were displayed individually on the atlas image �by

displaying the slice corresponding to the facet�s z index and highlighting the pixel

in that slice corresponding to the facet�s x� y template location� and an observer

manually located the homologous three
dimensional locations in the new image� The

observer used an image viewer with which he could chose an appropriate image slice

and locate any x� y pixel in that slice�

The intensity feature density ����� was used for this application� This density

assumes that facet intensities in the new image at their correct locations are nor


mally distributed with mean equal to the atlas image evaluated at the facet template

location� To check this normality assumption the sorted observed feature di�erences

�fi � �i� were plotted versus quantiles of the standard normal distribution� The top

panel of �gure �� shows the quantile
quantile plot for all �fty data points� There are
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two gross outliers at the bottom of the plot� and one possible outlier at the top� On

closer inspection of the facet placement for these outliers� it was noted that the top

facet was incorrectly placed by the observer in a region of high deviation in intensity

which resulted in the lack of �t to the model� The bottom two facets were in regions

of the atlas that had no homologous point in the new image� Both were near the base

of the brain where the images di�er widely due to the brain extraction procedure�

These results indicate that the ever present e�ect of the lack of homology between

two images could be taken account of by a more robust feature model� however for

this application these three outliers were simply discarded for parameter estimation�

The bottom panel of �gure �� displays the � non
outliers� These seem to follow

the normal model extremely well� and the resulting posterior distribution on � was

calculated to be p�� j�x� f�� �� �Gamma���	�� ��� ����� Under squared error loss the

Bayes estimate is the posterior mean $� � �	������

Figure �� displays results from the ICM procedure for estimating � outlined

in section ���� The three outliers seen in the estimation of � were also left out

for this estimation procedure� The q � � observed facet locations xD were �xed

and ICM cycles were used to set the rest of the facets in the graph x�D to their

conditional expectations E�x�DjxD� given the observed facet locations� The ver


tical axis in �gure �� is the square root of the renormalized log shape density�

log p�x � �xD� $Er�x�DjxD��j�� ��� for the current estimate of the conditional ex


pectation $Er�x�DjxD�� The log density has been renormalized before plotting since�

under the shape model� all facets have approximately the same marginal variance

and the log shape density can be renormalized to give an estimate of that marginal

variance� At iteration r of the ICM cycles� the estimated marginal variance is

$��r �
c��� � c���

q

�
xD � �D

$Er�x�DjxD�� ��D

��
P

�
xD � �D

$Er�x�DjxD�� ��D

�

where P is the joint precision matrix on all facets in the graph� de�ned implic
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Figure ���� Sorted feature di�erences fi � �i for �fty manually located facets� All
�fty data points are shown in the top panel and the three outliers are removed in
the bottom panel� The atlas and new images were rescaled as discussed in the text
before producing these plots�
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itly in equation ����� �with � set to one in that de�nition�� The estimated missing

data conditional expectation $Er�x�DjxD� converges to the true conditional expec


tation E�x�DjxD� as the ICM iteration r � �� The resulting posterior on � is

Gamma�dq
�
� q

�
c��

�
�c��

�
�
$���� � Gamma���	�� �	����

��� Registration Results

A point estimate of a registration between the atlas image and the new image can

be computed by maximizing the constrained data model ������ using the methods of

section ���� For this point estimate� the Bayes estimates of the hyper
parameters $�

and $� determined in section �� were used� In this section qualitative results of the

maximization are given by displaying the predicted facet locations in the new image

and comparing them with their locations in the template�

Figure �� displays the unnormalized log density achieved during maximization�

The top curve is the unnormalized log shape component

�
�

�
�x� ���P �x� ���

the bottom curve is the unnormalized feature density

�
�

�

X
i

�fi � �i�
�� ����

and the horizontal axis is the maximization step� As maximization proceeded down

the graph in each submodel� the full conditional distributions were maximized nu


merically for facets on the current level and analytically for those higher up� Five

ICM cycles were performed on the full conditional distributions of all facets in the

submodel� Given six levels in the graph� there were �� � steps in the maximization�

After each level was complete the estimated achievable log density was calculated

according to the methods of section ���� These joint density values are recorded in
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the �gure� During maximization the deviation seen in feature log density was ap


proximately ten times the deviation in shape log density� This weighting of the two

components of the model is on par with previous experience using models of this kind

in earlier applications �McCulloch et al�� ������
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Figure ���� Unnormalized log density during maximization procedure� The feature
and shape components are represented by � and �� respectively�

Figure � �a� displays the coronal view of the atlas image slice � Superimposed

on this image are the �rst two indices of the three dimensional template locations ���i

for all bottom level facets i whose third �slice� index of ���i fell in the range �� ���

Panels �b�� �c�� and �d� display the maximum density point estimate of the facet

locations x��i superimposed on coronal slices ��� �� and �� In these sub
�gures�
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slice s is displayed as the background for all facets i whose third indices of x��i are in

the range �s� s��� �and whose template third indices fell in the template slice shown

in panel �a��� It is necessary to show several slices in the new image since the facet

locations x��i are de�ned in three dimensions and can therefore be predicted out of

slice� In fact� because of the gross translational mis
registration between the images�

facets were predicted approximately � slices down in the new image compared with

the atlas image� The model also detected that the two images were misregistered

by a small rotation in the NE�SW direction and therefore predicted that generally

NE facets should be two slices higher than SE facets� The model is not strictly

invariant to rotation� but did approximate this invariance adequately by adjusting

facets appropriately in the higher levels of the graph� On a second inspection of

the two images� this rotational misregistration was deemed to be a true artifact�

Interestingly� the �t of the model pointed out this feature that was not obvious on

casual inspection of the two images before analysis�

Facets are color
coded in �gure � to showcase one property of the model� The

facets are color
coded by their marginal feature density values �eq� ���� green for

high density� yellow for medium� and red for low feature density� The color cuto�s

were chosen arbitrarily from the empirical distribution on feature density contribution

for facets in this atlas slice� Figure �� gives this distribution along with the ranges

chosen for display in �gure �� The red facets show regions of poor intensity match

between the two rescaled images� Note the three facets in the SE corner which fall

on a tear in the atlas image brain� These facets were predicted to lie in a reasonable

region in the new brain even though there is of course no matching tear in this image�

To predict these facet locations correctly� the model drew strength from the facets

nearby which do have homologous and therefore high feature density locations in

the new image� This mechanism of drawing strength occurs in several places in this
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slice� including an important region near the NE corner on the inner boundary of the

hippocampus �See �gure �� for a depiction of the hippocampus�� Two red facets in

a ridge of low atlas intensity were well predicted in the new image even though the

hippocampal boundary is not as well de�ned in the new image� On the other hand�

several facets near the base of the atlas brain in the NW corner of panel �a� lie in

an extended region of the atlas that has no homologous region in the new image�

Marginal feature densities in this region are low �red� and there is a large amount of

deformation in facet locations� The model necessarily �ts poorly in this region since

the two images are so di�erent there�

Figure �� highlights how the model can be used to automatically segment a region

of interest in a new image given a manual segmentation of the atlas image� In the top

panel� an observer has highlighted those facets in the atlas image slice �� he believes

to be �hippocampus� facets� He could similarly highlight hippocampus facets in all

other relevant slices� The bottom panels give the maximum density predictions in the

new image of the facets highlighted in the top panel� Notice that in the atlas image

the north half of the hippocampus seems to protrude further to the west than the

south half does� whereas in the new image� the south half seems to protrude farther

to the west� This is largely an artifact of the rotational misregistration between the

images and the model correctly �t that misregistration by placing the north facet

group in a higher slice than most of the south facet group� Remember that facets are

predicted in R� whereas the images are a �nite set of voxels� Therefore the threshold

between facets displayed in panel �b� and those displayed in panel �c� is an arbitrary

function of the orientation of the slices in the image dataset�

Apart from the predicted rotational and translational misregistrations� the model

also predicted the more subtle shape di�erences in the two hippocampi� This is easily

seen by the deformation from the atlas grid ���i to the predicted locations x��i� All
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Figure ���� All facets in atlas slice  and their predicted locations in the new
image� Feature match fi � �i is color
coded by the rule given in Figure ���
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Figure ���� The log feature density contribution to the mode estimate shown in
�gure �� The square
root of �fi � �i�

� is given on the horizontal axis for all facets
in atlas slice � The colored regions of the histogram correspond to the color coding
used in �gure ��

hippocampus facet locations seem to be predicted exceptionally well�

The maximization procedure in this section took approximately �ve minutes of

CPU time on a mid
priced UNIX workstation�

��� Segmentation Analysis

Figure �� shows slice �� of the atlas image with two manual segmentations super


imposed on it� For this experiment� the hippocampi in the atlas image and the

new image were both segmented by two observers� Large variability was seen in

the two segmentations so to incorporate this variability� two regions were dealt with

separately� the region where both observers agreed the pixel belonged to the hip


pocampus �green in �gure ��� and the region where at least one observer believed

the pixel was hippocampus �yellow or blue in �gure ���

The goal of this experiment was to use the previous section�s predicted set of facet
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Figure ���� Hippocampus facets in atlas slice �� and their predicted locations in
the new image�
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Figure ���� Slice �� of atlas image with two manual segmentations superimposed
on it� one shown in blue� and one in yellow� The region of agreement is shown in
green�
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locations to predict three
dimensional segmentation images like those displayed in the

colored regions in �gure ��� A very simple methodology was used� for every facet

labelled �hippocampus� by a manual segmentation of one image� every pixel in a small

region around the facet�s location in the other image was set to the hippocampus pixel

identi�er� thus producing a segmentation of the other image� To be able to easily

de�ne the size of the small �ll
region� a methodology was employed which is backward

to what one might expect� the atlas image segmentation was predicted given a manual

segmentation of the new image� In this way� the �ll
region was naturally de�ned by

the grid spacing of the atlas facet locations �� Only the bottom level of facets in the

graph were used to predict segmentations� all higher
level facets were ignored�

Given the predicted facet location calculated in section ��� each bottom level

facet was given a label using the two manual segmentations of the new image� For

each bottom level facet� if the predicted facet location x��i in the new image fell

in one observer�s segmentation but not the other� it was labeled ���� If it fell in

both observers� segmentations it was labeled ���� Otherwise it was labeled ���� A

predicted segmentation of the atlas image could now be generated by �lling in small

regions around each facet�s template position ���i with the facet�s label�

This predicted segmentation image of the atlas image therefore had three regions�

��� for the agreed non
hippocampus region� ��� for disagreement between the ob


servers� and ��� for the agreed hippocampus region� To judge performance of the

automated segmentation� the manual segmentation images of the atlas image were

similarly combined to produce three
region segmentations�

Figure �� compares three slices of the predicted segmentation with the manual

segmentation images� Each panel is a di�erence image of the manually segmented

region minus the automatically segmented region� where the region compared is the

set of pixels either observer deemed as hippocampus �regions ��� and ��� combined��
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Gray denotes agreement between the predicted and manual segmentation� and white

and black denote disagreement� First� notice that the automated region is much

chunkier than the manual region since there were signi�cantly fewer bottom level

facets than voxels in the manual segmentations� An added level of the graph would

reduce this e�ect since the �ll region around each facet would be one eighth the

volume used here� Two of these slices seem to match very well and one does not�

The di	cult variability in the middle part of the hippocampus� shown in the middle

panel� is not predicted well by the model because of the large di�erence in shape

between the atlas and new image�

Table �� gives quantitative results comparing the predicted and manual segmen


tations� The measure used to compare these regions is the percentage overlap� used

by Collins et al� ������� de�ned as the number of pixels in agreement between the

two segmentations divided by the total number of pixels in one region� written as

a percentage� The percentage must be normalized by each region�s volume in turn

and results examined in case one region is entirely contained in the other� �This

situation would give a perfect score if the percentage were only normalized by the

smaller region�� The left column in the table compares the automatic and manual

segmentations for the observer agreed regions and the right column compares the

larger regions which contain the disputed pixels� These results may seem discourag


ing� however when the two manual segmentations of the same image are compared�

the overlap results are only ���� and ����� Since the automated procedure depends on

the obviously variable manual segmentations of the new image for facet labels� then

is scored against the variable manual segmentations of the atlas image� it is expected

that the score should be signi�cantly lower than the ����� manual segmentation

score�

When segmentations of only the upper part of the hippocampus� on the east side
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Figure ���� Di�erence images comparing three slices of the manual segmentation
with the predicted segmentation�
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Normalized by Both observers region Either observer region
predicted volume ���� ���
manual volume ���� ����

Table ���� Percent overlap results comparing predicted segmentations with manual
segmentations� When the two manual segmentations are compared� percent overlap
is ���� and �����

of the images� are compared� the results are signi�cantly better� The scores in Table

�� were calculated by simply cutting o� the W side of all the segmentations below

x � ��� �see �gure ���� The corresponding scores comparing the two manual seg


mentations of this upper region are ����# and ����#� These results show that much

of the error in the whole hippocampus segmentation occurs in the highly variable

lower portion �west side of the images��

Normalized by Both observers region Either observer region
predicted volume ���� ����
manual volume ���� ����

Table ���� Percent overlap results comparing predicted segmentations with manual
segmentations for only the upper part of the hippocampus� ie� x � ���� Comparing
the two manual segmentations� percent overlap is ���� and �����

��� Predictive Variability Inference

The methods of section ��� were used to sample from the constrained data model

������ on facet locations in the new image given the facet locations in the atlas

image� where the hyperparameters were set to their posterior means calculated in

section ���

A Markov chain was constructed by sampling from the three
dimensional full

conditional distributions on each facet given all of its neighboring facets in the graph�

A hybrid Gibbs�Metropolis chain was used since all facets above the bottom level have

known full conditional distributions but facets on the bottom level have non
standard
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distributions due to the image constraint� In the Metropolis step on every bottom

level facet� the proposal density was a spherical normal distribution with mean zero

and adjustable variance� The proposal variance was determined by monitoring the

acceptance rates of several bottom level facets and ensuring that each rate was in the

range �	��� 	��� The Markov chain was started at the estimated maximum density

location determined in section �� and was run for ���� iterations� For this model

with ���� � random variables� each iteration took approximately ��� seconds on

a mid
priced UNIX workstation� At each iteration� locations were recorded for �ve

bottom level facets and one parent of one of these �ve�

The atlas locations of the �ve bottom level facets are shown in �gure ��� �a�

and trace plots are shown in �gure �� for two of the �ve and the one parent facet�

Notice that the marginal trace of the one recorded parent facet ��gure �� �c�� has

a di�erent appearance than the other two shown in that �gure since sampling its

full
conditional is a Gibbs step for which every sample is accepted� A burn
in period

of approximately ��� iterations is noticeable in the parent trace �c�� but virtually no

burn
in period was noticed for any other facets recorded�

To be conservative about the burn
in period� only the second half of the recorded

MCMC traces were used to create kernel density estimates of the �ve tri
variate

marginal distributions on the bottom level facet locations� In fact� for each facet� to

be able to view its three
dimensional marginal density� a conditional density estimate

was calculated by thresholding the samples and keeping only those which fell in a

particular image slice� An optimally
chosen �Terrell� ����� normal kernel was used for

the density estimate� The resulting marginal densities for the �ve facets� conditional

on their being in slice ��� are shown in �gure ���� For each facet the half
maximum

density contour is displayed�

Remember that� under the shape distribution p�xj�� ��� all of these densities would
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Figure ��� MCMC samples for two bottom level facets and the parent one parent
�in three dimensions�
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be spherical normal� It is the contribution of the feature density which causes the

contours to elongate along isolines of intensity in the new image� This e�ect is seen

most strongly in the two hippocampus boundary facets highlighted�

The mid
hippocampus facet to the south of the image seems to show reasonable

variability� but the north
most middle hippocampus facet shows a very tight contour

and seems to be predicted too high� The reason for this is as follows� remember

from the density maximization� section ��� that this facet is more likely in slice ��

rather than the slice �� displayed� This small and high contour is an artifact of the

threshold conditioning used to display the facet density in slice ��� since the full

trivariate density is elongated along the direction from the south in slice �� to the

north in slice ��� The large variability seen in the furthest west facet is most likely

due to the lack of homology between the two brains in the lower brain�

Figure ��� shows three views �coronal� transverse� and sagittal� of the marginal

density estimate for the south
most facet in �gure ���� The left column shows the

atlas brain centered at the facet�s atlas location� and the right column shows the new

brain centered at the maximum density predicted location� All contours displayed are

conditional densities computed by thresholding in the direction perpendicular to the

page� In all views the contours enclose reasonable predictive regions for this facet�s

location�
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Figure ����� Kernel density estimates of marginal predictive densities on �ve bottom
level facets from MCMC samples�
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Figure ����� Three views of the tri
variate marginal density on a facet location in
the new image� The atlas is displayed in the left column in three views centered at
the facet template location� Predictive density contours are displayed in the right
column on the new image�
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Chapter �

Application� Time Gated Cardiac Single

Photon Emission Computed Tomography

��� Introduction and General Framework

Single Photon Emission Computed Tomography �SPECT� is used widely in the US

for the diagnosis of coronary artery disease� Although other modalities have shown

promise for this purpose� SPECT provides a relatively low
cost and non
invasive tool

for visualizing normal and abnormal heart function� Heart function is measured by

imaging the spatial distribution of a radioactive tracer that has been injected into

the patient�s bloodstream� An infarct can be detected by a dark spot in the image

because less blood� and therefore less tracer� travels to the damaged area� To acquire

an image� a camera counting gamma
ray photons ejected from the body is oriented

at several angles of rotation around the body� At each angle the camera acquires one

view �or projection� of the photon ejection pro�le in the body� By combining a set of

projections at di�erent angles around the body� a three
dimensional reconstruction

can be calculated that displays the body in real space� This reconstructed image is

the �nal product that clinicians view for diagnosis purposes�

Even though cardiac SPECT has become a clinically routine technique� much
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improvement is still possible in acquisition and processing techniques� One limitation

of ordinary cardiac SPECT is that to produce a reasonable signal
to
noise ratio �SNR�

in the reconstructed image� the camera must be �xed at each angle around the body

for several seconds� during which the heart beats several times� This produces motion

artifact� any part of the heart which moves signi�cantly during the beat cycle is

blurred out because of its motion relative to the camera� The region most severely

a�ected by motion artifact is the wall of the left ventrical �LV� due to its large motion

while beating� Abnormalities in the LV can only be detected if they have size on the

order of �or larger than� the magnitude of its beating motion�

One promising direction of research to correct for this artifact is gated myocardial

perfusion imaging �Faber et al�� ������ In this technique� rather than acquiring one

long image of the heart with high signal
to
noise but poor motion artifact� several

images are acquired by binning the photon counts into gates triggered from the

patient�s own electro
cardiogram �ECG�� By gating these images using the ECG�

each image acquired becomes a view of the heart in one pose in its beat cycle� Each

gated image now has very little motion artifact when compared with standard non


gated SPECT� The trade
o� is that� for equal total scan
times� the signal
to
noise

ratio compared with an ungated image is reduced by a factor equal to the number of

time gates imaged�

This ECG gating is a major advance in itself since it gives the physician the option

of looking for smaller abnormalities in these gated images� but the low SNR of each

gate makes detection of these infarcts di	cult� In this chapter it will be shown that

the facet model can be used very e�ectively to combine the information from all the

gates into one �composite� image that displays the heart in any pose with low motion

artifact and high SNR�

The advantage of the facet model is that anatomical locations on the heart can be
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followed through the gated images� Once these locations are found in each time gate�

then a reasonable composite image can be formed by averaging� for each anatomical

location� its image value in each time gate�

To produce this �facet
composite� image� one gate is chosen to be the atlas image

�in the terminology of previous chapters� and the facet model is applied to register

every other gate to the atlas� Any gate can be chosen as the atlas� and the facet


composite image will display the heart in the pose of that chosen gate� The template

facet locations � are set so that the bottom level facets in the graph are at the center

of each voxel in the atlas image and the predictive distribution on facet locations �eq�

����� is maximized for each other gate in turn� Each bottom level facet then has a

predicted location �$xL�i�j in each time gate j� The facet composite image is formed

by displaying� for every facet� its average intensity value over the J gates located at

its atlas position� Each pixel in the atlas has an associated bottom level facet� so the

value at pixel i in the facet composite image is

Vi �
�

J
Q� ��L�i� �

�

J � �

J��X
j��

Qj ��$xL�i�j� �

where Q� is the atlas gated image and �Q�� 	 	 	 � QJ��� are the other gates� All facets

above the bottom level are treated as latent random variables in the shape model

and ignored when creating the composite image�

��� Results

A study was conducted using six patient images from the Duke University Medical

Center� The patients were injected with Tc
��m
labeled ��� keV gamma ray� Ses


tamibi� a myocardial tracer commonly used in Nuclear Medicine� after they exercised

for a short time� The patients were scanned with ECG gated SPECT on a three

headed scanner ��Triad�� Trionix� Inc�� Twinsburg� OH� with each head using a low
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energy� general purpose collimator� The camera acquired data in eight equally dis


tributed time gates� triggered by the patient�s own ECG signal� where� in the �nal

images� Gate � corresponded to the systolic �compressed� cardiac phase and Gate �

corresponded to the diastolic �relaxed� cardiac phase� The �� total acquired angu


lar samples for all gated data sets were reconstructed with a �ltered back
projection

algorithm with post reconstruction smoothing employing a Hann �lter ����� cy�cm

cuto� from the Nyquist frequency�� The images were then independently cropped to

include the reconstructed heart volume� and then reoriented so that the heart view

was the short axis view� �The other two orthogonal views are referred to as the verti


cal and horizontal long axis view�� The resulting three
dimensional images consisted

of �������� voxels of size ����mm�����mm�����mm�

Figure ��� shows a mid
heart slice of the short axis view of one patient at all eight

time gates� The curve shown to the right is a typical volume curve �Opie� ����� for a

heart as it beats through its cycle� For all analysis in this section� the seventh gate�

in the diastolic cardiac phase� was used as the atlas image�

A �ve level facet graph was used to model the deformation so that the bottom

level had �������� facets� In all patients this number of bottom level facets was

su	cient to cover the whole atlas heart with one facet per voxel� Level weights

were set to ensure equal facet marginal variances and parent�child weights were set

inversely proportional to the atlas separation� as discussed in section �����

The standardized regression feature model ������ was used because the nature

of the images made it di	cult to rescale the intensities in a sensible way� Since

these images consist of extended regions of very low intensity and extended regions

of very high intensity� any rescaling based on the tenth and ninetieth quantiles of

intensity inside a closed region of interest �as done in Chapter � is very sensitive

to the choice of the rescaling region� The standardized regression feature function is
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Figure ���� Eight Gates of the short axis view of one patient and a typical heart
volume curve� Gate � was used as the atlas in all cases�
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insensitive to the absolute intensity near each facet� and therefore works extremely

well in this application� For each bottom level facet ���L�i the regression design points

��zL�i��� 	 	 	 � �zL�i�n� were oriented as �� quasi
random spherical normal samples in

three
dimensions with mean equal to the facet�s location and standard deviation

equal to the bottom level atlas grid spacing� � pixel� �This number of samples in

three dimensions is suggested by Shaw ������ according to space
�lling optimality

criteria��

Predicted facet locations in all gates were estimated by maximizing the con


strained facet data model� eq� ����� using the diastolic gate � as the atlas image�

The hyperparameters � and � were set manually by observing a few gate registra


tions in one patient and the same values were used for all patients�

Figure ��� shows sample results of the registration process in one patient� The

predicted facet motion from the diastolic phase gate � to the systolic gate � is rep


resented by a set of arrows� The background in both panels is the atlas image and

the arrows point from the gate � positions �L�i to the predicted gate � positions xL�i�

The left panel shows the short axis view of facets in atlas slice �� of �� and the right

shows the horizontal long axis view of facets in atlas slice �� of ��� Remember that

facets can be predicted to be out of slice� so some arrows may actually point into or

out of the page� The region of largest motion is in the top right of both panels and

corresponds well to expected LV wall motion�

Figures ��� and �� display vertical and horizontal long axis views in one patient�

In both �gures� each row is one slice perpendicular to the direction of the view� In

the left column the original gate � data is displayed� in the middle column is the

facet
wise composite image� and in the right column is the ungated SPECT image

�produced from these datasets by a pixel
wise sum over all gates�� It is clear that the

facet
composite image recovers the same level of SNR as the ungated column while
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Figure ���� Facet motion when matching gate � �diastolic phase� to gate � �systolic
phase�� The left panel shows the short axis view slice �� of �� and the right panel
is the horizontal long axis view slice �� of ��� In both panels the background image
is the atlas image� diastolic gate �� The tail of the arrow represents the atlas facet
position � in gate � and the head is the predicted facet position x in gate �� Facets
not displayed were predicted to move a negligible distance� The facet motion closely
parallels the expected left ventricular wall motion�
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reducing the motion artifact by adhering to the pose of the gate � raw image�

In an e�ort to quantitatively measure the performance of the algorithm in this

application� �rst a trained radiologist was asked to pick from each patient�s gate

� image a homologous slice near the mid
heart in the short axis view� Next� in

each patient� the observer chose a horizontal line through the center of the heart in

this short axis slice� Given this manually chosen one dimensional line in the each

patient�s three
dimensional data sets� an intensity pro�le could be plotted through

the heart� Figure ��� shows a typical pro�le for one patient from the six� The same

line was used to generate intensity pro�les in the facet
wise composite image and

the ungated image� The presence of motion artifact in the ungated image causes the

two intensity peaks on either side of the LV to be closer together and fatter than

they are in the gated image� since gate � is at a point in the heart beat cycle where

the heart is relaxed and has a fairly large volume� The two peaks in each pro�le

were �t to Gaussian kernels using the least squares method and the �tted means and

full
width
half
maxima �FWHM� were recorded�

In Table ���� the three image methods �gated� facet
wise average� and pixel
wise

average� are compared by the separation of the �tted peaks on either side of the

LV� In all cases except the last the facet
wise composite pro�le adhered more closely

to the gate � pose than did the ungated pro�le� The average percent di�erence in

centroid separation in the facet composite pro�le was approximately �# compared

with �# for the ungated pro�le� This indicates that a good portion of the motion

artifact has been eliminated in the facet
wise composite�

Table ��� gives similar results of a comparison of the �tted FWHM in the three

image methods� In each cell of the table values are given for the left and right walls

in the pro�le� On average wall thickening was increased in the facet
composite pro�le

by ��#�# �left�right� compared with ��#��# in the ungated pro�le�
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Figure ���� Six planes of the vertical long axis view by � methods� The left column
is the raw gate � data� the middle column is the facet
wise composite� and the right
column is the ungated image� Note that the facet
wise composite image is only
de�ned in the cubic region where facets were located in the atlas� hence the large black
borders in the middle column �these images have been interpolated and re
pixilated
from their original ����� to ������� for easier viewing��
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Figure ���� Six planes of the horizontal long axis view by � methods� The left
column is the raw gate � data� the middle column is the facet
wise composite� and
the right column is the ungated image� Note that the facet
wise composite image
is only de�ned in the cubic region where facets were located in the atlas� hence the
large black borders in the middle column �these images have been interpolated and
re
pixilated from their original ����� to ������� for easier viewing��
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Gated Facet
Wise Pixel
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Figure ���� Three methods for producing a short axis view in one patient� For
each of the � patients� a � dimensional horizontal intensity pro�le was measured�
The orientation of this slice was determined by a trained radiologist to be located
centrally in the short axis view and in a similar slice in each patient� Typical intensity
pro�les from the three methods are shown on the bottom panels�

Patient Gate � Facet
wise �FW� Pixel
wise�PW� FW
PW
A ���� ���� ���� ��
B ��� ���� ���� ���
C ���� ���� ���� ���
D ���� ���� ���� ���
E ���� ��� ���� ���
F ���� ���� ���� ���

mean ��� ���� ���� ���

Table ���� The separation in pixels �pixel edge length ����mm� between intensity
peaks in the left and right walls of left ventricle measured on a � dimensional hor

izontal slice located centrally in the short axis view and in a similar slice in each
patient�
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Patient Gate � Facet
wise �FW� Pixel
wise�PW� FW
PW
A ��������� �������� ��������� 
�����
����
B ��������� ���������� ����������� 
�����
����
C ������� �������� ��������� �����
���
D ��������� �������� �������� �����
����
E �������� �������� �������� 
���������
F ��������� �������� ��������� 
�����
��

mean �������� ��������� �������� 
�����
����

Table ���� The Left Ventriclular wall widths �left�right� in pixels �pixel edge length
����mm� determined by the full
width
half
maximum �FWHM� of the extracted
one
dimensional intensity pro�les�

Finally� Figure ��� displays a representation of the three
dimensional cardiac im


ages called a �bullseye� plot� Essentially the heart is numerically �attened out from

base to apex so that each quadrant of the image represents one quarter of the heart

and moving radially out from the center corresponds to moving up the wall of the

heart from apex to base� These plots are used extensively as a diagnosis tool because

the most important parts of the whole three dimensional image set are reduced into

one image for the physician to view�

The right three panels of �gure ��� are the three image methods for a normal

patient drawn from the original six� and the left panels show the only infarcted patient

in the set� The muscle damage is represented in each left panel by a dark non
circular

region near the center of each image� While the right panels have insu	cient relief to

see any signi�cant di�erence between the three analysis methods� the infarct in the

left panels exposes the motion artifact that plagues the pixel
wise average method�

The true extent of the infarct shown in the gated image is well modeled in the facet


wise composite� but the pixel
wise average considerably distorts and blurs the region�

Additional artifacts are also present toward the SW of the pixel
wise image which are

not represented in either of the other two images� The facet
wise composite image is

faithful to the structure of the gated image while increasing the signal
to
noise ratio

��



by averaging over the eight gates in the dataset�
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Figure ���� Bullseye representations� The left panels show an infarcted patient by
three image methods and the right panels show a healthy patient�
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Chapter 	

Summary and Extensions

	�� Important Results

The models outlined in this paper show tremendous promise as a coherent system

for automated feature
based image analysis� Feature registration of two images is

accomplished by predicting the locations of a large number of facets in one of the

images given their locations in the other� Furthermore� an immediate outcome of this

registration is the automated segmentation of one image given a manual segmentation

of the other�

Because the system is a full statistical model of how an observer locates features

in an image� the resulting procedures can be characterized far more comprehensively

than any of the more heuristic numerical algorithms put forth previously� The tuning

parameters� which in a simple numerical algorithm would have to be set manually� are

parameters in the statistical model which can be estimated from appropriate training

data� This system therefore provides the true objectivity so fervently pursued in

automatic procedures� The simple form of the statistical model proposed in this

paper allows for straightforward estimation of these parameters�

Furthermore� the unavoidable issue of observer variability that is ignored in a

�



simple numerical optimization algorithm can be addressed in a statistical model� For

example� when considering real images there is never a single �correct� segmentation�

every intelligent observer is correct� Any system for automating the segmentation

process must therefore integrate this fact�

The straightforward joint modeling of facet locations and feature values to esti


mate hyperparameters leads to a predictive distribution on facet locations in a new

image which incorporates several attractive properties� Its hierarchical structure per


mits the practical top
down approach for density maximization by conditioning on

large scale image feature locations before addressing the local variability� The result

is a very robust and fast procedure even in large three
dimensional images� Likewise�

the hierarchical detachment of large scale �unobservable� facets from those �observ


able� facets on the bottom level of the graph permits fast Gibbs sampling on all the

upper level facet locations� Registration variability estimates are therefore feasible

in a modest amount of time�

Both registration analyses given in chapters  and � were extremely successful�

The facet
composite cardiac SPECT images showed marked improvement in signal


to
noise compared to the single image gates while signi�cantly reducing the motion

artifact seen in the regular pixel
wise average images� In the mouse brain MR reg


istration analysis� a method was highlighted for displaying regions of poor model �t

which could be used as a detector of abnormality relative to the atlas image� In

addition� a straightforward extension of the model was used to produce a reasonable

hippocampus segmentation of one brain given a segmentation of the other�

	�� Extensions

The models presented in this paper are very �exible and many extensions can be

envisioned� This section provides a few suggestions for tailoring the methods to

��



di�erent applications� as well as discussion regarding the use of manual segmentation

data to estimate the model hyperparameters�

����� Model Development

First� the shape model given in section ���� is extensible to incorporate more prior in


formation about the kinds of deformations expected in the class� For example� simple

changes could be implemented such as favoring deformations along a particular plane

by allowing di�erent variability parameters by image dimension� � � ���� 	 	 	 � �d��

This generalization allows the model to be applied in� for example� stereopsis applica


tions �Dhond� ����� in robot vision and remote sensing� where the aim is to generate

three
dimensional landscapes from two di�erent two
dimensional views� Since rela


tive deformation between the views is constrained to be in the direction connecting

the cameras� the facet model could be applied by simply constraining facet defor


mations accordingly� This is an extreme case of adjusting the new d
dimensional �

since each facet location can actually be represented by a one
dimensional random

variable rather than the original two for general deformations�

The shape model can also be modi�ed to incorporate prior knowledge about

objects in an image class that are expected to deform together within the class� This

form of prior information is easily modeled by increasing the parent�child weights

between constituent facets in each object� and decreasing those connection across the

object�s boundary� One extreme approach has been investigated by Laading et al�

������ in which certain parent�child connections were set to zero� transforming the

facet graph into a tree structure�

More complex facet correlation structures could be modeled by treating all the

parent�child weights as unknown parameters and simulating from their �non
standard�

joint posterior distribution given manual training data� An informative prior would
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have to be speci�ed on the parent�child weights since the amount of data would in


variably be sparse relative to the number of additional parameters� In fact� data in

the form of manual segmentations rather than individual facet locations would most

likely have to be used� This type of data is discussed below�

In applications like the cardiac SPECT images in chapter �� where several images

are taken in a sequence in time� modeling the whole four
dimensional dataset would

be fruitful� By adding the fourth time dimension� structural constraints can be added

to the allowable deformations under the shape model that are inspired by past heart

motion studies� There have been several such studies �McEachen and Duncan �����

Clarysse et al� ����� and Park et al� ����� that might be useful for deriving a

structural prior template of sensible heart motion�

The feature models used in this paper can also be generalized by incorporating

di�erent image measures to be e�ective in speci�c applications� A study of di�erent

image measure possibilities is given by Studholme et al� ������� The spatial fea


ture models alluded to in section ���� could be investigated� although their added

complexity might outweigh the precision gained in the posterior on feature hyperpa


rameters�

����� Parameter Estimation Using Region Data

The �nal issue discussed here is the matter of data acquisition� The �fty data points

in the mouse MR application were acquired because this form of data was most

suitable for estimating the parameters in this model� This tedious chore might be

avoided if a method can be found for using the already abundant data in the form of

manual region segmentations� This task is just as tedious� however it is constantly

performed in the clinic since automatic algorithms have yet to prove themselves�

Region data can be treated as missing data on facet locations� Consider that two
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images have been segmented manually� Choosing one arbitrarily as the atlas image�

the atlas segmentation essentially assigns labels to each facet� Each facet i for which

�L�i falls within a particular atlas segmentation region At is a t
type facet� For a set

of region types T segmented in the atlas image there is the same number of facet

types t � T � Then� given a similar set of segmentation regions fBt� t � Tg in the new

image� the data can be represented as

xL�i � Bti for all i �����

where facet i has atlas segmentation type ti� This means that� for every facet on the

bottom level of the graph� its location must lie in the region of the new image covered

by the manual segmentation of its type in that image� In keeping with the protocol

of having only bottom level facets observable� segmentation constraints should not

be enforced on higher level unobservable facets�

The di	culty using this data to estimate the model parameters is that the image

function Q inside each region must also be incorporated to indicate the associated

feature value with each facet�s location� This constraint has the form

fL�i � fQ�xL�i� for all i

where the feature function fQ is discussed in section ����� If the constrained data

model ������ is used to enforce this constraint� then the applicable data model is

p�xj�� �� �� �� �
�

Z��� �� �� ��
exp

�
�
�

�
�x� ���P �x� ���

�

�

X
i

F �xL�i�

�
�����

and the data on x is the constraint given in ������ The function F is de�ned in

section ���� Since the unknown normalizing constant Z is a function of � and � � the

posterior on these parameters is unknown� However the conditional distribution on

x is an exponential family with su	cient statistics

�x� ���P �x� �� and
X
i

F �xL�i�	 �����

��



A maximum likelihood estimate �MLE� of � and � can therefore be calculated by

examining the observed su	cient statistics �from the region data� and the expected

statistics under the distribution ����� given � and � � The parameter values which

produce expected su	cient statistics matching the observed su	cient statistics are

the MLE given the data �Bickel and Doksum� ������

Unfortunately� the observed su	cient statistics are not immediately calculable

from the region data� nor are the expected su	cient statistics known analytically�

A missing data framework �Geman and McClure� ����� must be employed in which

two streams of Markov chains are run conditional on a set of parameters � and � �

one enforcing the constraint ����� and one ignoring it� For both Markov chains the

two su	cient statistics ����� are recorded� The Monte Carlo mean estimate from

the constrained Markov chain gives an estimate of the �expected� observed su	cient

statistics under the model and the unconstrained Markov chain gives an estimate of

the expected su	cient statistics under the model� Similar pairs of chains are run for

several choices of � and � and the pair that produces the closest match of expected

su	cient statistics is the MLE of � and � given the region segmentations�

Other than the obvious computational burden of this parameter estimation tech


nique� there are also some technical di	culties that must be overcome� First� the

choice of initial condition for the iterative sampling is not straightforward� In the

constrained Markov chain� facets must be placed in their proper regions according to

the manual segmentation while maintaining a joint con�guration close to the mode

of the distribution� Second� a su	cient statistic match criterion must be chosen since

there is a separate statistic for every parameter in the model� Furthermore� the MLE

estimated using two segmentations in a class of images is only strictly applicable for

those two images� Some thought must be given to reasonable methods for combining

estimates from multiple image segmentations�

��



Appendix A

Derivation of Equation �
��

In this appendix� a discussion is given of the derivation of the conditional distribution

������� The one
dimensional case� corresponding to one facet in a one
dimensional

image� is considered �rst�

Given a joint probability density f�x� y� on two continuous random variables X

and Y � the limiting probability density onX under the constraint that jY �L�X�j � �

as � � �� for a continuous function L is proportional to the joint density evaluated

at y � L�x�� namely f�x� y � L�x���

If the function L is de�ned to be constant� L�x� � y�� then the resulting limiting

conditional probability density on x is the regular g��xjy � y��� It is instructive to

derive this density from the underlying c�d�f��s� The desired c�d�f� is the following

probability

P �X � xj jY � y�j � �� �
P �X � x � jY � y�j � ��

P �jY � y�j � ��
�A���

in the limit as �� �� The event written in the numerator is shown in �gure A�� �a��

Using the conventional de�nition of the joint c�d�f� F �x� y� � P �X � x � Y � y��

equation �A��� can be re
written

P �X � xj jY � y�j � �� �
�F �x� y� � ��� F �x� y� � ��� ��

�F��y� � ��� F��y� � ��� ��
�A���
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Figure A��� The cross
hatched event X � x � jY � L�X�j � � is displayed in part
�a� for L�x� � y� and in part �b� for general L�x��
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where F��y� � P �Y � y�� Both the numerator and denominator have been divided

by � so that we may re
write the equation using probability densities�

lim
���

P �X � xj jY � y�j � �� �

h
�
�y
F �x� y�

i
y�

f��y��
	 �A���

Finally we arrive at the expected result

�

�x
lim
���

P �X � xj jy � y�j � �� �
f�x� y��

f��y��
� g��xjy � y��	 �A��

Now� for a general continuous function L� the desired conditional c�d�f� is

P �X � xj jY � L�X�j � �� �
P �X � x � jY � L�X�j � ��

P �jY � L�X�j � ��
	 �A���

in the limit as � � �� The constraint here� shown in �gure A�� �b�� is the region of

width �� bounding the function L above and below for its entire domain� �This is the

desired region in the case of equation ������ since the support of the r�v� representing

facet location is not a�ected by the image constraint� it is still the whole real line��

The denominator in equation �A��� can be rewritten in terms of the joint density

f�x� y��

P �jY � L�X�j � �� �

Z �

��

Z L
x���

L
x���

f�x� y�dydx

�

Z �

��

f��x�

Z L
x���

L
x���

g��yjx�dydx

�

Z �

��

f��x� �G��L�x� � �jx��G��L�x�� �jx�� dx

�A���

and� similarly� the numerator in equation �A��� can be rewritten

P �X � x � jY � L�X�j � �� �

Z x

��

Z L
x���

L
x���

f�t� y�dydt

�

Z x

��

f��t� �G��L�t� � �jt��G��L�t�� �jt�� dt	

�A���

���



Finally� the desired probability is

lim
���

P �X � xj jY�L�X�j � ��

� lim
���

R x

��
f��t� �G��L�t� � �jt��G��L�t�� �jt�� �� dtR ��

��
f��t� �G��L�t� � �jt��G��L�t�� �jt�� �� dt

�

R t

��
f��t�g��L�t�jt�dtR ��

��
f��t�g��L�t�jt�dt

	

�A���

The denominator in equation �A��� is not a function of x which allows us to write

the desired density on x under the appropriate constraint as

�

�x
lim
���

P �X � xj jY � L�X�j � �� �
�

Z
f�x� L�x��	 �A���

This progression extends to higher dimensional X and Y � In practice� X repre


sents the vector of facet locations and Y represents the vector of facet feature values�

Therefore� let X be a �p� d�
dimensional vector

X � �X���� 	 	 	 � X��d� 	 	 	 � Xp��� 	 	 	 � Xp�n�

and Y be a �p�n�
dimensional vector �to account for the possibility of a n
dimensional

feature vector associated with every facet�

Y � �Y���� 	 	 	 � Y��n� 	 	 	 � Yp��� 	 	 	 � Yp�n�	

The function L�x� represents the image function Q�x� � Rd � R� Then the analogous

constraint to the one
dimensional case is

jYi�k � L �zk�xi�� j � � for i � �� 	 	 	 � p and k � �� 	 	 	 � n

where the deterministic function zk�xi� is used to create the n
dimensional vector

�z��xi�� 	 	 	 � zn�xi�� for instance to represent a set of n points in a region centered at

xi�

���



The integral in �A��� becomes

P �jYi�k � L �zk�xi�� j � � 
i� k�

�

Z
Rp�d

f�x���� 	 	 	 � xp�d�

Z L
z�
x�����

L
z�
x�����

� � �

Z L
zn
xp����

L
zn
xp����

g��y���� 	 	 	 � yp�njx���� 	 	 	 � xp�d�

dy��� � � �dyp�ndx��� � � �dxp�d

and the integral in �A��� is similar� with appropriately changed integration limits�

The limiting joint density on the whole vector x as �� � becomes

�

Z
f �x���� 	 	 	 � xp�d� L�z��x���� 	 	 	 � L�zn�xp��� 	

��
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