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Abstract

This dissertation introduces new classes of models and approaches to multivariate

time series analysis and forecasting, with a focus on various problems in which time

series structure is driven by underlying latent processes of key interest. The identi�-

cation of latent structure and common features in multiple time series is �rst studied

using wavelet based methods and Bayesian time series decompositions of certain

classes of dynamic linear models. The results are applied to turbulence and geo-

chemical time series data, the latter involving development of new time series models

for latent time-varying autoregressions with heavy-tailed components for quite radi-

cally ill-behaved series. Natural extensions and generalizations of these models lead

to novel developments of two key model classes, dynamic factor models for multi-

variate �nancial time series with stochastic volatility components, and multivariate

dynamic generalized linear models for non-Gaussian longitudinal time series. These

two model classes are related through common statistical structure, and the disserta-

tion discusses issues of Bayesian model speci�cation, model �tting and computation

for posterior and predictive analysis that are common to the two model classes. Two

motivating applications are discussed, one in each of the two model classes. The

�rst concerns short term forecasting and dynamic portfolio allocation, illustrated in

a study of the dynamic factor structure of daily spot exchange rates for a selection

of international currencies. The second application involves analyses of time series of

collections of many related binomial outcomes and arises in a project in health care

quality monitoring with the Veterans A�airs (VA) hospital system.
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Chapter 1

Introduction

A latent variable is simply a variable that cannot be measured directly. The origins

of latent variable modeling date from the start of the twentieth century, speci�cally

from the study of human abilities conducted by Spearman. The early studies were

almost exclusively focused on the well known \factor analysis models" that included

just a single factor. Further impetus came in the 1930s with the work of Thurstone

and colleagues in multiple-factor models and simplest-structure solutions. Tradition-

ally, one of the goals of the study of latent structure has been on the actual latent

processes for example in measuring variables such as social class, personality or intel-

ligence in the social and behavioral sciences. In order to obtain information on such

variables, researchers are forced to consider other variables, which can be measured

and which are related to the latent quantities of interest, but which may contain

additional noise or error. However, in many other applications the concentration is

more on the identi�cation and interpretation of underlying processes that are driving

the observations of certain types of phenomena. In particular, time series research

focussed on latent structure analysis has been of great interest in isolating and in-

terpreting the possible many components of sets of observed time series. The work

presented here is mainly focussed on theoretical and computational developments in
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Bayesian time series modeling for the identi�cation of latent processes in line with

existing theory of decomposition of a variety of Bayesian dynamic linear models. It

is important to note though, that the practical utility of these models is to obtain

reasonable interpretations of the inferred latent processes. In other words, there is

no guarantee that the identi�ed latent processes represent \real" phenomena and in

some cases the results can only be seen as a convenient parsimonious description of

complex structures.

The thesis starts with developments and discussion of non-parametric decompo-

sitions of time series using wavelet techniques. As a matter of fact, wavelets have

been used widely for data de-noising and signal processing and hence the relevance

of considering them as an important tool for identi�cation of latent processes. In

connection with this, Bayesian time series decompositions are developed in chapter

3 for certain classes of dynamic linear models. Speci�cally, decompositions of au-

toregressive models are illustrated in chapter 4 in studies of turbulence data and

the results are compared with wavelet based techniques. The methodological devel-

opments in Bayesian time series of chapter 3 are further extended in chapter 5 to

include latent time-varying autoregressions with heavy-tailed components that are

used to model quite radically ill-behaved series. A posterior sampling algorithm via

Markov Chain Monte Carlo (MCMC) is outlined in this chapter for these kind of

general models and the results are presented in the analysis of eight chemical species

obtained from the Greenland Ice Sheet covering the period 41�0 Kyr BP. As a result

of the analyses, multivariate models are explored and discussed as generalizations of

the univariate models by including correlation structure between the multiple series

in a factor model framework.

A second part of the thesis begins in chapter 6 with a full Bayesian approach for

the basic factor model for multiple time series, considering identi�cation issues and

2



describing the corresponding sampling algorithm for model �tting. In this context,

novel dynamic factor models for multivariate �nancial time series and the incorpora-

tion of stochastic volatility components for the latent factor processes are proposed in

chapter 7. These new models are of relevance in modeling multivariate processes with

time-variations in the factor model parameters and represent direct generalizations

of univariate stochastic volatility models. The methodology is applied in studies of

dynamic factor structure of daily spot exchange rates for a selection of international

currencies in chapter 8. In addition, model performance is compared with the much

simpler method of dynamic variance discounting through di�erent dynamic asset al-

location strategies. Future potential developments and model extensions are also

discussed in this chapter.

A third part of the thesis involves the development of new models for non-normal

time series in a framework extending that of the dynamic generalized linear model.

In part this was motivated by a collaborative project with the Veterans A�airs (VA)

Management Science Group. The time series components of this research involves

novel models and MCMC methods for collections of many time series of counts in

a time-varying, longitudinal framework. Hierarchical non-Gaussian models for uni-

variate and multivariate time series are developed chronologically in chapters 9 and

10. The goals are to monitor and evaluate patterns of change over time, and cross-

sectional dependencies, in series of annual measures of health care quality in the

VA hospital system. The framework combines cross-sectional, hierarchical models

of the population of hospitals with time series structure to allow and measure time-

variations in the associated hierarchical model parameters. Model assessment and

residual analysis are discussed together with MCMC algorithms to �t these models.

These models have real value and potential in various areas of application in business

and socio-economics.

3



Chapter 2

Wavelet Decompositions

Wavelets have shown great potential and applicability in many �elds in recent years,

especially in signal processing, data compression and de-noising. The purpose of

this chapter is to review some of the basic properties of wavelet methods and their

interaction with statistical modeling approaches to �nd latent structure in time series

data.

2.1 Introduction to Wavelets

Wavelets are fundamental building block functions used as basis in representing other

functions, analogous to the trigonometric sine and cosine functions for the ordinary

Fourier transformation. However, Fourier basis functions are localized in frequency

but not in time, which means that small frequency changes in the Fourier trans-

form will produce changes everywhere in the time domain. In contrast, wavelets are

localized in both frequency and time, which is a key advantage over Fourier meth-

ods in dealing with a variety of functions, including messy signals with jumps and

non-smooth features. In fact, wavelet approximations can compact the energy1 of a

1Energy is an engineering term for the norm of L2 functions, kfk
2 =< f; f >=

R
f2. By de�nition

a function f is in L2(S) if
R
S f

2 is �nite, in other words if f is square integrable over S.
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signal into relatively small number of wavelet functions. Consequently, wavelets can

represent many classes of functions in a compact and \faster2" way, needing fewer

wavelet basis than sine-cosine basis functions for the approximations. In addition,

wavelets can separate the signal into multiresolution components where the �ne and

coarse resolution components capture, respectively, the �ne and coarse scale features

in the signal. These properties make wavelet representations excellent tools for data

compression and signal processing among other applications in a wide variety of sci-

enti�c �elds. In recent years, statistical wavelet modeling has become very popular in

theoretical and applied areas, specially in non-parametric modeling, regression and

density estimation studies.

There are several mathematical and not-too mathematical papers developing and

explaining theory on wavelets. Key references are Daubechies (1988), Daubechies

(1992), Strang (1989), Chui (1992), Walter (1994) and Vidakovic (1998b) among

others. The fundamental theory on wavelets is connected with continuous decompo-

sitions of functions in L2. The de�nition of wavelets is traditionally done in terms

of a family of functions with a \mother" and \father". The mother wavelets  , are

good at representing the detail and high-frequency parts of a signal satisfying thatR
 (x)dx = 0. The father wavelets � on the other hand, are good at representing the

smooth and low-frequency parts of a signal with
R
�(x)dx = 1. A wavelet family of

functions is then de�ned by translating and scaling the mother and the father  a;b(x)

and �a;b(x). There are speci�c choices of a and b that can be used to �nd minimal

orthogonal basis for functions in L2. In particular, a traditional choice is to set a = 2j

and b = k2j for j; k 2 Z, de�ning the orthogonal wavelet basis,

f�j;k(x) = 2�j=2�(2�jx� k); j; k 2 Zg; (2.1)

f j;k(x) = 2�j=2 (2�jx� k); j; k 2 Zg; (2.2)

2The computational complexity of the Fast Fourier Transformation is O(n log2(n)), whereas for
the Fast Wavelet Transformation it goes down to O(n).
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Figure 2.1: Four orthogonal mother wavelets  0;0. Top: "Haar" (left) and "Daub4"
(right). Bottom: "Daub12" (left) and "Symmlets12" (right).

where j is the level index associated with scale 2j and k is the shift index associ-

ated with translation k2j. There are many di�erent wavelet families with di�erent

properties and features, being the most commonly used Haar's, Daubechies', Meyer's

among others.

Figure 2.1 shows four di�erent orthogonal mother wavelets  0;0, that vary in

width and smoothness. The top left frame displays the well-known \Haar" wavelet

named after the mathematician Haar. This wavelet is not-continuous, orthogonal,

symmetric and has compact support, meaning that it takes the value of zero outside a

�nite interval. The \Daub4" wavelet, plotted on the top right frame, was discovered

by Ingrid Daubechies and it was the �rst type of continuous wavelet with compact

support. The bottom left frame plots the \Daub12" mother wavelet, which is from

the same family of the \Daub4" wavelet, but is relatively wider and smoother. The

bottom right displays the \Symmlets12" wavelet constructed by Daubechies to be
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as symmetrical as possible unlike the \Daub" wavelets. Traditionally, the number

on the names indicates the width and smoothness of the wavelet, such that small

numbers are narrower, less smooth and more localized as for example the \Daub4".

In any case, any element in L2 may be represented as a linear combination of

the basis functions �j;k(x) and  j;k(x). Explicitly, the orthogonal wavelets series

approximation to a continuous time signal f(x) is given by:

f(x) �
X
k

sJ;k�J;k(x)+
X
k

dJ;k J;k(x)+
X
k

dJ�1;k J�1;k(x)+: : :+
X
k

d1;k 1;k(x) (2.3)

where J is the number of levels and k ranges from 1 to the number of components at

each level. The coe�cients in the vector d0 = (d1;k; : : : ; dJ;k; sJ;k) are called wavelet

coe�cients where the elements s0J = fsJ;kg, represent the underlying low frequency

features of the signal at the coarse scale 2J and are traditionally called \smooth"

coe�cients. The elements dj = fdj;kg or \detail" coe�cients on the other hand

represent �ne scale deviations from the smooth behavior at scales 2j for j = 1; : : : ; J .

The number of coe�cients at a certain scale is related to the width of the wavelet

function. Typically, the wavelet coe�cients at coarse scales, close to j = J , are larger

in absolute value than the wavelet coe�cients at �ne scales, close to j = 1. This is a

nice and convenient property for wavelet Shrinkage methods, as explained below.

In many applications of wavelets in statistical modeling, the observed signal is of-

ten a collection of discrete points or a function generated by a data set. In such cases,

the theory should be reformulated into a single continuous to discrete conversion pro-

cedure bearing in mind that the discrete data is a sample from the continuous time

signal with a certain sampling interval. The reformulated analysis for discrete signals

is focused on discrete wavelet transformations that lead to wavelets approximations

as (2.3) with resolution equal to the sampling interval.
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2.2 Discrete Wavelet Transformation (DWT)

The DWT calculates the coe�cients of the wavelet series approximation for a dis-

crete signal y1; y2; : : : ; yn, where n is a power of 2, say n = 2J for simplicity. The

DWT maps the vector y = (y1; y2; : : : ; yn)
0 to the set of n wavelet coe�cients

d = (d1;d2; : : : ;dJ ; sJ)
0. There are n=21 coe�cients d1;k at the �nest scale 2

1, n=2j

coe�cients dj;k at scales 2j for j = 1; 2; : : : ; J and n=2J smooth coe�cients sJ;k at

coarsest scale 2J . The mapping is performed by linearly transforming the signal by

the orthogonal n� n wavelet matrix W, namely

d =Wy:

In practice, the DWT is applied without computing the matrix multiplications explic-

itly, instead a fast \pyramid" algorithm is used which is, as discussed above, faster

than the fast Fourier transform, (Mallat, 1989). This �ltering procedure is based on

an increasing sequence of closed and nested subspaces which approximate L2. The

procedure is directly connected to the \quadrature mirror �lters" in signal processing

language. This algorithm involves a low-pass �lter g, and high-pass �lter h which are

determined by the wavelet basis and are mutually related through gi = (�1)ih1�i.

The �lters are applied to any sequence fang through the operators G and H with

k�th elements given by,

(Ha)i =
X
k

hi�2kai and (2.4)

(Ga)i =
X
k

gi�2kai: (2.5)

The algorithm starts by applying the �lters to the data vector y and obtain the

sub-vector of wavelet coe�cients d1 = Gy together with the corresponding smooth

coe�cients s1 = Hy at level j = 1 or scale 21; see Figure 2.2. The procedure

8
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Figure 2.2: The "Pyramid" algorithm.

continues by applying the operators again to s1 to obtain d2 = Gs1 = GHy and

s2 = H2y. Likewise, coe�cients dj and sj are then computed by repeating this

decimation procedure until level J , noting that dJ = GHJ�1 and sJ = HJy contain

only one coe�cient. The complete vector of wavelet coe�cients d can be rewritten

in terms of �lters as

d = (Gy; GHy; GH2y; : : : ; GHJ�1; HJy)0: (2.6)

In general, as stated before, the level j in the wavelet decomposition of y contains

2j elements with �lter representations,

dj = GHj�1:

The interpretation of the coe�cients at the �rst pass is that the signal y is represented

with a coarser approximation s1 and d1 is the \detail" lost by approximating y by

the linear combination in s1 = Hy as displayed in the pyramid algorithm on Figure
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2.2. The same interpretation applies for the next level where d2 is the detail lost by

approximating s1 with a linear combination in s2 = Hs1 and so forth.

The way of going back to time domain from the wavelet domain is by reconstruct-

ing the signal y with the inverse wavelet transformation IWT. In matrix form the

IWT is performed trivially by y = W0d which is again equivalent to apply a fast

reconstruction algorithm using mirror �lters. Explicitly, apply the �lters h and g to

the sequence fang through the adjoint operators G� and H� with k�th coordinate

de�ned by,

(H�a)i =
X
i

hi�2kai and (2.7)

(G�a)i =
X
i

gi�2kai: (2.8)

The smooth coe�cients sJ�1 are recovered by applying the operators to the coe�-

cients at scale 2J through sJ�1 = H�sJ+G
�dJ . Repeating the process again, the next

smooth coe�cients are obtained sJ�2 = H�2sJ +H�G�dJ +G�dJ�1. The algorithm

is performed iteratively through all the levels until the signal y is recovered.

Assume now, that all the detail coe�cients in d are set to zero, keeping only the

smooth coe�cient at the coarsest level, namely sJ . Apply now the reconstruction

algorithm as described above and �nd the coarse scale smooth approximation,H�JsJ ,

for the signal y. If this procedure is performed for each one of the wavelets coe�-

cients, a decomposition in time domain is obtained in what is called Multiresolution

decomposition.

2.2.1 Multiresolution Analysis

The wavelet �lters, h and g described above, are constructed from the mother and

father wavelets by multiresolution analysis MRA theory, (see Mallat, 1989 and

Daubechies, 1992 for details). The basic idea comes from the decomposition in (2.3)
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by de�ning

SJ(x) =
X
k

sJ;k�J;k(x) and (2.9)

Dj(x) =
X
k

dj;k j;k(x): (2.10)

The orthogonal wavelet series approximation (2.3) to the continuous signal f(x)

is expressed as sum of orthogonal signal components representing di�erent scales

f(x) � SJ(x) + DJ(x) + DJ�1(x) + � � � + D1(x). The coarsest scale signal SJ(x)

gives a coarse scale smooth approximation to the signal f(x). A re�nement to the

SJ(x) approximation is obtained by adding the detail signal at scale 2J�1, namely

SJ�1(x) = SJ(x) + DJ(x). In general, Sj�1(x) = SJ(x) + DJ(x) + � � � + Dj(x) is a

signal approximation at scale 2j. The collection fSJ ; SJ�1; : : : ; S1g provides a mul-

tiresolution decomposition of f(x) at scales 2J ; 2J�1; : : : ; 2. These multiresolution

approximation results apply directly to discrete wavelet transformations for discrete

signals y. The intuition behind MRA is that each one of the components of the

decomposition, hence approximations, is obtained by setting to zero all but one sub-

vector of wavelet coe�cients and apply the IWT to this new set of coe�cients. The

fact that you can reconstruct the original signal after thresholding or shrinking some

of coe�cients has been recognized as a useful tool in non-parametric function esti-

mation, signal recovery and many other areas.

2.3 Wavelet Shrinkage

The discrete wavelet transformation has the property of \disbalancing" the signal by

concentrating and preserving the energy of the data in a small number of wavelets

coe�cients. Therefore, wavelets give parsimonious transformations ensuring that

the high frequency features of a signal are described by a relative small number of

wavelet coe�cients. Based on this principle, Donoho and Johnston (1994) developed

11



the wavelet shrinkage technique with the idea that some detail coe�cients might be

omitted without a�ecting the important features of a signal. For instance, additional

noise in the signal can be almost removed by shrinking some low frequency wavelets

coe�cients towards zero, despite the fact that this noise will indeed a�ect all wavelet

coe�cients. The procedure can be summarized in three steps:

1. Transform the observed signal y with the DWT and obtain a set of wavelet

coe�cients d,

2. shrink some or all the wavelet coe�cients with a shrinkage function, say ��(x)

to obtain a new vector of coe�cients d̂ and

3. reconstruct the signal by applying the IWT to the shrunken coe�cients.

There are di�erent shrinkage functions ��(x), from which the simplest case is to re-

move some of the wavelet coe�cients (ie. thresholding). The most common thresh-

olding rules are hard and soft shrinkage techniques which replace the coe�cients in

d that are smaller in absolute value than a �xed threshold �,

��(x) =

(
x 1fjxj > �g Hard

sign(x)(jxj � �) 1fjxj > �g Soft

where 1fAg is the indicator function on the set A. The hard shrinkage function

presents a discontinuity, keeping untouched the coe�cients that are above � and it is

usually used when the problem concerns about reducing the bias in estimation. On

the other hand, soft shrinkage function is continuous and it is motivated from the

principle that the noise a�ects all wavelet coe�cients. Figure 2.3 shows hard and soft

shrinkage rules applied to a linear function (dotted line) for a threshold parameter

� = 2. In either case, a crucial point is the way to select the threshold parameter

�. The most commonly used rule is the universal threshold parameter originally

proposed by Donoho and Johnston (1994) which removes all the wavelet coe�cients

12
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Figure 2.3: Hard and Soft shrinkage functions with � = 2.

that are smaller than the expected maximum of an assumed uncorrelated Gaussian

noise. The universal threshold is de�ned by � =
q
2log(n)�; where n = 2J is the

length of the signal as before and � is an estimate of the scale of the noise, traditionally

computed as the sample standard deviation of the �nest level of detail coe�cients.

Some other policies, like minimax and adapt thresholding rules are motivated on

statistical theory and may even have di�erent level dependent threshold parameters.

2.3.1 Bayesian Shrinkage Rules

One important application of wavelet shrinkage rules is in data de-noising as dis-

cussed before. For example, assume that the observed data yi is the sum of an

unobserved (latent) signal xi and a noise component �i for i = 1; 2; : : : n. Stacking

all the equations and writing the model in vector form,

y = x+ � with � � N(0; �2In):
3

3In is the n� n identity matrix.
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Wavelet coe�cients are computed by linearly transforming the data with the discrete

wavelet transformation through the matrix W, namely,

d = � +W�; (2.11)

where d =Wy is the vector of observed coe�cients and � =Wx is the n dimensional

vector of wavelet coe�cients coming from the true signal x. In addition, the new

sequence of errors conserve the same distributional assumptions due to the orthogonal

nature of the transformation,W� � N(0; �2In). These facts clarify the principle that

noise a�ects all wavelet coe�cients and provide a nice way to estimate the latent

process x by �nding �, and applying the inverse wavelet transformation x =W0�.

It is well-known that Bayes rules are less ad-hoc than traditional methods and

have desirable properties in estimation of the parameters. In particular, Bayesian

rules shrink heavily small coe�cients and only slightly larger ones. Consequently,

Bayes based wavelet estimations are perfect candidates in estimating � in (2.11).

The idea is then to �nd the posterior distribution of the wavelet coe�cients �jd by

updating a \prior" distribution with the appropriate likelihood based on the observed

wavelet coe�cients d, namely,

dj� � N(�; �2In): (2.12)

See Vidakovic (1998a) for a variety of examples on this model with di�erent prior

distributions. One important issue to note here is the fact that the observed wavelet

coe�cients d are conditionally independent given � as presented in (2.12). However,

the elements of � are correlated between and within levels due to the nature of the

wavelet transformation.

There have been several papers proposing di�erent prior distributions for the

wavelet coe�cients and the noise variance �2 for model (2.12). Vidakovic and Mueller

(1995) suggested a hierarchical normal-inverse-gamma prior for the parameters as-

suming �j�2 � N(0; �2�) and �2 � IGamma(�; �) for �xed hyperparameters � and
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�. The choice of � in this case was done under the assumption that the coe�cients

between levels are independent but correlated within levels. That is, � is block diag-

onal with sub-matrices �j with di�erent dimensions at each level and having entries

(�j)i;k = �ji�kj for j�j < 1. The posterior distribution is again normal-inverse-gamma

with posterior mean �̂ = ��d where �� = (In + ��1)�1, which is di�cult to handle

directly for large sample sizes. The same problem of inverting n� n variances arises

for di�erent choices of priors that require the use of posterior simulation techniques

like Markov Chain Monte Carlo. A di�erent prior choice is the one proposed by

Chipman et al. (1997) in what is called Adaptive Bayesian Wavelet Shrinkage. This

technique was developed in a regression framework problem de�ning the prior as a

mixture of two normals at each level of detail j,

�jjj � jN(0; (cj�j)
2) + (1� j)N(0; �2j );

where j � Bernoulli(pj) for j = 1; : : : ; J . In the same line, Clyde et al. (1998), in a

model selection framework, propose a mixture of a point mass at zero and a normal

distribution as a prior for �, namely �jjj � N(0; (1 � j) + jcj�
2). Many priors

for the scale parameter � have been proposed in the literature, some cases are based

on approximations and in some other importance sampling and MCMC methods are

used. In general, using unconditional mixture priors for � with a point mass at zero

leads to Bayesian thresholding rules. Consequently, the resulting posterior mean for

the wavelet coe�cients �jd gives smooth estimates on the edges of the signal. One

even more interesting problem and the main focus of this thesis is to �nd latent time

series structures and wavelets based methods seem to be a good starting point.

2.4 Wavelet Shrinkage in Time Series

The use of wavelet techniques for stationary processes is an emerging research that is

already impacting theoretical and applied time series analyses. Some key references
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are Chiann and Morettin (1994), Dijkerman and Mazumdar (1994) and McCoy and

Walden (1996). One important issue in analyzing time series data with wavelets is

the fact that the correlation structure of the signal interacts with the correlations

inherent in the wavelet transformation. In other words, the \disbalance" property of

the discrete wavelet transformations may a�ect the correlation structure of the time

series process. An illustrative example is in the measurement error time series models,

yt = xt + �t, introduced above, where the latent time series process xt is a�ected by

additive noise �t representing outliers, truncations, measurement and sampling errors.

In some applications, there may be strong evidence to support non-negligible additive

observational errors, and they may impact severely on some inferences. Again, the

use of wavelet shrinkage as a de-noising tool to get better estimates of the time

series signal and the parameters involved in the model is appealing. In addition,

the data can be decomposed into low frequency and high frequency components

via multiresolution analysis resulting in a better understanding of the phenomena.

However, the selection of the shrinkage function and the threshold parameter could

add misleading information about the correlation structure of the signal xt and hence

bad estimates of the parameters could be obtained. Moreover, in almost all classical

and non-classical thresholding rules applied to time series data the variances and

covariances are not conserved after the reconstruction. The main problems are that,

�rst, in time series data the high frequencies and the low frequencies are interacting

by nature; second, a traditional assumption, for example in universal thresholding, is

that the �ne scales are modeled by uncorrelated Gaussian noise, which is obviously

not satis�ed in time series. In the next section, an alternative shrinkage method is

analyzed with the idea of removing noise without a�ecting the structure of the data.
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Figure 2.4: Lorentz shrinkage function.

2.4.1 Lorentz Thresholding Rule

An alternative distribution-free shrinkage method that takes into account the auto-

correlation structure of the data is required, as stated before. In time series data, the

distribution of energy in the wavelet domain is more disbalanced than the distribu-

tion of energy in the signal. Vidakovic (1995) proposed a thresholding method based

on the Lorentz curve, which is a graphical representation of distribution inequality

and a general measure of disbalance of energy. This method replaces the low energy

coe�cients by zero under the assumption that low energies should come from the

noise component of the data. The idea is to replace the 100� p0% of the coe�cients

with the smallest energy with zero, where

p0 =
1

n

X
i

1(di � �d2);

and �d2 is the mean of the energies (d21; d
2
2; : : : ; d

2
n).

The value p0 represents the proportion at which the gain by thresholding an

additional element will be smaller than the loss in the energy, both losses are measured

on a 0-1 scale and are equally weighted. The left frame of Figure 2.4 shows the

Lorentz thresholding rule applied to a linear function (dotted line) and the right
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Figure 2.5: Simulated AR(2) Model.

frame shows the losss in energy (y-axis) by removing di�erent percentages of wavelet

coe�cients (x-axis) with a tanget marked at p0 = 57%. As can seen in the graphs,

the described thresholding procedure is equivalent to the hard thresholding for the

particular threshold level of � =
qP

i d
2
i =n. This choice of the threshold parameter

will be more adequate for data where the low frequency terms and the high frequency

terms interact a lot.

A simulated example to compare the e�ect of the choice of threshold parameters

is now analyzed. Assume for instance that xt is an autoregressive model of order

two, namely xt = �1xt�1 + �2xt�2 + �t with conditionally independent innovations

�t � N(0; 1) for t = 1; : : : ; n. Bayesian inferences and properties of the general

AR(p) model are developed in the next chapter and are used here for illustration.

A total of n = 210 observations were simulated from this AR(2) process for speci�c

autoregressive parameters �1 = 1 and �2 = �0:5 and the resulting process is displayed

in the �rst row of Figure 2.5 with its corresponding autocorrelation function. The
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Figure 2.6: DWT and MRA of a simulated AR(2) process.

model generates quasi-cyclical behavior. The AR characteristic polynomial has a

pair of complex roots with wavelength 8 and reciprocal modulus 0:7071. The signal

was corrupted with additional �t � N(0; (0:5)2) noise for a signal to noise ratio of

4. The observed data, yt = xt + �t, was then decomposed using the \symmlets8"

wavelet with resulting decomposition plotted in the left frame of Figure 2.6, where

each one of the components represent a level in the wavelet decomposition as a result

of the process of decimation. A multiresoution analysis was performed to explore the

di�erent frequency features of the data by decomposing it into additive components

in time domain as stated above and plotted in the right frame of Figure 2.6. It is

clear how the high frequency terms are concentrated in the �nest levels of details and

presumably most of the additive noise is captured in those levels too.

In order to estimate the latent process xt, three di�erent shrinkage functions were

used to threshold some of the wavelet coe�cients. Hard and Soft shrinkage function

were applied �rst with universal threshold parameter � =
q
2 � log(n)s = 3:763
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Figure 2.7: Energies of the AR(2) signal.

where s = 0:987 was estimated as the sample standard deviation of the �rst level

of details d1, assumedly uncorrelated and normally distributed. The reconstructed

processes and their autocorrelation functions are plotted in the second and third rows

of Figure 2.5, for Hard and Soft shrinkage functions respectively. The e�ect of the

wavelet decomposition in the reconstruction is very clear. In both cases, the estimated

processes are over-smooth compared to the original signal and this is due to the large

threshold parameter. Moreover, using the Soft shrinkage function the autocorrelation

structure of the signal is completely changed providing misleading information about

the nature of the latent process. The last row of Figure 2.5 shows the reconstructed

series after applying the Lorentz thresholding criteria. No assumptions were required

and the results are surprisingly good compared to the previous two methods. The

energy of the latent process is really well preserved and the autocorrelation function

exhibits practically the same features as the original signal xt. To explain a little bit

more the di�erences between these three methods, a comparison using Lorentz curve

was performed and is displayed in Figure 2.7. The �gure shows on the x-axis the

percentage of coe�cientes rejected and the loss in energy on the y-axis on a percentage

scale too. The 45 degrees line represents the case when no thresholding is performed
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and is plotted as a baseline. The Lorentz thresholding rule, by construction, is

at the tangent of the curve with p0 = 72% and energy loss of 18%, whereas the

universal thresholding methods observe percentage of rejection of p0 = 94% and

energy losses of 63% and 98% for Hard and Soft respectively. This is one of the

reasons of over-smoothing patterns in the reconstruction using universal thresholding

methods. Bayesian inference on the autoregressive parameters was performed for each

one of the reconstructed processes and for the observed noisy signal yt. Posterior

means, standard deviations (in parenthesis) and estimated moduli and wavelength

are shown in Table 2.1.

Noisy data Hard Soft Lorentz
�1 0.684 (0.022) 1.210 (0.046) 1.234 (0.183) 0.853 (0.026)
�2 -0.259 (0.022) -0.619 (0.046) -0.505 (0.183) -0.370 (0.026)

Wavelength 7.535 9.059 12.103 7.916
Moduli 0.509 0.787 0.711 0.608

Table 2.1: Estimations of the autoregressive parameters after thresholding.

As can be seen from the table, there is a lot of posterior uncertainty under univer-

sal thresholding methods. The resulting posterior estimates of the noisy data, that is

with no thresholding at all, are improved by removing some of the wavelet coe�cients

according to the Lorentz criteria. The estimates of the moduli and wavelength show

that the Lorentz thresholding criterion preserves most of the correlation structure of

the data unlike universal methods. These results are veri�ed in Table 2.2 showing the

posterior means and standard deviations of the �1 parameter for di�erent simulations

of the AR(2) process under di�erent signal-to-noise ratios. The posterior inferences

on the autoregressive parameters under universal thresholding methods do not seem

to change for di�erent levels of noise. The reason is that the correlation structure of

the reconstructed signal is very much inuenced by the wavelet basis and hence is the
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Signal/Noise Noisy data Hard Soft Lorentz
100 0.882(0.027) 1.159 (0.039) 1.304 (0.120) 1.089 (0.032)
5 0.676(0.021) 1.230 (0.041) 1.518 (0.145) 0.909 (0.026)
1 0.558(0.019) 1.247 (0.046) 1.476 (0.221) 0.684 (0.022)

0.45 0.491(0.017) 1.148 (0.041) 1.390 (0.176) 0.619 (0.020)
0.25 0.354(0.016) 1.248 (0.062) 1.599 (0.445) 0.457 (0.019)

Table 2.2: Estimations of the autoregressive parameters for �ve simulations of the
AR(2) process under di�erent signal to noise ratios.

same for all levels of noise. On the other hand, the posterior mean of �1 under the

Lorentz criterion tends to shrink with more levels of noise as expected since the signal

tends to be weaker. The results presented here are further explored and compared

to other decompositions methods in speci�c applications in next chapters.

2.5 Multivariate Extensions

One possible extension of Bayesian wavelet thresholding methods involves applica-

tions with multiple time series observations. In theses cases, the correlation structure

between the series could be used in the process of thresholding. That is, the infor-

mation of all the series could be incorporated when selecting the wavelet coe�cients

to be removed. These algorithm can be then called Ensemble Thresholding. The

basic setup up assumes observing q time series yit, for t = 1; : : : ; n. Each one of the

series will have a set of exchangeable wavelet coe�cients dit, coming from the same

distribution. For example,

dit � N(�t; �
2);

with �t � �1f�t = 0g+ (1� �)N(�tj0;  
2) and standard priors for the other param-

eters. Of course there are many alternative ways to set the prior distribution for �t

depending of the problem. In many cases for instance heavy-tailed assumptions on

the observations may be desirable to model the possible di�erences in the series.
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Chapter 3

Time Series Decomposition

In the previous chapter di�erent non-parametric decompositions using wavelets the-

ory were used to �nd hidden, or latent components that may have physical and

relevant interpretations. In connection with this, some new results on time series

decompositions are developed in this chapter for certain classes of dynamic models.

This methodology is capable of isolating subcomponents of series with state-space

representations using the theory of superposition and model structuring from West

and Harrison (1997, chapters 5 and 6).

3.1 Component Dynamic Linear Models

The developments in latent structure analysis presented here begin with extensions

of the measurement error models presented in section 2.4. Assume, again a scalar

time series yt, observed at equally spaced time points t = 1; 2 : : : and modeled as a

dynamic linear model (DLM hereafter),

yt = �t + xt + �t; (3.1)

xt = F0
t�t; (3.2)

�t = Gt�t�1 + !t; (3.3)
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where xt is the latent process combined with an additional component �t and the

usual observational noise �t. The p � 1 state vector is �t, Gt is the p � p evolution

matrix, Ft is a p�dimensional vector of known constants and !t is a p�dimensional

vector of stochastic evolution noise or innovation. Traditionally, the error terms �t

and !t are assumed independent, mutually uncorrelated and normally distributed,

�t � N(0; V ) and !t � N(0;W) for some variances V and W to be estimated. This

general class of models naturally allows the decomposition of an observed signal yt

into additive components, �t; xt and �t. Moreover, it assumes that the latent process

xt can be further decompose as a linear combination of subcomponents �it with

weights given by Ft. The analysis of this new class of models begins with a simple

model where the process xt is assumed to be actually observed, which is equivalent to

suppose that �t = 0 and �t = 0; 8t. In this chapter, some methodological issues on

decompositions of signal processes arising from particular sub-models de�ned by (3.2)

and (3.3) are developed in a way that the general model is naturally incorporated to

the methodology.

3.1.1 Time Series Components

Consider the sub-model de�ned by (3.2) and (3.3) with the extra assumption that

at each time point the evolution matrix Gt has distinct eigenvalues, denoted by

�it for i = 1; : : : ; p. The evolution matrix Gt can be decomposed by exploiting

its eigenstructure and leading to the spectral representation Gt = BtAtB
�1
t , where

At = diag(�1t; : : : ; �pt) and Bt is a p� p matrix of eigenvectors corresponding to the

eigenvalues in At. One important point to note here, is the fact that the eigenvalues

can be ordered arbitrarily and it is advisable to have the same ordering at all times

to avoid identi�cation problems.

The theory on chapter 5 of West and Harrison (1997) states that two models are
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similar if and only if they have the same forecast function. Alternatively, two models

are similar if and only if they have similar evolution matrices.1 Following this theory,

de�ne the similarity matrix Ht = DtB
�1
t at time t with Dt = diag(B0

tFt) and

transform the state vector �t linearly by ct = Ht�t. A new and similar DLM is created

by reparametrizing (3.2) and (3.3) for the new state vector ct = (c1;t; c2;t; : : : ; cp;t)
0,

and noting that F0
tHtct = 10ct for t = 1; 2; : : : ; n. Consequently, the state space-

representation of this new model is then,

xt = 10ct; (3.4)

ct = G�
tct�1 + !�

t ; (3.5)

where G�
t = AtDtB

�1
t Bt�1D

�1
t�1 and !

�
t = Ht!t is a zero-mean Gaussian evolution

noise. The main advantage of this reparametrization is that the process xt in (3.4) is

now rewritten as the sum of p latent processes of ct related to the eigenvalues of Gt.

Note that some of the eigenvalues in At could be complex and in such cases the sum

of the corresponding conjugate components cjt will result in real-valued processes.

Suppose for instance, that the p eigenvalues occur as c pairs of complex conjugates

and r = p� 2c distinct real values, then (3.4) can be expressed as

xt =
cX

j=1

zjt +
rX

j=1

yjt; (3.6)

with zjt and yjt corresponding to the complex roots and real roots respectively and

have speci�c time series structure. This decomposition will be of practical importance

as long as the components or a sum of them provide relevant scienti�c interpretations

for the phenomena in study. Note that (3.6) depends only on the eigenstructure of

the evolution matrix Gt, which may depend on unknown parameters. A special case

1Two matricesM andM� are similar if for some non-singular matrixH, called similarity matrix,
M =HM�H.
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of interest is that of autoregressive models, addressed in the next section and where

the evolution matrix Gt has a speci�c and simple structure.

3.2 Autoregressive Models

A special and important case to consider is that of autoregressive signals. Explicitly,

the process xt will follow a traditional autoregressive model of order p if

xt =
pX

i=1

�ixt�i + �t; (3.7)

for t = 1; 2; : : : ; n, where �j are constant AR parameters and the innovations are

assumed uncorrelated and normally distributed �t � N(0; �2). The process is called

stationary if and only if the roots of the characteristic polynomial �(B) = 1��1B�

� � � � �pB
p =

Qp
j=1(1 � �jB) = 0 lie outside of the unit circle. In other words, the

AR(p) process is stationary if and only if the reciprocal roots �j satisfy j�jj < 1, for

j = 1; 2; : : : ; p. Consequently, the AR process in (3.7) can be expressed as an in�nite

sum of random shocks by inverting the equation �(B)xt = �t, where B is the usual

backshift operator.

3.2.1 Reference Analysis

Given the �rst p observations, the sequential de�nition of model (3.7) and its Marko-

vian properties de�ne the joint distribution,

p(xp+1; : : : ; xnj�; �
2) =

nY
t=p+1

p(xtjxt�1; : : : ; xt�p;�; �
2);

where � = (�1; : : : ; �p)
0. Under the traditional Gaussian innovation assumptions

and writing the model in vector form, the likelihood function for the AR(p) model

is obtained as yj�; �2 � N(F�; �2In�p), where y = (xp+1; xp+2 : : : ; xn)
0 is a n � p
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dimensional vector and F is a (n � p) � p matrix with t-th row (xt�1; : : : ; xt�p)
0.

This has the form of a linear regression model and traditional methods apply. In

particular, using the precision � = 1=�2 and assuming the traditional reference prior

p(�; �) / 1=� , the posterior distributions are given by,

�j�2;y � N
�
�̂; �2(F0F)�1

�
;

� jy � Gamma((n� 2p)=2; s=2) ;

where �̂ = (F0F)�1F0y and s = (y � F�̂)0(y � F�̂) is the residual sum of squares.

The marginal posterior distribution for � is a multivariate T with n � 2p degrees

of freedom and has mode �̂. Monte Carlo techniques could be used to sample the

posterior distribution of the reciprocal roots �j and hence obtain posterior proba-

bilities of stationarity of the process. Moreover, inferences on the dominant roots

can be explored by ordering the posterior samples by moduli or wavelength, which is

important to identify subcomponents in the decomposition described in the previous

section.

3.2.2 Decomposition of AR(p) Models

The AR(p) is capable of exhibiting quasi-cyclical behavior as various distinct fre-

quencies depending of the structure of the roots of its characteristic polynomial as

explained in West (1995, 1997b). The decomposition presented in section 3.1.1 will

be used to isolate sub-components coming from a state-space representation of the

autoregressive model (3.7), namely,

xt = F0�t; (3.8)

�t = G�t�1 + !t; (3.9)

with a p�dimensional state vector �t = (xt; xt�1; : : : ; xt�p+1)
0 and the p�dimensional

vector F, p � p constant and known evolution matrix G and the evolution noise
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observing special forms,

F =

0
BBBBBBB@

1
0
0
...
0

1
CCCCCCCA
; G =

0
BBBBBBB@

�1 �2 : : : �p�1 �p
1 0 : : : 0 0
0 1 : : : 0 0
...

. . .
...

0 0 : : : 1 0

1
CCCCCCCA
; and !t =

0
BBBBBBB@

�t
0
0
...
0

1
CCCCCCCA
:

The evolution noise !t follows a singular normal distribution with zero mean and

known constant varianceWt =W, with only one non-zero entry given byW1;1 = �2.

In this case, the eigenvalues ofG are the reciprocal roots �j of the characteristic poly-

nomial of the AR(p) model described above. Following the result in (3.4), the time

series can be decomposed into the sum of time-varying components corresponding

to the autoregressive roots. Suppose as earlier that c pairs of complex conjugates

ajexpf�i!jg are observed for j = 1; : : : c with wavelengths or periods �j = 2�=!j

representing quasi-periodic behavior in the time series. Correspondingly, write the

real eigenvalues as aj for j = 2c+1; : : : ; p and apply the decomposition in section 3.1.1

to reparametrize the state-space autoregression as in (3.4) and (3.5). That is, decom-

pose the evolution matrix G = BAB�1 and de�ne a new state vector ct = H�t and

evolution noise !�
t = H!t, where H = DB�1 and D = diag(B0F). The evolution ma-

trix in (3.5), ct = G�ct�1+!
�
t is now the diagonal matrix of reciprocal roots, G� = A

ordered, say, according to the estimated periods or moduli. The decomposition of

the AR(p) model as in (3.6) follows directly and the results is closely related to the

standard partial fractions expansions of AR processes. Furthermore, the structure

of the r components yjt, corresponding to the real eigenvalues in the decomposition

(3.6), is that of individual AR(1) processes with parameter aj for j = 1; : : : ; r,

yjt = ajyj;t�1 + !�
jt

with errors !�
jt that are related across indices j. On the other hand, to �nd the struc-

ture of the zjt real-valued components in (3.6), related to the sum of pairs of complex
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conjugates further development is needed. Assume that the j�th component, zjt,

comes from the sum of the complex conjugates cht and cdt in ct for some indices d

and h in f1; 2; : : : ; pg. For each j, zjt can be modeled with a two dimensional DLM,

namely

zjt = 10c�jt;

c�jt = G2cj;t�1 + �jt with G2 = aj

 
ei!j 0
0 ei!j

!
;

with a two dimensional state vector c�jt = (cht; cdt)
0. Following the theory of canonical

similar models from West and Harrison (1997, section 5.4.4), transform the state

vector c�jt linearly by the non-singular similarity matrix L =

 
1 1
i �i

!
to obtain a

new state vector bjt = Lc�jt in a similar dynamic linear model,

zjt = (1; 0)0bjt;

bjt = G�
2bjt + ��jt with G�

2 = aj

 
cos(!j) sin(!j)
�sin(!j) cos(!j)

!
;

where ��j;t = L�j;t. Therefore, the components zt;j follow quasi-periodic ARMA(2,1)

processes models with stochastically varying amplitudes and phases but with �xed

periods and moduli. Explicitly,

zjt = 2ajcos(!j)zj;t�1 � a2jzj;t�2 + �jt;

where the errors �jt follow a zero-mean AR(1) and are correlated with !�
jt; 8j. The

physical meaning of the latent quasi-periodic components is the key issue here as the

theory identi�es and isolates those components.

The theory of similar models could be also used to justify the decomposition of

the AR(p) model (3.8) through the forecast function ft(k) = E(xt+kj�t) = F0Gk�t in
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standard notation. Exploiting the eigenstructure of the constant evolution matrix as

before Gk = BAkB�1,

ft(k) =
pX
j

cjt�
k
j ; (3.10)

where cjt and �j are de�ned as above. Note that the decomposition in (3.6) is

obtained by evaluating the forecast function at k = 0 as ft(0) = xt. The forecast

function (3.10) has contributions coming from real and complex components. In the

real case, the contribution of each root is measured by the amplitude cjt which varies

over time depending on the random shocks. For stationary processes, j�jj < 1 for all

j, the forecast function decays exponentially to zero. However, if for any j j�jj > 1

the process is non-stationary and the forecast function explodes. In the complex case,

the frequencies !j determine the sinusoidal oscillation in the forecast function. If the

process is stationary the oscillations decay exponentially through the damping factor

akj . In the non-stationary case the sinusoidal variation explodes in amplitude as jajj
k

increases. In general, the forecast function is a linear combination of exponentially

decaying or exploding terms and decaying or exploding factors multiplying sinusoids

of di�erent periods. In any case the general result on decomposition holds allowing

for stationary and non-stationary latent processes. However, when the series has

time varying patterns of dependence or non-stationarities the assumption of constant

AR(p) parameters could be weak and thus a need for models that include time-varying

parameters.

3.3 Time Varying Autoregressive Models

An extension to the traditional AR(p) model in (3.7), is that of time varying autore-

gressions. These models, adapt better to non-stationary time series by including time

variation in the autoregressive parameters. Moreover, the fact that the parameters

30



change over time induces the notion of instantaneous stationarity. Using the same

notation as before, the process xt follows a time-varying autoregressive model of order

p or TVAR(p) if for t = 1; 2; : : : ; n,

xt =
pX

i=1

�itxt�i + �t (3.11)

where the innovations are uncorrelated and normally distributed �t � N(0; �2). The

process will be stationary at time t if and only if the reciprocal roots, �jt, of the

characteristic polynomial �t(B) = 1 � �1tB � � � � � �ptB
p satisfy j�jtj < 1 for all

j = 1; 2; : : : ; p. The TVAR(p) model (3.11) is completely speci�ed by incorporating

an additional evolution model for the coe�cients, often taken as a random walk

�t = �t�1 + !t for some zero mean innovation !t. The extensions of the time series

decompositions are mainly focussed in latent structure assessment as explained in

the next section.

3.3.1 Decomposition of TVAR(p) Models

Following the theory from section 3.2.2, the TVAR(p) model (3.11) can be written

in state space form as,

xt = F0�t (3.12)

�t = Gt�t�1 + !t (3.13)

where F, the state vector �t and the innovations sequence !t are the same as in (3.8).

The time varying structure of the model is introduced in the evolution variance,

Gt =

0
BBBBBBB@

�1t �2t : : : �p�1;t �pt
1 0 : : : 0 0
0 1 : : : 0 0
...

. . .
...

0 0 : : : 1 0

1
CCCCCCCA
:
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With this form of the model and for any speci�ed values of the �jt parameters,

an instantaneous time series decomposition can be performed as described in section

3.1.1. In the same way as before, reparametrize the model and write it as in (3.4) and

(3.5) by exploiting the eigenstructure of Gt at each time point. The decomposition

(3.6) is obtained for c pairs of complex conjugates and r = p � 2c distinct real

eigenvalues �t = (�1t; : : : ; �pt)
0 at time t. Note that since the estimate of the �t =

(�1t; : : : ; �pt)
0 vector changes over time, the moduli ajt, and the wavelengths �jt of

the eigenvalues change too.2

In the constant AR(p) model, the evolution matrixG�
t in (3.5) is simply the diag-

onal matrix of the reciprocal roots. However, in the TVAR(p) case such simpli�cation

of G�
t is not possible and the structure of subcomponents is not as clear as before.

For instance, if one assumes that DtB
�1
t Bt�1D

�1
t�1 � Ip as it is the case in many ap-

plications then G�
t = At and the results from the AR(p) model extend immediately;

see Prado and West (1997) for further discussion and details. Explicitly, at each time

point the r components yjt, related to the real roots, follow approximate TVAR(1)

models,

yjt = ajtyj;t�1 + !�
jt;

with zero-mean innovations !�
jt related across j. The c components zjt related to

pairs of complex roots follow approximate quasi-cyclical TVARMA(2,1) models,

zjt = 2ajtcos(!jt)zj;t�1 � a2jtzj;t�2 + �jt

with TVAR(1) errors �jt correlated with !�
jt; 8j. In the case where the components

zjt have physical interpretations, inferences on the changes of the periods and mod-

uli are very important since they represent patterns of time variation in spectral

characteristics of the signal.

2Same notation as before, ajt for the real eigenvalues and ajtexpf�i2�=�jtg for the complex
conjugates pairs.
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Once again note that the eigenvalues of Gt could be ordered in an arbitrary

way, bearing in mind that the same order should be used at all the time points. In

connection with this, a particular problem in the decomposition arises due to the fact

that the assumption of r real eigenvalues and c complex may not be valid for all t.

This identi�cation problem may impact the estimation and interpretation of some of

the components of the decomposition.

In general, the decomposition results for the AR(p) and TVAR(p) models derived

above assume speci�c values of the AR parameters, known xt process and di�erent

eigenvalues. A common choice for autoregressive parameters is the posterior mean

which usually leads to di�erent eigenvalues in any case. One obvious extension to the

decomposition is to incorporate measurement error into this model by �tting higher

order autoregressions in higher frequency terms see West (1995, 1997b) and West

and Harrison (1997) for further details. More formal extensions for general models

to include non-Gaussian observation errors �t, outliers and possibly non-stationary

trend terms �t as in as in (3.1) from section 3.1 will be addressed in next chapters.

This generalizations involve taking the xt process as latent and unknown which is of

key interest in many applications.
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Chapter 4

Turbulence Data

In any kind of decomposition method and latent structure analysis the components

and underlying processes should be relevant enough to help the scientist understand

the phenomena in study. In this chapter an illustrative example using turbulence data

from Katul and Vidakovic (1996) is explored and the two methodologies developed in

the previous two chapters are applied. In this speci�c application the decomposition

into low frequency and high frequency components is an important research topic in

land-atmosphere interaction and atmospheric surface layer studies.

4.1 Turbulence

The structure of turbulent eddy motion in the atmospheric surface layer plays a cen-

tral role in the transport mechanics of heat, mass, and momentum from ground into

the atmosphere. Organized and coherent events, usually called attached eddies1,

are responsible for much of the heat and momentum transfer in boundary layer ows.

These eddies are surrounded by a uid that contains �ne-scale eddies, called de-

tached eddies , which do not contribute signi�cantly to the production of turbulent

1The name comes from the theory that the mean-ow vorticity and the energy containing turbulent
motions are caused by anisotropic coherent eddies attached to the wall, Townsend (1976).
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uxes and kinetic energy; see Figure 4.1 for a representation of eddies under di�er-

ent degrees of turbulence. These less-organized eddies are known to be statistically

isotropic and follow Kolmogorov's theory (1941) K41 hereafter. The quanti�cation

of the large-scale eddy motions from time series measurements of turbulent ow

variables is of key interest to understand land-atmosphere interactions and thus a

decomposition of turbulence data into attached and detached eddy motion becomes

relevant.

The major problem in separating the attached eddy motion from time series

measurements is the locality and non-periodicity of the organized events. The prob-

lem is addressed using the two di�erent approaches for decompositions developed in

chapters 1 and 2. First, the locality of wavelets in time is used to isolate the scale

contributions of events in space. For this matter, Lorentz thresholding criterion,

(Goel and Vidakovic, 1995; Vidakovic, 1995), is used to eliminate wavelet coe�cients

with small contributions to the total turbulent energy as described in section 2.4.1.

Second, the time series decomposition in section 3.2.2 is applied to explore latent

cyclical components in the time series after �tting higher order auto-regressions. The

time series is decomposed into the sum of time-varying components corresponding

to the auto-regressive roots. In this way it is possible to isolate sub-components of

the series and their contribution to the decomposition. Scienti�c theory in this area,

suggests that the results for both methods may be validated if they are consistent

with the Townsend (1976) attached eddy hypothesis.

� The wavelet �ltered series and the low frequency components in the time series

decomposition will be the organized and attached eddies and should explain

the majority of the variance of heat and momentum from the observed data.

� The di�erence between the original signal and the attached eddy motion should

follow Kolmogorov's K41 theory. That is, the detached and less organized
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Figure 4.1: Eddies for di�erent degrees of turbulence.

eddies should be close to the \-5/3 Power Law", Ex(K) / K�5=3 where Ex(K)

is the Fourier power spectral density.

4.2 The Experiment

In 1993, a total of 50,000 measurements of three velocity components and air tem-

perature were taken over a uniform dry lake bed in Owens valley, California on an

elevation of 1; 100m. The momentum roughness length for this sandy surface was

0:13mm; see Katul (1994) for details. The velocity components were measured in a

range of 2m � 3:5m above the surface using a 56 Hz triaxal ultrasonic anemome-

ter with a sampling period of 9.75 minutes. The velocity components were rotated

to obtain measurements along longitudinal, lateral and vertical velocities. For the

purpose of illustration in this chapter, an equally spaced sample of 10,000 was taken

from the 50,000 observations on two of the velocity components. These samples are

presented in Figure 4.2 for the longitudinal and vertical velocities denoted by U and

W respectively.
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Figure 4.2: Turbulence Data: Velocity components measured over longitudinal di-
rection U (top) and over vertical direction W (bottom).

4.2.1 Wavelet Analysis

The detailed structure of this two ow variables will be analyzed, as stated before,

using two di�erent methodologies in the context of Townsend's attached and detached

eddy hypothesis. First, a wavelet decomposition of both signals were performed using

the \symmlets8" wavelet basis. Thresholding criteria was then used to remove the

wavelet coe�cients with smaller contributions to the total energy, as detailed in

section 2.4.1. Lorentz curve criteria was established when the gain in increasing the

number of wavelet coe�cients and the loss in energy were in balance. Approximately

87.42% and 86.39% wavelet coe�cients below this criteria were removed, representing

loss of energy of about 11:43% and 12:82% for U and W respectively. Figure 4.3

shows the Lorentz wavelet thresholding curves for U and W where the diagonal line

represents a well balanced signal.

The point, p0 is the tangent line parallel to the diagonal representing clearly the
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Figure 4.3: Lorentz wavelet thresholding of velocity components.

break-even point between percentage of coe�cients rejected and loss in energy. The

reconstruction was performed applying the inverse wavelet transformation to the new

set of coe�cients. The resulting series represents the attached eddies in each one of

the velocity components. Furthermore, the di�erence between the original signal and

the �ltered series will be the detached eddy motion part of the series.

4.2.2 Time Series Decompositions

The second analysis of the series was done using the time series decomposition method

described in chapter 2. For this kind of data a traditional way to start the analysis is

by �tting higher order AR models to approximate what may be lower order ARMA

models or non-linear features in the series. In this case, two constant AR(10) models

were �tted to each one of the velocity components with reference priors as described

in section 3.2. Figure 4.4 presents 95% posterior intervals for each one of the AR

coe�cients �j from model (3.7) and for both ow variables (U left frame andW right

frame).

As can be seen from the picture, both series show similar patterns having the

�rst coe�cient around 0:9 and the rest of the coe�cients close to zero. Monte Carlo
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Figure 4.4: 95% posterior intervals for the AR(10) coe�cients of the U (left) and
W (right) velocity components

techniques were used to sample the posterior distribution of the reciprocal roots of the

characteristic polynomial. That is, a random sample was drawn from the posterior

distribution of the AR coe�cients � for each one of the velocity components and the

reciprocal roots were computed for each sample. In both cases, two real and four pairs

of complex roots were observed. For the longitudinal velocity component U , posterior

distributions of the wavelengths/periods �j and moduli aj for the two dominant

complex roots are displayed in Figure 4.5. The posterior means for the two largest

periods were 12.06 and 5.57 with corresponding moduli of 0.73 and 0.65. The results

were almost identical for the vertical component W and are not displayed here. Both

series were then decomposed into the sum of time-varying components corresponding

to the autoregressive roots, as developed in section 3.2.2 and both decompositions

are displayed in Figure 4.6. The roots were ordered by wavelength but they could

have been ordered by moduli or amplitude. The decomposition was just the sum of

six real components, two corresponding to the real roots following AR(1) processes

and four corresponding to the sum of the complex conjugates following quasi-cyclical

ARMA(2,1) processes. Most of the implied latent components with lower moduli or

39



10 11 12 13

0.
0

0.
2

0.
4

0.
6

0.
8

max wavelength

de
ns

ity

0.66 0.68 0.70 0.72 0.74 0.76 0.78

0
5

10
15

20
25

modulus

de
ns

ity

4.5 5.0 5.5 6.0

0.
0

0.
5

1.
0

1.
5

2.
0

2nd wavelength

de
ns

ity

0.45 0.50 0.55 0.60 0.65 0.70

0
2

4
6

8
10

14

modulus
de

ns
ity

Figure 4.5: Posterior distributions of the wavelength and modulus of the two dom-
inant complex roots for the longitudinal velocity component U .
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Figure 4.6: Time series decompositions of velocity components, U (left) and W
(right).
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very high frequencies are introduced to adequately capture the correlation structure

in the series but do not represent physical meaningful components. For instance, in

this particular application the interest lies only on two components corresponding

to the attached and detached eddy motion. In each one of the decompositions of

Figure 4.6, the original series, top row, is decomposed into three components. The

dominant component, plotted in the second row, is related to a real root and can

be interpreted as the trend of the series. The next component, in the third row,

is related to the pair of complex roots with largest wavelength and the last row is

the sum of the rest four components. In both cases the most dominant component

was that �rst real root and the rest of the components have smaller periods, smaller

moduli and are negligible in amplitude as expected. In the context of turbulence

data, the �rst real component represents the attached eddy motion and the sum of

rest of the components the detached eddy motion.

4.2.3 Results and Validations

The top two frames of Figure 4.7 display the �rst 250 points of the original signal

(dotted line) for the longitudinal velocity component U on the left and the verti-

cal velocity component W on the right. The estimated attached eddies for each

ow variable series calculated with the time series decomposition is overlaid corre-

spondingly. The bottom two frames show the same comparison using the estimated

attached eddies computed using the Lorentz curve thresholding criteria. It is clear

that large scale-eddies are well captured in both ow variables and using two dif-

ferent approaches. Note however, that the wavelet thresholding method results are

smoother than those from the time series decomposition maybe because of the choice

of the wavelet basis.

The decompositions found so far need to be validated with Townsend's theory.
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Figure 4.7: Original signal(dashed line) vs estimated attached eddy motion (solid
line) calculated with time series decomposition (top frames) and with wavelet thresh-
olding (bottom frames).

This theory claims that velocity components can be decomposed into

ui = uai + udi and wi = wa
i + wd

i ;

where a and d represent attached and detached eddy motion respectively. Theory

also suggests that for the attached eddy motion the following relations should hold:

� E(Ua) = E(W a) = 0,

� �2U = E((Ua)2); �2W = E((W a)2), variance conservation and

� E(UW ) = E(UaW a) covariance conservation.

Validations for Lorentz thresholding criteria and time series decomposition are pre-

sented in Table 4.1 for variance conservation and Table 4.2 for covariance conserva-

tion. As can be seen from Tables 4.1 and 4.2, in both ow variables about 99% for U
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U Component W Component
Original 0.4420 0.0741
Lorentz 0.4382 99.14 % 0.0692 93.39 %
TS Decomp. 0.4284 96.92 % 0.0689 92.98 %

Table 4.1: Variance Conservation

and 95% for W of the turbulence variance and uxes are retained by the estimated

attached eddy motion with Lorentz Thresholding criteria. On the other hand, with

the proposed time series decomposition about 97% and 93% of the variance is con-

served for U and W respectively. The covariance between U and W is preserved in

more than 90% with both methodologies.

Covariance % Conserved
Original Series (UW) -0.0230
Lorentz Thresholding -0.0224 97.39 %
Time Series Decomp. -0.0210 91.31 %

Table 4.2: Covariance Conservation (UW)

A di�erent validation procedure is presented in Figure 4.8. Each frame shows

on the horizontal axis the resolution level number in a wavelet decomposition, 1

for the �nest level and 11 for the coarsest level. On the vertical axis, log2(
P
d2i ),

the logarithm of the energy is plotted for each level. This plot is useful to validate

how the original series was reproduced by the estimated attached eddies at di�erent

frequencies. The top frames display the frequency composition of the attached eddies

compared with the original series for U andW on the left and right frames respectively

and for both methodologies. In any case, at low frequencies the di�erences between

the original series and the estimations are negligible in both variables.

The detached eddies were validated according to Townsend's hypothesis as well.

speci�cally, these �ne-scale eddies should follow the frequently called \-5/3 Power
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Figure 4.8: Energy at di�erent frequencies (attached eddy motion top frames ) and
(dettached eddy motion bottom frames)

Law" suggested in Kolmogorov's K41 scaling theory:

Ex(K) / K�5=3;

where Ex(K) is the Fourier power spectral density and K is the wavenumber. The

detached eddies were calculated taking the di�erence between the original signal

and the �ltered series for the Lorentz thresholding criteria. In the case of the time

series decomposition, the �ne-scale eddies were represented by the sum of all but the

dominant real component. The bottom frames of Figure 4.8 illustrate a comparison of

the energies of the estimated detached eddies with the �5=3 line at high frequencies

(wavelet levels 1 through 6). It seems that the �ne-scale eddies for both variables

follow the �5=3 power law consistent with Kolmogorov's K41 theory.
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4.2.4 Conclusions

Some preliminary conclusions can be established from the results on this chapter.

Two di�erent methodologies have been used to make inferences on latent components

that are present in time series data. In the wavelet decomposition, the reconstructed

signal after thresholding is the estimation of a latent process and usually conserves

most of the energy of the signal. Consequently, the wavelet based-solution is a good

candidate for the attached eddy motion part of the velocity components in the turbu-

lence example described above. In addition, the attached eddies are consistent with

Townsends's theory and the detached eddies, calculated as the di�erence between the

original signal and the attached eddies, follow Kolmogorov's K41 theory. Neverthe-

less, the wavelet solution usually observes smooth features in the reconstruction of

the latent process possibly due to the choice of the wavelet basis. In relation with

this, Katul and Vidakovic (1996) developed an algorithm to �nd the optimal wavelet

basis for turbulence data based on minimizing a relative entropy measure, which al-

lows to maximize the discrimination procedure between organized and less organized

eddies.

On the other hand, a time series decomposition as developed in section 3.2.2 is

used to explore and isolate quasi-cyclical components of AR models at di�erent fre-

quencies. The time series is decomposed into time-varying components related to the

roots of the characteristic polynomial of the model. The results in the turbulence

example are also consistent with Townsend's attached eddy motion theory and the

detached eddies follow Kolmogorov's theory as well. The two velocity components an-

alyzed evidence a dominant real root interpreted as the attached eddies having a value

very close to one in absolute value. This suggests the possibility of non-stationary

models for the data and hence the need of decomposition results of models that allow

for non-stationary components as in the case of time-varying autoregressions from
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section 3.3.1.

The next step in the study of latent structure in time series is to consider the

general time series component dynamic linear model presented in section 3.1. That

is, assume that the process xt is unobservable by including a trend and measurement

error components in the models and estimate the process xt and their sub-components

together. These models are developed in the next chapter allowing for the possibility

of having non-Gaussian error terms modeled by mixtures of normals.
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Chapter 5

Heavy Tailed Components

The recent developments for analyzing univariate latent time series components, pre-

sented in chapters 2 and 3, are useful for identi�cation and interpretation of under-

lying processes. This was clearly illustrated in the turbulence example of chapter 4

where the two di�erent methodologies were applied giving similar and comparable

results consistent with the scienti�c theories. The methodology is now extended to in-

clude additional components in the decompositions in the context of the component

dynamic models from section 3.1. The generalizations here involve decomposition

analyses of latent non-stationary time series models in the time-varying autoregres-

sive framework described in section 3.3.1. In addition, the setup allows the inclusion

of heavy-tailed distributions for the innovations helpful in modeling quite radically

ill-behaved series. Moreover, the model accounts for possible stochastic changes in

variance of the latent autoregressive processes modeled through discounting methods

following West and Harrison (1997, chapter 8). This general class of models leads

to important theoretical contributions and associated computational algorithms for

model �tting and exploration. Consequently, a major component of this chapter is in

developing a posterior sampling algorithm via MCMC to make inferences on model

parameters and latent processes. These methodological developments in Bayesian
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multivariate time series have potential in a wide variety of scienti�c �elds and are

presented here in the analysis of eight chemical species obtained from the Greenland

Ice Sheet covering the period 41� 0 Kyr. BP (Marsh and Ditlevsen, 1996).

5.1 Heavy Tailed Components

The results developed in this section are natural extensions of the state-space au-

toregressions presented in West and Harrison (1997, section 15.3). Generalizations to

the Component Dynamic Linear Model introduced in section 3.1 involve adding re-

gression variables together with other latent processes representing di�erent features

of the signal. All these generalizations could be performed by modifying the basic

model with two components and special evolution relations. Explicitly, consider a

DLM of the form

yt = �t + xt + �t; (5.1)

�t = �t�1 + !t; (5.2)

xt =
pX

j=1

�jtxt�j + �t; (5.3)

for t = 1; : : : n, where �t represents an underlying �rst order polynomial trend, xt

is a latent time-varying autoregressive model and �t is the observational noise. The

three sequences of error components are assumed to be independent and mutually

independent with conditionally normal distributions. That is,

�t � N(0; V );

!t � N(0;W=�t) and

�t � N(0; �2t =�t):

for t = 1; : : : n. The additional weight parameters �t and �t are introduced to allow for

errors with heavy-tailed distributions modeled by mixtures of normals. In particular,
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scale mixtures of normals with prior mixing distributions are used to model non-

normal behavior of the stochastic level changes !t and autoregressive innovations �t

via,

p(!tjW ) =
Z
p(!tj0;W; �t)p(�t)d�t and

p(�tj�
2
t ) =

Z
p(�tj0; �

2
t ; �t)p(�t)d�t:

There are di�erent choices of prior distributions that can address di�erent features

of the error distributions. For instance, the class of Gamma priors for the weights

leads to marginal t-distributed error distributions. In particular, assuming �t �

Gamma(m1=2; m1=2) and �t � Gamma(m2=2; m2=2) for all t, the marginal distri-

butions of !t and �t are Student-T with m1 and m2 degrees of freedom respectively.

In cases where the changes in trend are expected to be bigger than the ones coming

from the AR innovations, a fatter tailed distribution on the !t is needed and thus

m1 � m2. Note that the traditional normal model is a particular case of this general

setting when m1; m2 !1, or equivalently �t = 1 and �t = 1 for all t.

The setup of the model and the time-varying autoregressive structure of the latent

process xt allows for further decompositions in quasi-cyclical components as developed

in section 3.3.1. However, the decomposition results are based on observing the

xt process itself and therefore the interest relies now in making inferences about

the latent components �t and xt, together with the autoregressive parameters �t,

and variance components V;W; �2; �t and �t. The theoretical developments begin by

de�ning a (p+ 1)�dimensional state vector �t = (�t; xt; : : : ; xt�p+1)
0 and writing the

model in the state-space form as before,

yt = F0�t + �t and �t = Gt�t�1 + !t;

where the (p + 1) constant vector F, the (p + 1) � (p + 1) evolution matrix Gt and
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the (p+ 1)�dimensional evolution noise !t are given by,

F =

0
BBBBBBBBB@

1
1
0
0
...
0

1
CCCCCCCCCA
; Gt =

0
BBBBBBBBB@

1 0 0 : : : 0 0
0 �1;t �2;t : : : �p�1;t �p;t
0 1 0 : : : 0 0
0 0 1 : : : 0 0
...

...
...

. . .
...

...
0 0 0 : : : 1 0

1
CCCCCCCCCA
; and !t =

0
BBBBBBBBB@

!t
�t
0
0
...
0

1
CCCCCCCCCA
:

The evolution noise sequence !t, follows a conditional singular normal distribution

with zero mean and variance,

Wt =

0
BBBBBBB@

W=�t 0 0 : : : 0
0 �2t =�t 0 : : : 0
0 0 0 : : : 0
...

...
...

. . .
...

0 0 0 : : : 0

1
CCCCCCCA
:

A posterior analysis for this class of models is performed using Markov chain Monte

Carlo (MCMC) simulation methods which are the standard for implementation of

Bayesian inference in other than very simple models.

5.2 Implementation of the Gibbs Sampler

A Markov Chain Monte Monte Carlo algorithm speci�es an irreducible and aperi-

odic Markov Chain with stationary distribution given by the desired joint posterior

distribution. An implementation of the posterior sampling algorithm via Gibbs sam-

pling is outlined here for the unknown parameters fV;�t; �
2
t ;W; �t; �t;Zt; 8tg where

Zt = f�0; �1; : : : ; �tg is the set of state vectors up to time t. The sampling scheme is

based on iterative updating using the full conditional densities of any subsets of the

unknown parameters, call it �. The remaining variables combined with the full data

set, Dn = fy0; y1; : : : ; yng, will be then denoted ��.
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Sampling the state vector, �tj�
�
t

The conditional posterior distributions for the state vectors �tj�
�
t developed here

follow the simulation method named Forward Filtering, Backwards Sampling

(FFBS) originally developed by Carter and Kohn (1994), Fr�uhwirth-Schnatter (1994)

and detailed in West and Harrison (1997, section 15.2.3). The Forward Filtering

step is performed by running a standard DLM analysis for t = 0; 1; : : : n to ob-

tain forward updates of the state vector distributions �tjDt � N(mt;Ct) as ex-

plained in the Appendix A.1. The backwards sampling is performed by sequen-

tially sampling �n; �n�1; : : : ; �1 from the backwards distributions p(�tj�t+1;Dt) for

t = n� 1; n� 2; : : : ; 1; 0. The overall procedure involves three steps:

1. Compute the standard forward updates �tjDt � N(mt;Ct) for t = 0; 1; : : : n,

2. sample the last state vector from �njDn � N(mn;Cn) and

3. sample backwards through time for t = n� 1; n� 2; : : : ; 1; 0; sequentially from

�tj�t+1;Dt � N(ht;Ht) where �t+1 is the value sampled in the previous step.

In the special case of component dynamic linear models (5.1), with time-varying

autoregressive components, the forward �ltering step is performed by following the

updating equations described in the Appendix A.1 to obtain the sequence of moments

mt and Ct together with the auxiliary quantities at;Rt and Bt for t = 0; 1; : : : n. At

t = n a sampled �n from N(mn;Cn) is obtained to start the backwards sampling

step. Note however, that the general backwards sampling algorithm described above

degenerates in models with common components in consecutive state vectors as it is

the case for autoregressive components. For instance, the conditional distributions

�tj�t+1;Dt are singular due to the fact that some of the elements in �t and �t+1 are
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common,

�0t = (�t; xt; xt�1; : : : ; xt�p+2; xt�p+1)
�0t+1 = (�t+1; xt+1; xt; xt�1; : : : ; xt�p+2):

Given �t+1 replace the common components on �t on entries 2; 3; : : : ; p� 1, accord-

ingly. The backwards sampling step at time t is therefore simpli�ed to sample from

bivariate distribution p(�t; xt�p+1j�t+1; xt+1;xt;Dt) where x
0
t = (xt; xt�1; : : : ; xt�p+2)

is the (p � 1)�dimensional vector of common elements. The desired conditional

distribution is calculated by Bayes theorem proportional to

p(�t; xt�p+1jxt;Dt)p(�t+1; xt+1j�t;xt; xt�p+1;Dt): (5.4)

The �rst element, \the prior", can be calculated from the multivariate distributions

�tjDt � N(mt;Ct). This could be done sequentially conditioning on the elements

xt�i for i = 0; : : : p � 2, reducing the dimension of the normal distribution by one

at each stage. The second element, \the likelihood", is computed directly from the

evolution equations (5.2) and (5.3), namely

�t+1 � N(�t;W=�t+1) and

xt+1 � N

0
@ pX
j=1

�j;t+1xt+1�j; �
2
t+1=�t+1

1
A :

In other words, the desired likelihood function p(�t+1; xt+1j�t;xt; xt�p+1; Dt) is simply

the product of the normal distributions above coming from the pair of independent

observations �t+1 and xt+1 conditional on the two parameters (�t; xt�p+1). The bi-

variate distribution (5.4) is now sampled to �ll in the two missing elements of �t.

To complete the backwards sampling step, the process is repeated sequentially for

t = n� 1; n� 2; : : : ; 1; 0 to obtain a sample of Zn. One important thing to note here,

is that the posterior distribution for the initial values �0 is sampled naturally in the

algorithm. Nevertheless, a prior distribution is required for this purpose and it is set
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to be normal with speci�c vague parameters; see West and Harrison (1997, section

15.3.1) for discussion in the constant AR(p) model.

Sampling the TVAR parameters, �tj�
�
t

The estimation of the autoregressive parameters is performed by assuming a random

walk on the evolution as was introduced in section 3.3. Given all the other param-

eters, the problem of �nding posterior samples from the time varying autoregressive

parameters can be written as a dynamic linear model with �t as the state vector,

xt = F0
t�t + �t;

�t = �t�1 + !t;

for t = 1; 2; : : : ; n, where Ft = (xt�1; : : : ; xt�p)
0 is a p�dimensional vector, the in-

novations sequence is assumed �t � N(0; �2t =�t) and the p�dimensional evolution

error is normally distributed !t � N(0;Wt). The evolution varianceWt controls the

variability of the state vector �t. A traditional approach used in West and Harrison

(1997) is to specify Wt using a single discount factor � with values in (0,1). Low

discount factors are consistent with high variability in the �t sequence whereas high

discount factors between 0.9-0.99 lead to smoother estimates and are commonly used

in practice.

Following the standard DLM's theory from West and Harrison (1997), and with

the speci�c relationship for the evolution matrix Wt =
(1��)
�
Ct�1 the updating rela-

tions in the Appendix A.1 are given by:

at = mt�1 Rt = Ct�1=�
ft = F0

tmt�1 Qt = F0
tCt�1Ft=� + �2t =�t

At = Ct�1FtQ
�1
t =� et = xt � F0

tmt�1:

The Forward Filtering step is then completed by computing the sequence of posterior
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distributions �tjDt � N(mt;Ct) where

mt = mt�1 +RtFtQ
�1
t (xt � F0

tmt�1) and

Ct = Rt(I� FtQ
�1
t F0

tRt):

The Backwards Sampling algorithm described in the Appendix A.1 is performed by

sampling the last element �njDn from N(mn;Cn) and then sampling sequentially

�tj�t+1;Dt from N(ht;Ht) with ht = (1 � �)mt + ��t+1 and Ht = (1 � �)Ct for

t = n� 1; : : : ; 1.

Sampling V jV �

Inferences on the observational noise variance are given in terms of the precision

parameter under non-informative Je�rey's priors p(V �1) / 1=V �1. Therefore, the

full conditional posterior distribution for V �1 is also Gamma with shape parameter

n=2 and scale e0e=2, namely Gamma(n=2; e0e=2), where e = (e1; e2; : : : ; en)
0 and

et = xt � F0�t; 8t .

Sampling W jW�

Again under a di�use Je�rey's prior for the precision parameter of p(W�1) / 1=W�1,

the full conditional posterior distribution is given by Gamma(n=2; r0�r=2), where

� = diag(�1; : : : ; �n); r = (r1; r2; : : : ; rn)
0 and rt = �t � �t�1; 8t.

Sampling the variance weights �tj�
�
t and �tj�

�
t

The weights on the stochastic changes in trend have a common Gamma prior as

discussed earlier, Gamma(m1=2; m1=2), which yields to Gamma full conditional pos-

teriors �tj�
�
t � Gamma((m1 + 1)=2; m1=2 + r2t =(2W )), with rt as de�ned above and

for each t = 1; : : : ; n. Likewise, the weights on the autoregressive innovations se-

quence have a common Gamma prior Gamma(m2=2; m2=2) and therefore Gamma
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full conditional posterior distributions �tj�
�
t � Gamma((m2+1)=2; m2=2+e

2
t =(2�

2
t ))

after computing the residuals et = xt�
Pp

j=1 �jtxt�j for t = 1; : : : ; n. One extra point

to note here is the fact that the degrees of freedom m1 and m2 are set a priori, tradi-

tional values are m1 = m2 = 5. Nevertheless, the uncertainty about these parameters

could be included into the model assuming for example a discrete uniform prior dis-

tribution over the set f1; 2; 3; : : :mmaxg and sampling each parameter according to a

multinomial distribution with the corresponding posterior probabilities.

Sampling �2t j�
2�
t

There are di�erent ways to model the variance parameter �2t . In the extense literature

of variance models for univariate time series, the most commonly used are the au-

toregressive conditional heteroscedasticity (ARCH) models developed by Engle (1982)

and later Bollerslev et al. (1994). In such models, the conditional variance is a func-

tion of the squares of the previous observations and past variances. A more realistic

alternative is to think that the variances follow some latent stochastic process. This

is the basic idea behind the Stochastic Volatility Models (SVM hereafter) appearing

in the theoretical literature on option pricing mainly to generalize the Black-Scholes

formula to allow for stochastic volatility, Hull and White (1987). Bayesian inference

on these latter models is an important research area that has been growing in the past

�ve years. Some generalizations along this line will be addressed in next chapters in

a multivariate framework together with multivariate discounting techniques.

For the purpose of univariate component dynamic linear model a discounted vari-

ance technique will be used as developed in West and Harrison (1997, section 10.8).

The basic discounting methods follow foundational developments in Ameen and Har-

rison (1995) and Harrison and West (1987). The idea of discounting is to model the

decay of information about the sequence of precision parameters t = 1=�2t between
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time points. In other words, the goal is to derive t from t�1 by establishing a

\random walk" model that represents the loss of information. The derivation follows

as a special case of multivariate results in Uhlig (1994). Assume for instance that

at time t� 1, the posterior distribution for t�1jDt�1 is Gamma(nt�1=2; dt�1=2) in a

usual notation and set

t = �tt�1=�; (5.5)

where 1 < � < 0 is the discount factor. Suppose now that the prior distribution for

�t at time t is �tjDt�1 � Beta(�nt�1=2; (1� �)nt�1=2) and independent of t�1 noting

that E(�tjDt�1) = �. The prior distribution for t at time t is then,

tjDt�1 � Gamma(�nt�1=2; �dt�1=2):

Note that E(tjDt�1) = E(t�1jDt�1) but the dispersion has increased through the

discounting degrees of freedom parameter �nt�1 < nt�1. The posterior is conjugate af-

ter observing xt, leading to the usual updating equations, tjDt � Gamma(nt=2; dt=2),

where nt = �nt�1 + 1 and dt = �dt�1 + St�1e
2
t =Qt following the notation in West and

Harrison (1997). To include this theory in the Gibbs sampler framework, assume

that 0jD0 � Gamma(n0=2; d0=2) for some n0 and d0 and compute the moments of

the forward distributions to complete the forward �ltering.

The backwards sampling step includes sampling n from Gamma(nn=2; dn=2) and

then sequentially tjt+1;Dt for t = n� 1; : : : ; 1. To do that, note that

p(tjt+1; Dt) / p(tjDt)p(t+1jt; Dt);

where p(t+1jt; Dt) is derived from the Beta evolution 5.5 leading to the following

relation

t = �t + �t+1;

where �t � Gamma((1� �)nt=2; dt=2).

56



This new class of models is now applied in the analysis of eight chemical species

obtained from the Greenland Ice Sheet, (Marsh and Ditlevsen, 1996). The class of

latent time-varying autoregressions developed above are used to model each of the

quite radically ill-behaved series. Further decompositions are then performed to �nd

quasi-cyclical components in the series following the methodology from section 3.3.1.

5.3 Ice Cores Data

During the last glaciation, the North Atlantic region experienced major changes in

climate relative to the Holocene period about 10,000 years in the past. The major

ion series collected as part of the Greenland Ice Sheet Project two (GISP2) pro-

vide a particularly sensitive monitor of these events; see Mayewski and others (1994)

and Marsh and Ditlevsen (1996) for more details on geological description of the

measurements. The data consist of a multivariate set of time series that reveals a

record of variability in the major soluble chemicals of the atmosphere over Green-

land. Consequently, this information can be used to interpret climate changes and

to identify potential inuence of several major climate forcing agents. The analysis

presented here is focused on the eight chemical species calcium, chloride, potassium,

magnesium, sodium, sulphate, ammonium and nitrate originally analyzed in Marsh

and Ditlevsen (1996). The values estimate relative estimate of ion species and are

timed at equal spacings of almost 200 years covering the period 41 � 0 Kyrs. BP

for a total of 206 data points. Figure 5.1 plots the data in reverse order of time to

reect the clear changes and stability of these chemicals in more recent times. These

eight series are believed to monitor terrestrial dusts and marine surface which are the

two primary sources for chemical species transported to the Greenland atmosphere

and hence the relevance of the analyses. Geological studies suggest the existance of

�ve distinct regions, marked on the picture, related to major changes in climate in
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Figure 5.1: Geological chemical species, (x-axis) represents number of years before
present
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the North Atlantic region over time and di�ering in the contributed abundance of

chemical species. In fact, the Holocene region (I), from 0-10,000 years in the past,

observe relative minor changes in climate compared to the dramatic changes in the

glacial (II-V) \stadial" (cold) and \interstadial" (mild) regions. The main interest

here is in the analysis of the common features among the multivariate ion species

and the contrasting divergence from that commonality by individual ion records. For

instance, the �rst six series reect similar patterns in their time-varying periodicities

as can be seen in Figure 5.1. Conversely, the last two series, ammonium and nitrate,

represent less than 8% of the total soluble ionic loading of the atmosphere during

the pre-Holocene regions II-V and observe minimal variation in those portions of the

series. The basic idea of the analysis is to �nd the univariate latent components driv-

ing the ion series and to explore common features in such processes that may help

understanding the reasons for the changes in climate during this period. In addition,

the model should consider the inherent measurement, sampling and laboratory errors

that are naturally present in these kind of data. For these purposes the class latent

autoregressions with heavy-tailed innovations discussed above are used to model each

of the quite radically ill-behaved series.

5.3.1 Analysis and Decomposition

The models used for the inferential process follow the methodology described in

section 5.1 analyzing each one of the univariate series separately. Explicitly, for

each chemical series a model with a �rst order polynomial trend (5.2) superimposed

on a latent TVAR(10) process xt as in (5.3) and with additive measurement error

�t was �tted, ignoring the chemical index i = 1; : : : ; 8 for simplicity. In addition,

discount factors of � = 0:99 and � = 0:95 were set to model time variation in

the AR parameters, �t and �
2
t respectively. In order to capture the big changes in
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trend, prior distributions on the innovations variance weights were established as

�t � Gamma(m1=2; m1=2) and �t � Gamma(m2=2; m2=2) for the trend and time

series components respectively with m1 = 1 and m2 = 30. As a result of this

prior assumptions, �t � 1 and hence the marginal distribution on innovations of the

TVAR(10) process �tj�
2
t will be approximately normally distributed. On the other

hand, the marginal distributions on the innovations of the �rst order polynomial

trend !tjW will follow Cauchy distributions, which seems adequate to model the

obvious and dramatic changes in the level of the ion series. The Gibbs sampler

algorithm described above was used to draw 2,000 samples from the desire joint

posterior distribution after discarding the �rst 5,000 iterations as \burn-in" period.
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Figure 5.2: Absolute values jxtj and standard deviations �t of estimated TVAR(10)
components of the calcium, potassium and sulphate ion series.

Figure 5.2 displays the posterior means of the time-varying innovations standard

deviations �t on the second row, together with their corresponding posterior means

of the latent time series components in absolute value jxtj, in the �rst row. This

60



is illustrated for three ion series Calcium, Potassium and Sulphate which present

relatively di�erent patterns of variability in the �ve regions. For instance, the vari-

ability of these three chemicals is obviously bigger in the glaciation region than in

the Holocene period, specially for Calcium which is understandable due to the fact

that this chemical is usually associated with terrestrial sources Mayewski and others

(1994).

For each series, the posterior means of the time-varying autoregressive processes,

E(�tjy), were estimated and the reciprocal roots �jt computed by solving the AR

polynomial at each time point. Consequently, an instantaneous decomposition of the

estimated latent process was obtained as explained in section 3.3.1. In each case,

the number of complex and real roots was consistent over time, generally indicating

four and sometimes �ve pairs of complex eigenvalues. These complex roots lead

to approximate TVARMA(2,1) processes zjt in (3.6), with time-varying amplitudes,

frequencies and moduli. Figure 5.3 displays the corresponding decompositions of the

six more similar chemical series. Each one of the six frames displays, from top to

bottom, the original data series yt, the estimated posterior mean trajectory of the

trend �t, the posterior mean of latent time series process xt and then the quasi-

cyclical components zjt for j = 1; 2; : : : 4. The quasi-cyclical components are ordered

by decreasing wavelength/period and plotted in the same vertical scale of the data

to appreciate individual contributions. The residuals are negligible by comparison,

therefore at each time point, each one of the ion series is the sum of the trend plus

four oscillatory components corresponding to the complex autoregressive roots and

labeled (1)-(4).

The �rst thing to note from the picture is that the estimated trends capture the

big changes in the original series, especially the radical events occurred in region II

around 12-14 Kyrs. in the past. This e�ect is a consequence of the adequate inclusion
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Figure 5.3: Time series decompositions of six ion series.
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of heavy-tailed error distributions in the model. The latent quasi-cyclical components

resulting of the decomposition of the estimated TVAR(10) processes present common

features among these six chemical series and are clearly separated by the de�ned �ve

regions explained above. In regions IV and V, the four oscillatory components of the

six ion series present similar cyclical behavior in the decomposition. This is more

evident in the last components in region IV and in the �rst two components in region

V. It seems that these two regions represent the mixing of terrestrial and maritime

air masses that are then transported as one to Greenland with a very speci�c cyclical

behavior. The estimated characteristic time-varying frequencies !jt and moduli of

the �rst two dominant components over the last two regions are plotted in Figure

5.4. As can be seen from this picture, there is a consistent pattern in the frequencies
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Figure 5.4: Frequencies and modulus of the two dominant components.

and moduli for the six series over time, noting that in region V, around 35 Kyrs.,

the two main components switch order. These two dominant components represent

periods of 1.5-19 Kyrs. and 0.68-1.6 Kyrs. respectively over these two regions. There
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is an extra need of further investigation for the adequate interpretation of these

numbers in terms of physical events that may have occurred. In regions II and III

all the series observe quasi-cyclical components with very small amplitudes and with

the sulphate series having higher contributions in region II. This maybe because the

system was reorganizing itself before moving into deglaciation and presenting some

cyclical behavior in the last part of region III due to the mixing of terrestrial and

maritime air masses together with cold temperatures, (Marsh and Ditlevsen, 1996).

In the Holocene period, the six series have lower magnitudes due to the reduced

transport e�ciency from terrestrial and maritime sources.

Finally, the same analysis was performed for the last two components of the

series ammonium and nitrate. These two series have similar decompositions in all

the regions and are basically explained by the estimated trends as depicted in Figure

5.5. However, it is di�cult to obtain relevant interpretations of the quasi-cyclical

components due to the low amplitudes. One extra point to note here is the fact that
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Figure 5.5: Time series decompositions of the two last ion series.

at some time points the components at lower frequencies tend to disappear. In these

cases, instead of having a pair of complex roots, two real root components with very

low amplitude are obtained and are usually unidenti�ed from the noise terms. These
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univariate analyses suggest the use of possible di�erent discount factors �i or a change

point model to represent the radical changes in the TVAR parameters. This is clear

for example in the low amplitudes of the quasi-cyclical components observed in the

Holocene region and in the changes in estimated periods from region III to region IV.

5.4 Multivariate Models

It is clear from the univariate analyses above that the set of chemical series have

common features and in some cases the quasi-cyclical components have very similar

structure. This is not surprising due to fact that these chemical species were not

transported to Greenland as individual ion series, but rather as components of chem-

ical compounds carried within air masses having their own chemical characteristic of

source and transport histories.
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Figure 5.6: Latent orthogonal factors obtained by a simple principal components
decomposition.

A common approach to investigate the joint behaviour of the chemical species

is to consider a simple principal component analysis of the multivariate series. For

example, a traditional principal component decomposition of the �rst 6 more sim-

ilar series leads to latent orthogonal processes implied by the eigenstructure of the
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covariance matrix, with eigenvectors given by

0
BBBBBBBB@

0:402 0:541 �0:350 0:278 �0:162 0:565
0:396 �0:655 �0:065 �0:070 0:436 0:464
0:414 0:183 0:050 �0:872 �0:171 �0:059
0:419 0:218 �0:280 0:158 0:564 �0:596
0:410 �0:427 �0:217 0:244 �0:660 �0:326
0:407 0:123 0:863 0:271 �0:006 �0:007

1
CCCCCCCCA
:

In this case, the �rst principal component displays the dominant multivariate chem-

ical association among the series as can be seen in the top frame of Figure 5.6. In

addition, the corresponding �rst eigenvector assigns almost equal weight to each of

the six chemicals explaining about 92% of the total variance, see Figure 5.7. The
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Figure 5.7: Explained variance with the principal components decomposition of six
ion series.

interpretation of this component that combines so many chemical species must be

that of a large-scale dominant feature of the atmospheric system in which all six

species increase or decrease in the same proportions, (Mayewski and others, 1994).

The second principal component is presented in the lower frame of Figure 5.6 and

together with the �rst component explains 98% of the total variance. Unlike the

�rst component, the predominant terrestrial calcium and the predominantly marine

chloride species are oppositely loaded by the corresponding second eigen-vector con-
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trasting these two main sources as clearly depicted in the additive decomposition

of Figure 5.8. The principal component analysis used here is based on computing

orthogonal components that may not be however appropriate in many applications.

In fact, in this example the resulting components in any decomposition may not

naturally be orthogonal due to the fact that the load from di�erent source areas is

always transported by the atmosphere. Moreover, the simple principal component

analysis does not take into consideration the structure of the data overtime and the

possible dynamic properties of the covariance matrix and the latent components that

was suggested by the individual analyses above.
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Figure 5.8: Principal components decomposition of the two dominant ion series,
calcium and chlorine.

5.4.1 Further Extensions

General multivariate models that are capable of isolate common underlying latent

process incorporating the covariance structure between the series and their possible

correlation structure over time are obviously needed in this application and many

others. For instance, it seems desirable to extend the univariate models from the

previous section to consider all the ion series together in a multivariate model. This
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�rst possible generalization is closely related to dynamic factor models and the theory

on reduction of dimensionality developed by Pena and Box (1987) and Tiao and Tsay

(1989) among others. This basic idea of developing dynamic factor models for the

analysis of multivariate non-stationary time series has been widely studied in the

econometrics and �nance literature on co-integration and common component models

as discussed in Escribano and Pena (1994).

The basic setup considers q parallel time series yit that are driven by k < q latent

factor series fjt in a time-varying dynamic linear model framework. The general

model in a vector form is usually written as

yt = �t +Xtft + �t; (5.6)

over t = 1; 2; : : : n where �t is a vector of mean parameters, Xt are dynamic q � k

regression matrices, ft is a k�dimensional vector of latent factors and �t is a zero-mean

observation error. In the context of the ice cores data example, ft can be thought of

the common latent quasi-cyclical components that are present in the eight ion series

and that are modeled by either time-varying VAR or VARMA models. In those cases

direct extensions from the foundational results of Pena and Box (1987) suggest that

the yt vector itself follows a time-varying VARMA model. This is a general class

of time-varying models that are relevant in many scienti�c areas in connection with

generalizations of univariate decompositions of time-varying autoregressive processes.

However, natural issues of parametrization and identi�cation arise when dealing with

factor models leading to questions of appropriate structure of the ft processes and

strict parametric constraints on the Xt matrices.

The �rst step in developing general multivariate models for analysis of latent

factors/processes is to understand the theory behind the basic factor model in a

complete Bayesian setup. This is one of the key points addressed in the next section,

together with potential developments and applications in other scienti�c areas.
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Chapter 6

Bayesian Factor Models

The general methodology developed in the previous chapter allows for the study

of latent components of univariate series. It was clear from the ice-cores example

that some of the estimated components have similar features and share common

structure. In general, in many applications involving multiple time series, the latent

structure is usually driven by a few sources. This is the basic idea behind dimension

reduction techniques such as Principal Components Analysis and Factor Analysis.

Furthermore, these techniques provide parsimonious descriptions and inferences on

covariance and correlation matrices. A full Bayesian approach is developed in this

chapter to make inferences on latent processes driving a set of multiple time series

using factor analysis.

Like principal components, factor analysis is a mathematical model which at-

tempts to explain the correlation between a larger set of variables in terms of a small

number of unobservable or latent random variables called factors. These factors con-

tain the information on the common features among the original variables and the

complex relationships between them. In addition, the factors link together seemingly

unrelated variables and consequently provide insight into the underlying structure of

the data. In other words, factor analysis is primarily concerned with explaining the
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covariance among the variables by identifying the sources of variation. Speci�cally,

the factor model assumes that all the correlations are explained by the common fac-

tors and the residual variation comes from uncorrelated variable-speci�c sources. On

the other hand, principal components analysis is concerned with �nding the set of

linear combinations of the original variables that accounts for most of the total vari-

ance making no distinction between the sources of variation. Nevertheless, principal

components arises as a special case of factor modeling when the speci�c-sources of

variability lead to negligible contributions and the resulting factors are orthogonal,

(Press, 1985).

6.1 Historical Notes

Much of the foundational development of factor analysis was done in the early 1940s

by psychologists seeking a better understanding of human intelligence in cross sec-

tional studies. In �nance and econometrics dynamic factor models have been devel-

oped and used widely in the area of asset pricing as an alternative to the Capital Asset

Pricing Model (CAPM) since the early 1960s. The Asset Pricing Model developed

by Sharpe (1964), Lintner (1965) and Ross (1976,1977) derived the Arbitrage Pricing

Theory (APT) which characterizes the expected return on a security as an approxi-

mate linear function of the risk premiums on systematic factors in the economy; see

Connor and Korajczyk (1996) for a review. There is an extensive literature in factor

models based on maximum likelihood estimation and most of classical procedures

to estimate the factor model are related to the Autoregressive Conditionally Het-

eroscedasticy (ARCH) models. Engle et al. (1990) suggest the Factor-ARCH model

as a parsimonious structure for the conditional variance matrix of the asset excess re-

turns. They apply one and two Factor-ARCH models to pricing Treasury bills. Some

other works that use this approach in asset pricing include Bollerslev (1986,1987),
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Bollerslev et al. (1988), Chou (1988), Diebold and Nerlove (1988), Domowitz and

Hakkio (1985), Engle and Bollerslev (1986), Engle et al. (1987), French et al. (1986),

McCurdy and Morgan (1988) and Milhoj (1987). These papers use univariate time

series models to represent asset returns. However, Ross's (APT) draws its theoreti-

cal sharpness from the assumption that the number of assets approaches to in�nity.

Burmeister and McElroy (1991) tested linear restrictions of the APT in the factor

model and estimated the parameters under nonlinear restrictions using a likelihood

ratio test. A two-pass procedure has been proposed by Chen (1983), Connor and

Korajczyk (1988), Lehman and Modest (1988), Roll and Ross (1980) among others.

They estimate the factor loadings in the �rst pass and then the factors scores treating

the loadings as the true values, so ignoring the uncertainty about parameters.

One key advantage of the Bayesian implementation is that the uncertainty of all

the parameters is naturally incorporated and any function of the parameters may

be estimated. A recent Bayesian paper on factor analysis, Press and Shigemasu

(1989), gives a Bayesian analysis based on informative priors and computes the pos-

terior distributions based on prior information that needs to be assessed. Martin and

McDonald (1975) proposed �nding joint modal estimates of the factor loading and

disturbance covariance matrices with an implicit numerical solution. McCulloch and

Rossi (1990) developed a Bayesian analysis of the APT using a two-pass procedure

where the factors are extracted using Connor and Korajczyk's asymptotic principal

components approach before the full Bayesian analysis is performed. Harvey and

Zhou (1990) and Shanken (1987) proposed Bayesian tests for e�ciency of a given

portfolio. Recently, Geweke and Zhou (1996) analyze the static factor model with

traditional assumptions in the context of the APT using a Gibbs sampling approach.

They evaluate the posterior density for a proposed measure of the APT pricing errors.

This chapter is focused on developing a full Bayesian analysis and implementation of
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the factor model, addressing its practical importance in the study of latent structure.

The basic model will be further developed to include dynamic properties where more

complex features will be incorporated step-by-step.

6.2 The Orthogonal Factor Model

Assume that yt is a q�dimensional random vector with mean � = (�1; �2; : : : ; �q)
0 and

covariance matrix �. The basic k-factor model for observations t = 1; : : : : ; n states

that the q variables are represented by linear combinations of k common factors with

k � q,

yt = �+Xft + �t; (6.1)

where X is a q� k matrix of unknown constant coe�cient parameters called the fac-

tor loadings matrix. The elements of the k�dimensional random vector ft are the

common factors or factor scores and �t is a q�dimensional random vector of con-

ditionally independent and series-speci�c quantities or unique factors. Traditional

assumptions for this model are:

� �t � N(�tj0;	) with 	 = diag( 1; : : : ;  k),

� uncorrelated and standardized factors ft � N(ftj0; Ik) and

� �t and fs are mutually independent for all t; s:

From these assumptions, the k-factor model can be expressed in terms of a simple

condition on the covariance matrix �,

� = XX
0

+	; (6.2)

where the elements on the diagonal of the factor covariance matrix XX
0

are tradi-

tionally called communalities, x2i =
Pk

j=1 x
2
ij, for i = 1; : : : ; q and the elements of
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	 are called speci�cities or uniquenesses. The purpose of the study of the factor

model as it is presented here is twofold. First, �nd the underlying factors that are

common to all the series that may help in understanding the nature of the multi-

variate processes. Second, split the sources of variability into common components

across the series and speci�c contributions of individual variables as in (6.2). These

properties are very appealing in real applications; for instance, the basic APT model

assumes that the returns on a vector of q assets yt follow a k-factor model in line

with Geweke and Zhou (1996).

6.2.1 Identi�cation and Constraints

The k�factor model as it is presented in (6.1) is highly overparametrized and there-

fore unidenti�ed by the data. Issues of identi�ability and uniqueness of parameter

estimates are usually di�cult to answer in the context of factor-analytic techniques.

As a matter of fact, the decomposition (6.2) is basically indeterminate without further

restrictions.

I.- Rank of the loadings matrix

The issue of the rank of the loadings matrix X is usually not addressed by text

books. The fact is that in almost all the cases there is an implicit assumption that

the number of factors in the model k is chosen correctly. If this is not the case and

X is not full rank then the model is not fully identi�ed.

Assume for instance that rank(X) = r with r < k and let Q be a k � (k � r)

matrix such that XQ = 0 and Q0Q = Ik�r. If M is any q � (k � r) matrix where

MM0 is a diagonal matrix then,

XX0 +	 = (XX0 +MM0) +	�MM0

= (X+MQ0)(X+MQ0)0 +	�MM0:
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This implies that � = X̂X̂
0
+ 	̂ where X̂ = X+MQ0 and 	̂ = 	�MM0 and hence

the model is not identi�ed.

Solution: The existence and uniqueness of the factor model is guaranteed if X and

	 are such that ��	 = XX0 and rank(XX0) = k.

II.- Orthogonal rotations

If the k-factor model holds, then it also holds if the factors are rotated. If P is any

k � k orthogonal matrix, then yt can also be written as.

yt = �+X�f�t + �t (6.3)

where the rotated factors f�t = P
0

ft and corresponding factor loadings X� = XP

are valid for the k-factor model without a�ecting the distribution of yt. Moreover,

the �rst two moments E(f�t ) = 0 and Var(f�t ) = P
0

P = Ik, which implies that

� = X�X�0

+	. An in�nite number of solutions are possible related through orthog-

onal transformations and the factor model is unidenti�ed unless some restrictions are

imposed. The problem concerns in general the invariance of the likelihood function

under invertible linear transformations of the factor vectors. There are several ap-

proaches to constrain the model for identi�cation, each raising its own questions of

interpretation of the resulting factor structure, (Press, 1985; Press and Shigemasu,

1989).

Possible Solutions:

1. A traditional solution based on \hierarchical" constraints on the loadings matrix

introduces exibility into the model. From I above, the loadings matrix is

assumed to have rank k, so one can assume without loss of generality that the

�rst k rows of X are independent. Write the loadings matrix as X =

 
X1

X2

!
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where X1 is the k � k matrix composed by the �rst k rows of X and X2 is

the (q � k) � k matrix of the last rows. Since X1 is a nonsingular matrix

there exists a unique orthogonal matrix P such that X1P
0

is a lower triangular

matrix with positive diagonal elements. Explicitly, de�ne a symmetric and

positive de�nite matrix A = X1X
0

1 and use the so called LDU decomposition.

That is, A = LDU where L is a lower triangular matrix with ones on the

diagonal, D is a diagonal matrix with positive numbers and U = L
0

because

A is symmetric. If L1 = LD1=2 then L1 is a unique lower triangular matrix

with positive diagonal elements corresponding to the Cholesky decomposition

A = L1L
0

1: Therefore, P = L�1
1 X1 is a unique orthogonal matrix. Consequently,

to guarantee identi�ability of the factor model we assume that X is of the form,

X =

0
BBBBBBBBBBBBBB@

x11 0 0 � � � 0
x21 x22 0 � � � 0
x31 x32 x33 � � � 0
...

...
... � � �

...
xk1 xk2 xk3 � � � xkk
xk+1;1 xk+1;2 xk+1;3 � � � xk+1;k
...

...
... � � �

...
xq1 xq2 xq3 � � � xqk

1
CCCCCCCCCCCCCCA

: (6.4)

where xi;i > 0 for i = 1; : : : k and xi;j = 0 for i < j; i; j = 1; : : : k: This

condition imposes 1
2
k(k � 1) constraints and uniquely identi�es the loadings

and associated factors. This solution is used by Geweke and Zhou (1996) and

by construction gives a lot of weight to the �rst k series in determining the

factors. In other words, the chosen order of the univariate time series in the yt

vector is viewed as de�ning the factors. The �rst series is a linear regression

with the �rst factor, the second series is a linear regression with the two �rst

factors and so forth. This focuses attention on the choice of ordering in model

speci�cation, and provides interpretation.
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2. A di�erent approach to solve this problem is by rotating the factor loadings to

satisfy an arbitrary constraint such as

X
0

D�1X is diagonal (6.5)

where D is a diagonal matrix, it could be the identity or even 	. In any case,

the diagonal elements are written in decreasing order. This approach assumes

that the columns of X are orthogonal with respect to a weighting function.

This constraint is scale invariant and, except for possible changes of the sign

of the columns, X is completely determined and a particular solution is always

assured implying also 1
2
k(k � 1) constraints. This solution is more restrictive

than the previous one from the interpretation point of view. The columns of

the loadings matrix are forced to be orthogonal.1 Because of that, the focus will

be on constraints on the loadings matrix as in (6.4) and variations of it. In any

case, the identi�cation problem permits the examination of a variety of solutions

for the purpose of selecting the most useful. For instance, it is always possible

to rotate the factors after the estimation to obtain "reasonable" interpretations.

3. A di�erent approach not pursued here is that taken by Press and Shigemasu

(1989). They basically simplify the structure of the model. In their procedure,

zeros appears in speci�c frequencies, in each of the rows and columns of the

factor loading matrix X. They propose a Bayesian solution based on infor-

mative priors on the frequencies of the known elements of the factor loadings

matrix. That is, suppose that by some assessment scheme, s elements of X

can be preassigned so that the identi�cation problem is eliminated. Find s by

solving d = 1
2
q(q + 1) � (qk + q) + s � 0 and elicit the prior information for

1The principal components solution to the orthogonal factor model assumes that the observation

errors are small enough, 	 ! 0 to be ignored, then � = XX
0

. Write X = �D1=2 where � is
a q � k matrix whose columns are the normalized eigen-vectors corresponding to the k largest
eigen-values and D is a diagonal matrix with the corresponding eigen-values.

76



such elements of X. Let x0 be the s � 1 vector of these elements and x1 the

remaining (qk� s)� 1 elements of X. Assume that x0 � N(0;D) and a di�use

prior for 	 and x1. Finally, �nd the posterior distribution of the parameters

to make inferences.

III.- Parsimony

Another identi�cation problem in equation (6.2) concerns the number of parameters

in the factor model. That is, there are 1
2
q(q + 1) distinct elements of �, whereas

the free parameters in the factor model are qk+ q from X and 	 respectively minus

1
2
k(k� 1) from either of the conditions (6.4) or (6.5) in II above. So, in order to have

a unique solution the di�erence d between the number of equations and the number

of unknowns must be positive.

� If d < 0 then there are more parameters than equations and it is expected to

�nd an in�nity of exact solutions for X and 	.

� If d = 0 then it is generally possible to �nd a solution. However, the model

will have as many parameters as equations and hence the factor model (6.1)

o�ers no simpli�cation of the original assumptions and no gain in parsimony is

obtained.

� If d > 0 then there will be more equations than parameters. In this case the

factor model o�ers a simpler explanation of the behavior of yt than the full

covariance matrix.

Solution: Using either of the conditions (6.4) or (6.5) in II above, the conditions for

identi�ability are to select the number of factors such that d � 0 where

d =
1

2
q(q + 1)�

�
qk + q �

1

2
k(k � 1)

�
:
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q k q k q k q k
1 0 8 4 15 10 22 15
2 0 9 5 16 10 23 16
3 1 10 6 17 11 24 17
4 1 11 6 18 12 25 18
5 2 12 7 19 13 26 19
6 3 13 8 20 14 27 20
7 3 14 9 21 15 28 21

Table 6.1: Maximum number of factors k for di�erent number of series q.

Note that by solving this quadratic equation for k, an upper bound on the number of

factors is obtained. Table 6.1 has the relationship between the number of series and

the number of factors allowed. For realistic values of q this bound is unlikely to be

problematic, as practical interest will be in models with smaller numbers of factors.

6.3 Bayesian Analysis

Classical methods for the k-factor model (6.1) are based on maximum likelihood

estimators under the corresponding constraints to obtain unique solutions. The

Bayesian framework allows for posterior estimates even when the likelihood func-

tion is intractable as it is in this case. The conditional distribution of observation t

as described in (6.1) is given by

ytj�;X; ft;	 � N(� +Xft;	): (6.6)

Note that the distribution of the observations unconditional on the factors is easily

calculated,

ytj�;X;	 � N(�;XX0 +	): (6.7)

To perform a full Bayesian analysis, the joint posterior distribution of all the un-

known parameters, � = f�;	;X; ft; 8tg should be calculated by updating the prior

distribution by Bayes' rule.
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6.3.1 Prior Distributions

A convenient joint prior distribution for all the parameters is given by,

p(�) = p(�;	;X;F) = p(�)p(F)p(X;	); (6.8)

where F � N(0; In; Ik)
2 is the n � k factors matrix F = (f1; f2; : : : ; fn)

0. Improper

constant priors are used for � and the qk�k(k�1)=2 non-zero entries of the loadings

matrix X, namely p(xi;j) / c: To complete the prior, independent Gamma priors are

used for the precisions of the disturbance errors de�ned as �i = 1= i, for i = 1; : : : ; q.

Consequently, the joint prior is given by,

p(�) / p(F)
qY

i=1

��0�1
i exp(��0�i=2): (6.9)

Note that the non-informative Je�rey's priors are easily obtained by setting �0 = 0

and �0 = 0. However, Je�rey's priors for the idyosincratic variances cannot be used

here because the likelihood function presents a singularity at zero and hence yielding

to improper posteriors. Therefore, proper priors for these parameters are necessary.

More discussion and other alternatives for priors to follow.

Hierarchical Priors

In general, non-informative priors will be used for calculating posterior distributions

throughout the thesis. Nevertheless, it is worth mentioning alternatives in special

cases. As mentioned above, one traditional problem in orthogonal factor models is

the so called Heywood case when the speci�c variances are very small  i ! 0.3 In

such cases, Je�reys' priors cannot be used and more structured proper priors are

needed, like uniforms or inverse-Gammas.

2Standard notation for matrix Normal distributions, Dawid (1981); see Appendix A.2 for details.

3See Martin and McDonald (1975) for details from the classical point of view.
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One other concern with non-informative priors is the fact that the loadings ma-

trix parameters and the speci�c variances are not independent by construction. From

(6.2) it is clear that X and 	 are correlated and hierarchical priors may be appro-

priate. Press and Shigemasu (1989) proposed informative priors such as:

� Xj	 � N(X0;	; n0Ik). In this case n0 and X0 should be assessed a priori. For

example, the identi�ability constraints can be imposed on X0 by setting some

of its values to zero or forcing its columns to be orthogonal.

� The prior for the disturbance variance is an Inverse-Wishart distribution, namely

	�1 � Wishart(�0;B
�1
0 ) where B0 = diag(b1; : : : ; bq). Note that 	 is not as-

sumed to be diagonal but it is diagonal in expectation. The hyperparameters

�0 and B0 have to be assessed.

6.3.2 Implementation of the Gibbs Sampler

A customized Markov Chain Monte Carlo is performed to sample the posterior distri-

bution of all the parameters. As in previous chapters, the MCMC algorithm speci�es

an irreducible and aperiodic Markov Chain with stationary distribution given by the

desired joint posterior distribution. An implementation of the posterior sampling

algorithm is outlined here based on iterative updating using the full conditional den-

sities of each unknown parameter. Using the same notation as before, any subsets

of the unknown parameters � will be denoted � and �� will represent the remaining

variables combined with the full data set.
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Sampling the factors FjF�

From the unconditional distribution (6.7) and the prior assumption ft � N(0; Ik) in

model (6.1), yt and ft are jointly normal,

 
ft
yt

!
� N

" 
0
�

!
;

 
Ik X0

X Q

!#
;

where Q = XX0 + 	. From properties of the normal distribution the conditional

distribution of ft is given by ftjyt � N(A(yt � �); Ik �AQA0); where A = X0Q�1.

This distribution can be written in matrix form allowing to sample all the factors at

once and not one by one. After some algebra, the full conditional distribution for the

factors,

FjF� � N(Y�	�1X(Ik +X0	�1X)�1); In; (Ik +X0	�1X)�1);

where F = (f1; f2; : : : ; fn)
0 is the n � k factors matrix and Y� is a n � q matrix

with rows yt � � for t = 1; : : : ; n. The mean of this matrix normal distribution is

usually called the Thompson's factor score. Note that by using the identi�cation

constraints on the loadings matrix as described in section 6.2.1 II, where X0	�1X

is restricted to be diagonal, the latter matrix normal posterior distribution will have

diagonal covariance matrices. See the appendix A.2 for details of how to sample

matrix normal distributions.

Sampling the idiosyncratic variances 	j	�

Assuming independent Inverse-Gamma priors (6.9), the full conditional posterior dis-

tribution for the variances are conditionally independent Inverse-Gamma posteriors or

equivalently for i = 1; : : : ; q, for the precisions �ij�
�
i � Gamma((�0+n)=2; (�0+ei)=2),

where ei =
Pn

t=1(yit � �i � x0ift)
2 and xi is the i-th row of the loadings matrix X.
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Sampling the conditional mean and the loadings matrix �;Xj(�;X)�

Under non-informative priors, the mean � and the elements of the loadings matrix

(6.4) can be sampled in blocks. The idea is to sample independently each row of the

loadings matrix with its corresponding mean parameter.

� From model (6.1), with the identi�cation constraints on the loadings matrix

(6.4), the �rst series is modeled as y1t = �1 + x11f1t + �1t for t = 1; : : : n

and x11 > 0. The full conditional posterior distribution is a bivariate normal

truncated in one dimension, namely,

�1; x11j(�1; x11)
� � N

�
(B0

1B1)
�1(B0

1Y1);  1(B
0
1B1)

�1
�
Ifx11>0g;

where Y1 = (y11; : : : ; y1n)
0 is the �rst series and B1 is a N � 2 matrix with

rows (1; f1t)
0 for t = 1; : : : n. This distribution can be sampled directly us-

ing properties of the multivariate normal distribution without using rejection

methods such as used in Geweke and Zhou (1996). The main problem of re-

jection methods is that the rejection probability increases when the values of

the loadings are close to zero. This could happen when the �rst series is not

very similar to the others and has weak linear relationship with the �rst factor.

This issue a�ects convergence of the Markov Chain a�ecting the estimation of

the speci�c variances too. The approach suggested here is to sample this dis-

tribution in two steps. First, sample easily the truncated component x11 from

its marginal posterior distribution using the inverse cdf method and then sam-

ple the corresponding conditional posterior distribution �1j�
�
1 using the value

x11 just sampled. The procedure is similar for the �rst k rows of the loadings

matrix.

� In general, to sample the j�th row, note that yjt = �j +
Pj

l=1 xjlflt + �jt, with

xjj > 0, for j � k and t = 1; : : : n. The full conditional posterior distribution
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for the parameters is the truncated multivariate normal,

�j; xj1; : : : xjjj(�j; xj1; : : : xjj)
� � N

�
(B0

jBj)
�1(B0

jYj);  j(B
0
jBj)

�1
�
Ifxjj>0g;

where Yj is the n � 1 vector of the �rst j series, Bj is a n � (j + 1) matrix

with rows (1; f1t; : : : ; fjt)
0 for t = 1; : : : n. Again, sample �rst the truncated

component xjj from its univariate marginal normal distribution. Given the

sampled value xjj and the rest of the variables, sample (�j; xj1; : : : xj;j�1) from

the corresponding conditional distribution.

� The remaining q � k rows of the loadings matrix and mean components are

sampled jointly using a matrix normal distribution. Let X =

 
X1

X2

!
, where

X2 represents the last q�k rows of the loadings matrix and let also � = (�1; �2)
0

with �2 representing the last q�k components. The full conditional distribution

for the (q � k)� (k + 1) matrix Z = [�2;X2] is,

ZjZ� � N
�
(B0Y(k+1):q)

0(B0B)�1;	(k+1):q; (B
0B)

�

where 	(k+1):q = diag( k+1; : : : ;  q),Y(k+1):q is the n� j matrix of series k + 1

through q and B is a n�(k+1) matrix with rows (1; f1t; : : : ; fkt)
0 for t = 1; : : : n.

Note that the inclusion of normal informative priors is straightforward. After

implementing this model a sample from the posterior distribution of the parameters

is obtained for the orthogonal static factor model (6.1).

6.4 The Oblique Factor Model

It is clear that the purpose of the restrictions imposed to the factor model in section

6.2.1 is to �nd one solution to the problem. That is, the constraints imposed on

the factor loading matrix X as in (6.4) are a mathematical convenience to have a
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unique solution and to make possible the inferential process. However, there will

be situations in which the conditions may seem inappropriate and a solution in a

rotated coordinate system may be preferable. As was explained in section 6.2.1 II,

the loadings matrix X and hence the factors f may be rotated without a�ecting the

distribution of the observations as in (6.3). Moreover, the rotation could be performed

by transforming the model with any non-singular matrix. For example, assume that

the k�factor model holds for n observations yt as in (6.1) with loadings matrix X�

as (6.4) and factors f�t � N(f�t j0; Ik). Let H 6= Ik be any k�k positive de�nite matrix

and decompose it as H = LL04. De�ne new factors as ft = Lf�t with corresponding

loadings matrix X = X�L�1 to obtain an equivalent model, for t = 1; : : : ; n,

yt = � +Xft + �t where, (6.10)

ft � N(ftj0;H) and (6.11)

� = XHX0 +	 = X�X�0 +	: (6.12)

This new setup is traditionally called The Oblique Factor Model. In the covari-

ance matrix decomposition in (6.2) the factors contribute to the covariance matrix

� only through the loadings matrix. On the other hand, the new set of factors may

have better interpretations in real problems if they are correlated. Note that the

decomposition of � is una�ected as is clear in (6.12). Furthermore, the common

source of variabilityXHX0 is decomposed in contributions from the factors variances

H and contributions from the new loadings matrix.

A traditional approach to �t these models is to estimate the orthogonal factor

model and afterwards transform the model by choosing the H matrix to make the

factors as intuitively meaningful as possible. In order to eliminate the ambiguity in

a factor analysis solution, some theories suggest to use a criteria to choose H that

4L could be the Cholesky decomposition of H or in the singular value decomposition H = EDE0,

simply take L = ED1=2 with D the diagonal matrix of eigenvalues and E the matrix of the
corresponding eigen-vectors.
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depends on the variation among the communalities that result after an orthogonal

transformation of the loadings matrix. A convenient choice of rotation is given by

the varimax method, which selects an orthogonal matrix H to provide axes with a

few large loadings and as many zero loadings as possible.

6.4.1 Similar Models

The idea of estimating the variances of the factors in the oblique model (6.11) is a step

forward in understanding factor models. The ideal model though, will estimate the

variances of the factors H together with the rest of the parameters unlike traditional

approaches that rotate the factors and factors loadings after the estimation process.

Note that the number of constraints will increase as more parameters are included into

the model for identi�ability reasons, as explained in section 6.2.1, III. The problem

is that by including H a basic identi�cation problem between X and H arises. In

spite of that, the basic orthogonal model (6.1) can be reparametrized to include a

diagonal variance H for the factors by changing the structure of the loadings matrix.

Consider an orthogonal factor model (6.1) with loadings matrix Xo of the form

(6.4) with elements xoij for i = 1; : : : ; q j = 1; : : : ; k. Let fot be the corresponding

factors fot � N(fot j0; Ik) and de�ne a k � k diagonal matrix H where,

H1=2 = diag(xo1;1; x
o
2;2; : : : ; x

o
k;k):

De�ne a new loadings matrix X = XoH�1=2 with new factors given by ft = H1=2fot .

The new factors are still uncorrelated but with unrestricted variances, ft � N(ftj0;H).
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The new loadings matrix X will have a slightly di�erent shape,

X =

0
BBBBBBBBBBBBBB@

1 0 0 � � � 0
x21 1 0 � � � 0
x31 x32 1 � � � 0
...

...
... � � �

...
xk1 xk2 xk3 � � � 1
xk+1;1 xk+1;2 xk+1;3 � � � xk+1;k
...

...
... � � �

...
xq1 xq2 xq3 � � � xqk

1
CCCCCCCCCCCCCCA

: (6.13)

where xi;i = 1 for i = 1; : : : k and xi;j = 0 for i < j; i; j = 1; : : : k: Note that

the likelihood function of the observations is una�ected and the model is completely

identi�ed with the same number of constraints as in the orthogonal case. An easy

way to understand this is to think that the positive elements of the diagonal of the

loadings matrixXo in the orthogonal model are the standard deviations of the factors

in an equivalent model with unrestricted diagonal factors variance.

This setup also suggests an alternative way of sampling the full posterior distri-

bution of the loadings matrix from section 6.3.25. Moreover, this is a useful way to

write the model that opens the possibility of introducing dynamic properties through

the variances of the factors as it will be addressed in the next chapter. One �nan-

cial example is the dynamic factor model proposed by Ross (1976) for APT with

time-varying factor variances or equivalently time-varying loading matrices in which

the covariances (the betas) of di�erent assets with a particular factor change propor-

tionally. The response of each asset's risk premium to the risk (own variance) of a

particular factor is constant. Assets' risk premia change over time as the risk of a

particular factors changes. In this setting, portfolios with excess returns processes

that have constant conditional variances can always be constructed.

5This issue will be addressed in the next chapter in a more general framework.
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Chapter 7

Dynamic Factor Models and Stochastic

Volatility

The purpose of factor models, as described in previous chapter, is to �nd latent

factors that are common across the multivariate time series. In addition, factor

models implicitly decompose the covariance matrix of the observations in a convenient

and interpretable way splitting the common and speci�c sources of variability. In this

direction, one of the assumption of the models presented before is that the covariance

matrix of the observations � is constant over time. In many applications though,

the main interest is in explicitly describe changes through patterns of time-variation

in parameters driving the underlying latent processes. Dynamic factor models are

developed in this chapter to investigate possible time-varying latent processes and

their implications in modeling changes in covariance matrices over time.

7.1 The Dynamic Factor Model

There are di�erent ways to incorporate dynamic components to the orthogonal factor

model (6.1). The basic idea is to think that there is an instantaneous factor decom-

position of the covariance matrix of the observations. That is, assume that yt is now
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a q�dimensional random vector with mean � and time-varying covariance matrix �t

for t = 1; : : : n. Now suppose that, at each time point, it is possible to decompose

�t in a common and speci�c variability sources as in (6.12) for the constant case.

Consequently, there exist factors ft and errors �t such that the k-factor model holds

at each time t. Note that the setup in (6.11) allows for the possibility of incorporat-

ing time-varying variances Ht to the latent factors in a natural way. That is, extend

(6.11) by considering time-varying factors variances in the basic k�factor dynamic

model, with k < q; for t = 1; : : : ; n,

yt = Xft + �t; (7.1)

ft � N(ftj0;Ht);

where Ht = diag(h1t; h2t; : : : ; hkt) is the matrix of instantaneous factor variances, X

is the loadings matrix of the form (6.13) with columns xj, the idyosincratic errors are

normally distributed �t � N(�tj0;	) and �t and fs are mutually independent for all

t; s. This model enhances the interest in learning all the possible features of the latent

factors and considers the factors variances as latent processes themselves. Moreover,

this framework is similar to early work on this area by Harvey et al. (1994), Jacquier

et al. (1994, 1995) and Kim et al. (1998). The dynamic factor model as presented

in (7.1) incorporates the time-varying structure of the conditional variance of the

observations �t in an instantaneous decomposition,

�t = XHtX
0

+	 =
kX

j=1

xjx
0
jhtj +	t; (7.2)

for all t. Note however, that model (7.1) has implicitly de�ned a time varying struc-

ture in the loadings matrix by letting X�
t = XLt and f

�
t = L�1

t ft where LtL
0

t = Ht.

Furthermore, the dynamic factor model as presented here is a natural generaliza-

tion of univariate variance models. Modeling and forecasting changes in volatility
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of the factor processes Ht and hence changes in the full covariance matrix of the

observations is of key interest.

7.1.1 Initial Approach via Discounting

The model described in (7.1) assumes that the factors are uncorrelated a priori,

namely ft � N(ft;Ht) with Ht = diag(h1t; h2t; : : : ; hkt), where for any pair d; l, the

sequences hdt and hlt are mutually independent. In this case, the factors can be

treated as univariate series and the individual factors variances hit can be modeled

independently. The natural idea would be to model the stochastic changes in variance

using the univariate discounting technique from West and Harrison (1997, chapter

8) and explained in section 5.2. The Gibbs sampling setup from section 6.3.2 will

include a new step to sample each of the individual sequences hit as described in

section 5.2. In addition, some changes in the full conditional distributions of the

loadings matrix X in the form (6.13) will be needed.

In particular, if the discount factor is set to one, the factor variances will be

constant over time Ht = H implying a di�erent way to sample the orthogonal factor

model (6.1) from section 6.3.2. That is, instead of sampling the loadings matrix

X using multivariate truncated normals, use model (7.1) with loadings matrix as

in (6.13) and sample the factors variances from the corresponding Inverse-Gamma

distributions.

The general results of this approach are related to the multivariate versions of

discounting from West and Harrison (1997, chapter 16). However, general models

that include correlated factors variances with forecasting properties are desirable and

will be addressed in the next section.
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7.2 Multivariate Stochastic Volatility Models

From the class of stochastic variance models, the so called Stochastic Volatility Model

(SVM) has been recently used in practical problems. This model assumes a station-

ary process for volatilities or a function of them. In the univariate case, classical

estimation of SVM is based on approximations due to the di�culties in handling the

likelihood function. The most common implementations of such models are based

on the Method of Moments and Quasi Maximum Likelihood, (Melino and Turnbull,

1990). Harvey et al. (1994) employed Kalman �ltering to estimate the parameters

by maximizing the quasi-likelihood. This estimator is consistent and asymptotically

normal but is sub-optimal in �nite samples because the log chi-square distribution

that they used is poorly approximated by a normal distribution.

The use of MCMC techniques for the analysis of univariate SVM with conditional

normally distributed observations was introduced by Jacquier et al. (1994) and Shep-

hard (1993). Their single move sampler is based on a simple accept/reject procedure

to sample the full conditional distribution of the log volatilities. The main problem

with this method is that the log volatilities are highly correlated and therefore the

movements in the samples are very small for each component of the full conditional

producing slow converging rates. This method requires a huge amount of iterations

to generate samples from the joint posterior distribution. In order to break correla-

tions and improve this method, Shephard and Pitt (1997) propose to sample groups

of consecutive log volatilities using a customized Metropolis algorithm.

An alternative method to sample the joint posterior distribution is by using the

multi-move sampler based on state space models described in Kim et al. (1998). The

idea is to apply a non linear transformation to the data and approximate a log chi-

square distribution with a mixture of seven normals; see Kim et al. (1998) for details.

These non-Gaussian or conditionally Gaussian state space models were introduced
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by Shephard (1994b) and Carter and Kohn (1994) and are very well explained in

West and Harrison (1997, chapter 15).

The extension of variance models to a multivariate framework is of special inter-

est, especially in portfolio and asset pricing as will be addressed in the next chapter.

Most of the work in this area is related to multivariate ARCH models and factor mod-

els as expected. Inferences issues for multivariate ARCH-style models are discussed

in M�uller and Pole (1998), whereas Bollerslev et al. (1988) estimate the multivari-

ate version of the GARCH model. Engle (1982) proposed a k-factor GARCH model

where the conditional variance matrix depends on the conditional variances of k or-

thogonal linear combinations of the data yt. The estimation was done by maximum

likelihood and Engle et al. (1990) suggest a simple two-stage procedure. Boller-

slev and Engle (1993) give conditions for covariance stationarity of k-factor GARCH

models and show how the multivariate IGARCH models allow for the possibility of

co-persistence in variance. Diebold and Nerlove (1988) and later King et al. (1994)

proposed a relatively parsimonious latent factor model where the common changes in

volatility are due to a single unobserved latent factor subject to ARCH e�ects. This

model implies similar common movements in the levels and volatilities, that should

be modeled separately.

Harvey and Stock (1988) and Harvey et al. (1994) incorporate common factors in

multivariate SVM using the theory of unobserved components time series models de-

scribed in Harvey (1989). They discuss the case where there are persistent movements

in volatility, modeled by a multivariate random walk. A di�erent generalization of

SVM through dynamic factor models with non-Gaussian observation errors is related

to the factor ARCH models of Diebold and Nerlove. It was mentioned as a possible

multivariate model by Shephard (1996), Kim et al. (1998) and discussed by Jacquier

et al. (1995). In the latter article, JPR proposed the MCMC single move sampler
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method repeatedly to analyze the multivariate model. Their basic model speci�es

a stochastic factor structure for the variance covariance matrix as in (7.1) assum-

ing that the univariate factor series fti follow standard univariate SV models and

discussing possible extensions also mentioned in Kim et al. (1998). The extensions

proposed in this thesis use dynamic factor models (7.1) and allow the log volatilities

of the factors to follow a vector autoregression with correlated innovations.

7.2.1 Latent Volatility Processes

Suppose as usual that yt is a q�dimensional random vector with mean � and covari-

ance matrix �t following a dynamic factor model (7.1) for t = 1; : : : ; n. In the factors

variance Ht, de�ne �it = log(hit) for each i = 1; : : : k and write �t = (�t1; : : : ; �tk)
0:

Assume that the �t sequence follows a latent stationary vector autoregression of order

one, VAR(1), centered around a mean � = (�1; : : : ; �k)
0

. Namely,

�t = �+�(�t�1 � �) + !t for t > 1; (7.3)

and �1 � N(�1j�;W): (7.4)

where � = diag(�1; : : : ; �k) is the diagonal matrix of factor individual autoregressive

coe�cients. This � matrix plays the role of the persistence in volatility and its

elements generally be close to one, lying in part of the stationary region j�ij < 1. The

scale parameter exp(�=2) can be thought of as the modal instantaneous volatility.

The vector innovations !t are conditionally independent over time, and normally

distributed with

!t � N(!tj0;U); (7.5)

for some innovations varianceU which is the volatility of the log-volatility. One of the

consequences of this model is that each �t is drawn from the stationary distribution

of this vector AR(1) model,

�t � N(�tj�;W); (7.6)
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whereW satis�esW = �W�+U: Consequently, the correlation patterns in U and

W; while similar, depend on the autoregressive parameters. In particular, for each

factor pair j; h the covariance elements areWjh = Ujh=(1��j�h): The model allows

dependencies across volatility series through non-zero o�-diagonal entries in U and

W: Model (7.1) combined with equations (7.4) and (7.4) is a natural generalization

of the univariate SVM, and thus can be calledMultivariate Stochastic Volatility

Models. In the case of k = 1 these models have been used as an approximation to

the stochastic volatility di�usion by Hull and White (1987) and Chesney and Scott

(1989).

7.3 Bayesian Inference and Computation

The model as speci�ed so far comprises the basic dynamic factor structure (7.1) with

supporting assumptions of conditional normality and independence, combined with

the SV model (7.4) for the log-volatilities of the factor processes. Model completion

for Bayesian analysis requires prior distributions for the full set of parameters, namely

� = f�;X;	;�;�;U; ft;Ht; 8tg:

Bayesian inference for any speci�ed prior distributions requires the computation and

summarization of the implied posteriors for these model parameters. Despite the

fact that there are too many parameters, the problem can be separated into two big

parts. First, from the dynamic factor model setup in (7.1), it is clear that given the

log volatilities �t and hence the factors variances Ht, the loadings matrix X, the

factors ft, the mean � and the speci�c variances 	 are conditionally independent

of the rest of the parameters. Likewise, given the factors ft, the log-volatilities �t,

the scale parameter �, the variance U and the VAR parameters � are conditionally

independent of the rest of the factor model parameters.
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The priors are speci�ed in terms of conditionally independent components similar

to those in section 6.3.1 for the orthogonal factor model, namely

p(�) = p(F)p(�)p(X)p(	)p(�)p(�)p(U); (7.7)

where the marginal priors are either standard reference priors or proper priors that

are chosen to be conditionally conjugate, as discussed before. The outlook here is

to explore the use of reference priors to the extent possible to provide an initial

analysis framework. These prior speci�cations reect this view, though these models

do require the use of informative, proper priors for some model components due to

identi�cation issues. Further, speci�c applications may use alternative prior speci�-

cations, both in terms of informative priors on model components and in terms of

prior dependencies between parameters as discussed in section 6.3.1. Assume, for

instance, standard reference priors for the univariate entries in the conditional mean,

the factor loading matrix and the idiosyncratic variance matrix, so that

p(�)p(X)p(	) /
qY

j=1

 �1
j :

Note that the prior for X is, of course, subject to the speci�ed 0/1 constraints on

values in the upper triangle and diagonal in (6.13), so the constant prior density ap-

plies only to the remaining, uncertain elements. In addition, use independent normal

priors for the univariate elements of � and the diagonal elements of �: This allows

for both reference priors, by setting the prior precisions to zero, and restriction of the

values of each �j by adapting the prior to be truncated to (0; 1): Finally, use an infor-

mative inverse Wishart prior for the VAR(1) innovations variance matrixU: This will

often be speci�ed with hyper-parameters based on prior data analysis, as illustrated

in the applications in next chapters. Notice that an improper reference prior on U;

together with that so speci�ed for 	; is simply inappropriate, as the two determine
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separate sources of variability in the data that are confounded in the model. This

point, rather critical to model implementation and resulting data analysis, is almost

implicit in the prior work of Kim et al. (1998). These authors use informative proper

priors for innovations variances that parallel our assumptions in their univariate SV

models; though they present these priors without further discussion, the propriety is

critical in overcoming otherwise potentially problematic confounding issues. Hence

initial analysis of previous data, or some other prior elicitation activity, is needed. For

instance, in the applied development of next chapter, Bayesian multivariate variance

discounting analyses are used to provide preliminary analysis of a reserved initial

section of data as input to this. For now, the key point is that the prior for U is both

proper and has conditionally conjugate inverse Wishart form.

Iterative posterior simulation uses an MCMC strategy that extends those in ex-

isting SV models (Jacquier et al., 1995; Kim et al., 1998) to the multivariate case,

introduces elements of MCMC algorithms for Bayesian factor analysis explained in

section 6.3.2 and used in Geweke and Zhou (1996). Novel components derived from

models with latent VAR components with correlated innovations are developed here

following the work in (Aguilar and West, 1998; West and Aguilar, 1997) in a quite

di�erent context described in chapters 9 and 10 of this thesis. From the computa-

tion point of view, there are various possible extensions and alternative methods for

components of the MCMC analysis below, such as in utilizing some of the ideas from

Shephard and Pitt (1997), though have not been explored.

7.4 Implementation of the Gibbs Sampler

This section provide an outline of the iterative posterior sampling algorithm for the

unknown parameters � for the multivariate SVM above. At some stages, it is easy to

simulate directly from the full conditional distributions, at others it is required to in-
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troduce novel Metropolis-Hastings accept/reject steps. As in previous sections, each

of the following sections represent the full conditional distributions of the parameters

and latent variables conditional on the previously simulated values of all other vari-

ables. To start, note that because of the conditionally independence relations, the

full conditional for the idyosincratic variances 	 is the same as for the orthogonal

factor model and described in section (6.3.2).

Sampling the latent factors ftjf
�
t

From model (7.1) yt and ft are jointly normal, namely

 
ft
yt

!
� N

" 
0
�

!
;

 
Ht AtQt

QtA
0
t Qt

!#
:

In consequence, the full conditional posterior distributions for the factors ft are given

by ftjyt � N(At(yt��);Ht�AtQtA
0

t); where Qt = XHtX
0

+	 and At = HtX
0

Q�1
t .

The ft are conditionally independent and so sample values are drawn independently

from this set of normal distributions for t = 1; 2 : : : ; n:

Sampling the conditional mean and loadings matrix �;Xj(�;X)�

The full conditional distribution for the mean � and the loadings matrix (6.13) is very

similar to the orthogonal factor model from the previous chapter. The conditional

likelihood function for these parameters is
Qn

t=1N(ytj� + Xft;	); which is a log-

quadratic form in � and the uncertain elements of X: Thus, combined with a normal

or uniform reference prior, implies a multivariate normal conditional posterior.

� From the dynamic model (7.1) and due to the shape of the loadings matrix

(6.13), the �rst series is modeled by y1t = �1 + f1t�1t, for t = 1; : : : n. Thus, the
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full conditional distribution for �1 is straightforward,

�1j�
�
1 � N

 Pn
t=1(y1t � f1t)

n
;
 1

n

!

� To sample the j�th row note that yjt = �j +
Pj�1

l=1 xjlflt + fjt + �jt; for j � k

and t = 1; : : : n. The full conditional posterior distribution for the parameters

is given by

�j; xj1; : : : xj;j�1j(�j; xj1; : : : xj;j�1)
� � N

�
(B0

jBj)
�1(B0

jY
�
j);  j(B

0
jBj)

�1
�
;

where Y�
j is the n� 1 vector with elements yjt � fjt and Bj is a n� j matrix

with rows (1; f1t; : : : ; fj�1;t)
0 for t = 1; : : : n.

� The remaining q � k rows of the loadings matrix and mean components are

sampled in the same way as in section 6.3.2 for the orthogonal factor model.

Sampling the latent log volatilities �tj�
�
t

As it was established before, given the imputed values for the full factor process ft

over time t; the volatilities Ht are conditionally independent of �;X and 	. The

approach taken here is to generalize the O�set Mixture Method developed in Kim et

al. (1998) and combine it with recent developments in VAR models as in (Aguilar and

West, 1998; West and Aguilar, 1997). The idea is to sample all the log-volatilities �t

at once by producing an e�cient algorithm based on DLM theory. To start, write the

distributional assumptions on the factors ft � N(0;Ht) as a non-Gaussian dynamic

linear model. Speci�cally, for each factor i at time t write fit = exp(�it=2)�it, where

�it � N(0; 1) and �it = log(hit). Apply the traditional nonlinear transformation

zit = log(f 2it) to get,

zit = �it + �it;
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for i = 1; : : : ; k and t = 1; : : : n. Note that the implied observation errors, de�ned

by �it = log(�2it), are independent and follow log��2
1 distributions. To deal with this,

the multi-move sampler approach from the literature in univariate SVM will be used

to approximate the log(�2) distribution with a discrete mixture of seven normals,

namely

p(�it) �
7X

j=1

qjN(�itjmj � 1:2704; v2j ); (7.8)

with mixing probabilities qj, means mj and variances v2j selected to closely approxi-

mate the exact density and are given in Table 7.1 for j = 1; : : : 7; see Kim et al. (1998)

for details of the approximation. It should be noted that the mixture density can also

be written in terms of indicator variables. Speci�cally, it is convenient to augment

the parameter space and introduce indicator variables sit over the set f1; 2; : : : ; 7g to

identify the normal mixture component for �it. Explicitly, �it is conditionally normal,

�itjsit = j � N(�itjmj � 1:2704; v2j );

with Pr(sit = qj)

for j = 1; : : : ; 7: Note that, this new variable sit will be an extra parameter to include

in the MCMC algorithm. Given the indicator variables sit, the observation errors

�it are independent over i as well as over t. This is a direct multivariate extension

of the univariate approach taken by Kim et al. (1998). Explicitly, conditional on

the indicators, a multivariate dynamic linear model for the sequence of log-volatility

vectors is de�ned,

zt = �t + �t (7.9)

�t = �+�(�t�1 � �) + !t

where zt = (z1t; : : : ; zkt)
0

, �t = (�1t; : : : ; �kt)
0 and with mutually independent errors

�t and !t. Equations (7.9) and (7.4) combined with the initial version for the �1
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Means Variances Weights
j mj v2j qj
1 -10.12999 5.79596 0.00730
2 -3.97281 2.61369 0.10556
3 -8.56686 5.17950 0.00002
4 2.77786 0.16735 0.04395
5 0.61942 0.64009 0.34001
6 1.79518 0.34023 0.24566
7 -1.08819 1.26261 0.25750

Table 7.1: Moments and weights of the mixing distributions to approximate a
log(�2)distribution.

(7.4) de�ne a conditionally Gaussian multivariate dynamic linear model with known

variance matrices and state vector sequence �t: To sample the log-volatilities apply

DLMs theory as detailed in West and Harrison (1997, chapter 15). The forward-

�ltering, backwards-sampling algorithm is then used to sample the full set of vectors

f�t; t = 1; : : : ; ng from the implied conditional posterior following formulas in the

Appendix A.1. Note that, in more elaborate models for the volatility processes, the

alternative sampling method using the simulation smoother of De Jong and Shephard

(1995) may have computational advantages not realized in this simple VAR model

setup.

One extra point to note is that �it and !it are assumed to be uncorrelated. Con-

versely, suppose that these two errors are correlated with correlation parameter �i for

i = 1; : : : ; k. This assumption could be very important for stock returns producing

what is called the leverage e�ect. That is, there is an asymmetrical relationship be-

tween the sign and magnitude of prices. If �i < 0 then a decrease in price (negative

return) is associated with a positive variance shock !it. However, information about

the sign of this correlation is lost due to the transformation. Harvey and Shephard

(1996) estimated the parameter by quasi-maximum likelihood method treating the
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signs as an ancillary statistic.

Sampling the indicators sitjs
�
it

Given the sampled values of �t; sample each one of the indicator variables sit inde-

pendently from multinomial distributions with posterior probabilities,

Pr(sit = jjs�it) =
qjN(zitj�it +mj � 1:2704; v2j )P7
j=1 qjN(zitj�it +mj � 1:2704; v2j )

j 2 f1; 2; : : : ; 7g; (7.10)

for i = 1; : : : ; k and t = 1; : : : ; n. The indicators being conditionally independent and

so easily sampled.

Sampling the VAR innovations variance matrix UjU�

The structure of the full conditional posterior for the innovations variance U; and

the resulting Metropolis-Hastings strategy for simulation, is precisely as developed for

component VAR models in a quite di�erent context in West and Aguilar (1997) and

Aguilar and West (1998). De�ne the volatilities deviation from the mean t = �t��

and reparametrize the evolution equation (7.4) as,

t = �t�1 + !t (7.11)

and

1 � N(1j0;W): (7.12)

The full conditional posterior for U is given, in terms of the inverse U�1; by

p(U�1jftg;�) / p(U�1)p(ftgj�;U)

/ p(U�1)p(1j�;U)
nY
t=2

p(tjt�1;�;U)

/ p(U�1)a(U)jU�1j(n�1)=2exp(�trace(U�1G))
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with

G =
nX
t=2

(t ��t�1)(t ��t�1)
0

and

a(U) = jWj�1=2exp(�trace(W�11
0
1)=2)

with W = �W�+U: Under a speci�ed Wishart prior Wr0(U
�1jR0); this posterior

density is proportional to

a(U)Wr(U
�1jR)

where r = r0 + n� 1 and rR = r0R0 + (n� 1)G: Use the Wishart distribution as a

proposal distribution in a Metropolis-Hastings algorithm. That is, given a \curren-

t" value of U�1 and corresponding W; sample a \candidate" value U�1� from the

Wishart distribution Wr(U
�1jR); and accept it with probability

minf1; a(U�)=a(U)g

where W� = �W��+U�.

Sampling the VAR coe�cients �j��

The structure of the conditional posterior for �; depends only on the centered log

volatilities t = �t � � for each t; and the innovations variance U,

p(�jftg;U) / p(�)p(ftgj�;U)

/ p(�)p(1j�)
NY
t=2

p(tjt�1;�)

/ p(�)N(1j0;W)
NY
t=2

N(tj�t�1;U)

where W = �W� + U is easily evaluated as a function of � and U: Write � =

(�1; : : : ; �k)
0 for the diagonal of�; and E = diag(t�1): Then the conditional posterior
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may be written as proportional to

p(�)c(�)N(�jb;B)

where

b = B
nX
t=2

E0U�1t and B�1 =
NX
t=2

E0U�1E;

and

c(�) = jWj�I=2exp(�trace(W�11
0
1)=2):

Under independent uniform priors for each of the �j;
1 the full conditional posterior

distribution for � is the above multivariate normal N(�jb;B) truncated to the (0; 1)

regions in each dimension, and then multiplied by the factor c(�): This may be

sampled in several ways like using a Metropolis Hastings algorithm that takes the

truncated multivariate normal component as a proposal distribution. Explicitly, given

a \current" value of �; with corresponding matrices � andW; sample a \candidate"

vector �� from this truncated normal, compute the corresponding diagonal matrix

�� and variance matrix W� such that W� = ��W��� +U; then accept this new �

vector with probability

minf1; c(��)=c(�)g:

Sampling the mean log-volatilities �j��

The full conditional distribution for the mean of the log volatilities is given by,

p(�j��) / p(�)p(�1j�)
NY
t=2

p(�tj�t�1;�)

/ p(�)N(�1j�;W)
NY
t=2

N(�tj�+�(�t�1 � �);U)

1Kim et al. (1998) propose an informative prior to avoid problems when the data are close to be
non-stationary, �j � 1. The proposed prior involves letting �j = 2��

j�1 where �
�

j � Beta(20; 1:5):
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whereW = �W�+U as explained above. Under a normal prior N(�jm0;M0); the

full conditional posterior is normal N(�jm;M) with

M�1 =M�1
0 +W�1 + (n� 1)(I��)U�1(I��)

and

m =M

"
M�1

0 m0 +W�1�1 + (I��)U�1
nX
t=2

(�t ���t�1)

#
:

The case of a uniform reference prior is recovered by setting M�1
0 = 0:

7.5 Forecasting

The goal of any forecasting exercise is to compute predictive densities. This is not

done analytically here, but instead the posterior samples obtained from the Gibbs

sampler algorithm are used to draw samples from the desire distributions. One of the

main advantages of the stochastic volatility models is that by assuming a stationary

process on the log-volatilities one can easily obtain reasonable forecasts of the actual

volatilities and hence the factor processes themselves. Explicitly, the one-step-ahead

prediction density for the factors is de�ned by

p(ft+1jDt) =
Z
p(ft+1jHt+1;�;Dt)p(Ht+1jHt;�;Dt)p(Ht;�jDt)d�dHtdHt+1

where � = f�;X;	;�;�;U; f1; : : : ; ftg and Dt = fy1; : : : ;ytg. This distribution

is sampled by the method of composition as follows. Use the posterior simula-

tion values of p(Ht;�jDt) obtained from the Gibbs sampler algorithm to sample

p(Ht+1jHt;�;Dt). Namely, for each set of samples H
(j)
t and �(j)(j=1,2,. . . ,M) use

the VAR(1) evolution equation, �t+1 = �+�(�t � �) + !t+1, to draw values from,

�
(j)
t+1j�

(j)
t � N(�(j) +�(j)(�

(j)
t � �(j));U(j)):
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This will directly give samples of the factors volatility processes H
(j)
t+1 = expf�

(j)
t+1g.

Then, if required, draws from the predictive distribution of the actual factors can

be obtained by sampling f(j)t+1 � N(0;H(j)
t+1). However, in many applications, the

interest lies more on forecasting the actual time series yt+1 rather than the latent

processes. The methodology is easily extended to pursue these goals by computing

the one-step-ahead predictive distribution of the actual observations,

p(yt+1jDt) =
Z
p(yt+1j�t+1;�;Dt)p(�t+1j�t;Dt)p(�tjDt)p(�jDt)d�d�t�t+1;

where � = f�;X;	;�;�;U; ft;Ht; 8tg. This distribution can be sampled by the

method of composition as well by using the computed samples of the factors volatility

processes H
(j)
t+1 to �nd direct samples of the observations variance,

�
(j)
t+1 = X(j)H

(j)
t+1X

0(j) +	(j);

for j = 1; 2; : : : ;M . At this point, and without further sampling, one can easily

obtain the moments of the predictive distribution yt+1jDt using the following facts:

E(yt+1jDt) = E
h
E(yt+1j�;�t+1)jDt)

i
(7.13)

= E(�jDt) and (7.14)

Var(yt+1jDt) = Var
h
E(yt+1j�;�t+1)jDt

i
+ E

h
Var(yt+1j�;�t+1)jDt

i

= Var(�jDt) + E(�t+1jDt);

which can be evaluated using Monte Carlo methods. Moreover, samples from the

actual predictive distribution of the actual returns are obtained by drawing values

from yt+1 � N(�(j);�
(j)
t+1). These samples can further used for diagnostic checking

by calculating, for instance, probabilities that y2t+1 is less than the observed value

z2t+1,

Pr(y2t+1 < z2t+1) =
1

M

MX
j=1

Pr(y2t+1 < z2t+1j�
(j);�

(j)
t+1):
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These probabilities are independent and identically distributed uniform random vari-

ables which can be mapped using the inverse cdf method to standard normal samples

and used for normality tests as described in Kim et al. (1998).

In the illustrations in next chapter the dynamic factor model with stochastic

volatility components is used to estimate and forecast time-varying covariance ma-

trices and applied in dynamic asset allocation and portfolio construction.
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Chapter 8

Dynamic Asset Allocation

In the last chapter a new class of dynamic factor models for multivariate time series

and the incorporation of stochastic volatility components for latent factor processes

were developed. The models are direct generalizations of univariate stochastic volatil-

ity models, and represent speci�c varieties of models recently discussed in the growing

multivariate stochastic volatility literature. The predicting ability of these models,

through modeling dependencies in volatility processes, makes them suitable for a wide

variety of applications. In particular, potential improvements, relative to standard

methods, in short-term forecasting of multiple series are of great interest in the �nan-

cial and econometric areas. In this chapter, the dynamic factor stochastic volatility

models are used in forecasting and portfolio construction in studies of multiple in-

ternational exchange rates series. The results are compared and connected with the

much simpler method of dynamic variance discounting that are reviewed in the next

section and used to obtain prior information on parameters for the dynamic factor

model as discussed above. Discounting methods have been, for over a decade, a stan-

dard approach in applied �nancial econometrics in the Bayesian forecasting world.

This standard method simply \reacts" to volatility changes but do not anticipate the

forms of those changes as explained below.
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8.1 Bayesian Discount Estimation

The univariate discounting methods developed in West and Harrison (1997) and

described in section 5.2 is now extended to the general multivariate context. This

approach leads to the embedding of exponentially smoothed estimates of \local"

variance/covariance structure within a Bayesian modeling framework, and so provides

for adaptation to stochastic changes as time series data are processed. Modi�cations

to allow for changes in discount rates in order to adapt to varying degrees of change,

including marked/abrupt changes in volatility patterns, extend the basic approach.

The resulting update equations for sequences of estimated volatility matrices have

univariate components that relate closely to variants of ARCH and GARCH models,

and so it is not surprising that they have proven useful in many applications.

The matrix discounting methods were introduced in Quintana and West (1987)

and Quintana and West (1988) and have been used as a component of applied

Bayesian forecasting models in �nancial econometric settings for over a decade (Quin-

tana, 1992; Putnam and Quintana, 1994a; Putnam and Quintana, 1994b; Putnam

and Quintana, 1995; Quintana and Putnam, 1996; Quintana et al., 1995). Variants

of the basic method of variance matrix discounting, described next, have formal the-

oretical bases in matrix-variate \random walks" Uhlig (1994, 1997); see West and

Harrison (1997, section 16.4.5) for details.

8.1.1 Variance-Covariance Discounting

Consider as usual a q�variate conditionally independent time series yt; (t = 1; 2; : : : ; n)

normally distributed with stochastically time-varying variance matrices �t; namely,

N(ytj0;�t) for each t: Bayesian discounting methods arise from a matrix-variate

random walk for the �t process, resulting in simple sequential updating of inverse

Wishart posteriors for inference on �t as time evolves. Using the notation of West
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and Harrison (1997), the time t posterior is of the form p(�tjDt) = W�1
nt
(�tjSt)

where Dt = fD0;y1; : : : ;ytg = fDt�1;ytg is the sequentially updated information

set at time t: Here nt is the degrees of freedom and St a posterior estimate of �t;

the posterior harmonic mean. The notation W�1
r (�jS) indicates the inverse Wishart

distribution with r degrees of freedom and scale matrix S (see West and Harrison,

as referenced). The sequence of estimates St is trivially updated sequentially in time

by the forward exponential moving average formula

St = (1� at)St�1 + atyty
0
t (8.1)

with weight at = 1=(1+ �nt�1) based on a discount factor �: This discount factor lies

in (0; 1); is typically between 0.9 and 1 and will be very close to unity for data at high

sampling rates. Having analyzed a �xed stretch of data t = 1; : : : ; n; the sequence

of estimates St is revised by the related backward smoothing formula to incorporate

the data at times t+1; : : : ; n in inference on �t: Denoting the revised estimate of �t

by St;n; the formula is given in terms of inverse variance matrices by the backward

recursion

S�1
t;n = (1� �)S�1

t + �S�1
t+1;n (8.2)

for each t = n� 1; n� 2; : : : ; 1; and starting with Sn;n = Sn: See West and Harrison

(1997, pp608-609) for further details, and the various references by Quintana and

coauthors listed above for development and application in econometric �nance.

Despite the fact that there are ranges of possible models for a non-zero, stochastic

mean function that may be of interest, the most basic model of an assumedly constant

mean � is considered here, so that

yt � N(�;�t); (8.3)

consistent with the dynamic factor model (7.1). In this case the forward updating

108



formula (8.1) is modi�ed by replacing the observation yt by the appropriate stan-

dardized forecast error, following West and Harrison (1997, pp608-609).

As it was mentioned earlier, one important issue in any model for variance-

covariance matrices is understanding the nature of changes in covariance patterns,

and the underlying latent mechanisms driving such changes. Because of that, in some

applications of variance matrix discounting methods, a principal component or factor

structure of the variance matrices �t has been explored. See, for example, the stud-

ies of monthly exchange rate time series in Quintana and West (1987) also reported

in West and Harrison (1997, pp608-609). In this particular application, a standard

principal component decomposition of the estimates St;n provides insight into the re-

lated component structure of �t and the relevant numbers of \important" factors k:

Usually, this will yield a small number of dominant components representing latent

orthogonal factors contributing measurably to both total variability in the series and

the covariance structure, together with additional residual components. This is a nice

connection with the dynamic factor decomposition from previous chapters. However,

dynamic factor models does not necessarily involve orthogonal factor structure as in

principal component methods. Furthermore, dynamic factor models explicitly repre-

sent the latent structure and make direct inferences of the factor processes and their

parameters. In addition, discounting methods do not have real predictive capabili-

ties, simply allowing for and estimating changes rather than anticipating them. The

dynamic factor model (7.1), as stated above, allows for short-term forecasting in a

natural way. This will come clear in the following comparisons of standard discount-

ing methods and dynamic factor models in an application of international exchange

rates series together with the resulting dynamic portfolio allocations. A �nal note

on these models is that with �nance data the mean vector � will have very small

elements having small impact in resulting inferences on the �t sequence. However,
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the impact on portfolio allocations that are mean-dependent are not necessarily small

and hence important. Extensions to models in which the time series has a non-zero

mean, possibly modeled via a dynamic regression model are of great interest in the

applied models of Quintana and Putnam (1996), Quintana et al. (1995). These

extensions will be discussed later in the thesis.

8.2 Studies of International Exchange Rates
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Figure 8.1: Daily exchange rate time series from 10/09/86 to 08/09/96.

8.2.1 Data and Initial Discounting Analyses

Figure 8.1 displays time series graphs of the weekday closing spot exchange rates

of several currencies quoted in US dollars (USD) covering the period from 10/09/86

to 08/09/96, for a total of 2,567 observations on each series. The currencies are,

in order, the Deutschmark/Mark (DEM), Japanese Yen (JPY), Canadian Dollar

110



(CAD), French Franc (FRF), British Pound (GBP) and Spanish Peseta (ESP). From

an economic point of view it is better to study the returns on the di�erent currencies

rather than the prices. Therefore, the analyses presented here are based on the one-

day-ahead returns calculated as yit = sit=si;t�1 � 1 and graphed in Figure 8.2 for

i = 1; : : : ; q = 6.
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Figure 8.2: Daily exchange rate returns.

Initial analyses were run using the variance matrix discounting method described

in section 8.1.1 and are summarized in Figures 8.3, 8.4 and 8.5. Three separate

analyses were run, di�ering only through the value of the discount factor, speci�ed as

� = 0:9; 0:95; 0:99 for the three cases. The initial prior distribution in each case is very

vague, namely W�1
1 (�jI): Figure 8.3 displays the time trajectories of the diagonal

elements of St;n; i.e., the sequence of posterior point estimates of the conditional

variances of the six currencies. In addition, Figure 8.4 shows the estimated time-

varying correlation structure between the returns series. In each of the three analyses,

principal components decompositions were made of each of the posterior estimates

111



0.
00

00
2

0.
00

00
8

0.
00

01
4

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

.90

.95

.99

DEM

0.
00

00
2

0.
00

00
6

0.
00

01
0

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

JPY

0
5*

10
^-

6
1.

5*
10

^-
5

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

CAD

0.
0

0.
00

01
0

0.
00

02
0

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

FRF

0.
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

GBP

0.
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

ESP

Figure 8.3: Conditional variances from discount analyses.

St;n over t = 1; : : : ; n = 2567: In each analysis and essentially uniformly over the time

period, this yields three dominant components with fairly stable time trajectories for

the corresponding eigenvectors representing the dynamic factor loadings. Figure 8.5

displays the corresponding related trajectories of the estimates of the volatilities of the

underlying orthogonal latent factors, namely the eigenvalues of the St;n matrices over

time. The greater adaptivity induced by lower discount factors is apparent in these

graphs. Explicitly, the very low � = 0:9 is over-adaptive, responding very markedly to

small changes in realized volatilities. In contrast, the higher discount factor � = 0:99

induces a much greater degree of smoothing of the volatility trajectories, and is likely

under-adaptive in time of really marked change, such as towards the end of 1992 when

Britain withdrew from the EU exchange rate agreement, resulting in marked swings

and increased volatility in the European currencies across the board. The impact of

this event is evident in the estimated trajectories of both the marginal variances of

currencies and in the corresponding variances of the factors arising from the direct
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Figure 8.4: Estimated correlations from discount analyses.

principal components decompositions in Figure 8.5.

Notice that the end-1992 volatility changes impact across all factors, highlighting

the apparent dependencies in factor trajectories across the entire time period. This

indicates the need for dependence structure in modeling latent volatility processes

in dynamic factor analyses, as is allowed in the theoretical framework described in

chapter 7 and investigated in factor model data analyses below. Such dynamic prin-

cipal component analyses can be seen as providing informal, exploratory views of

possible latent factor structure, albeit conditioned on the mathematically convenient

but practically questionable orthogonality constraints. It appears that at most three

factors are necessary, which is anticipated as the currencies represent three distinct

trading blocs: Canada, Japan and the EU. The trajectories of the three minor eigen-

values remain at consistently negligible levels across the time frame here, so that a

model with three factors plus currency-speci�c random e�ects is indicated.
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8.2.2 Dynamic Factor Analysis

A dynamic model as de�ned in (7.1) was used for the q = 6 series and with k = 3

factors. Note that in order to have a model that provides a maximal speci�cation

under the assumed structure of the factor loadings matrix (6.13), and assuming each

of the  j to be non-zero, the number of factors must necessarily be no greater than

three. Hence, in addition to being suggested by the discounting analyses, this serves

here as an encompassing model; if fewer than three factors are supported by the data,

that fact will be reected in posterior inferences about factor loadings and variances.

An appropriate, informative prior for the key matrixU in the volatility model was

based on a pre-analysis of the initial 200 observations on the time series, reserving

these few observations for this alone and then analyzing the remaining data with the

factor model. From the Bayesian discount model with a discount factor of 0.9, the

point estimates of the three dominant eigenvalues of each St;n were extracted and

used as ad-hoc estimates of the factor volatilities hjt; for each j; t: Three separate
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AR(1) models where then �tted to the log-volatilities so computed, using standard

reference Bayesian analyses. This provided posteriors for the AR parameters and

innovations variances, in each volatility series marginally, that are taken as \ball-

park" initial estimates to be used to specify an informative prior for U prior to

analysis of the remaining data. This preliminary analysis gave approximate prior

means of the three innovations variances around 0.001{0.002. With this in mind, the

prior forU in the factor model analysis was chosen to be inverse WishartW�1
r0
(UjR0)

with r0 = 100 degrees of freedom (half the prior sample size in the ad-hoc analysis)

and R0 = 0:0015I; appropriately \centering" the prior for U: Note that the prior

does not anticipate correlations across volatility processes, though this could easily

be done. Independent di�use uniform priors for the idyosincratic variances 	 were

also used to obtain proper posteriors as explained in chapter 6.

The MCMC analysis of this factor model involved a range of experiments with

Monte Carlo sample sizes and starting values, and MCMC diagnostics. The summary

numerical and graphical inferences are based on over 20,000 simulations of posteriors,

generated following a 5,000 burn-in period. A set of 1,000 spaced 20 apart was sub-

sampled so as to break correlations and record resulting samples for graphical display

purposes. Summary graphs appear in Figures 8.6 to 8.15 inclusive. First, Figure 8.6

graphs estimated trajectories of conditional variances of the currencies { the posterior

means of the diagonal elements of �t = XHtX + 	: Note the similarity with the

trajectories from the more adaptive of the discount analyses in Figure 8.3, as is to

be expected. Analogously, Figure 8.7 plots the corresponding estimated correlations

between the series, showing again similar patterns to the low discount model in Figure

8.4.

Figure 8.8 provides histogram approximations to marginal posteriors for the el-

ements of the loadings matrix X. Note that the �rst column (apart from the �xed

115



0.
00

00
5

0.
00

01
5

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

DEM

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

JPY

5*
10

^-
6

1.
5*

10
^-

5
2.

5*
10

^-
5

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

CAD

0.
00

00
5

0.
00

01
5

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

FRF

0.
00

00
2

0.
00

00
6

0.
00

01
0

0.
00

01
4

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

GBP

0.
00

00
5

0.
00

01
0

0.
00

01
5

2/87 2/88 1/89 1/90 12/90 12/91 11/92 11/93 10/94 10/95

ESP

Figure 8.6: Conditional variances from dynamic factor model.
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Figure 8.7: Estimated correlations from dynamic factor model.
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lead element) gives positive weight to all but CAD, representing the relative strength

of the US dollar to the currencies of the EU and Japan. The CAD has almost no

weight here, as to be expected as its value in international markets is most strongly

determined by the US dollar alone, and the relative values of the weights on the EU

countries naturally reect their relative strengths. The loadings on the second factor

are very small and, if non-negligible, negative, apart from Japan with the �xed unit

weight. This is therefore largely the Japan:US factor, with some residual contrast

between Japan and the rest of the currencies. Similar comments applies to the third

factor which essentially represents the Canadian:US rates, and in which the main

residual contrast is that reecting the di�erential status of Britain to the rest of the

EU, presumably driven in part by the departure of Britain from the exchange rate

control system.

The graphs in Figure 8.9 display the trajectories of approximate posterior means

for the three factor processes ftj on the �rst column and their conditional standard

deviations
q
htj on the second column. The main points to note here are the ap-

pearance of peaks in the volatility processes consistent with positive correlations in

volatility across the three factors, and the relative scales of volatility: all three fac-

tors are evidently contributing measurably to overall variability in the multiple series,

though the factors appear to be roughly ordered in terms of decreasing overall levels.

Again, this is consistent with expectations from a substantive viewpoint.

Figures 8.10 and 8.11 summarize marginal posterior inferences for key �xed model

parameters, all in boxplot form. Figures 8.10 displays boxplots of posterior margins

as follows. The upper left frame displays margins for the elements of the conditional

mean �: The upper right frame displays margins for the diagonal elements
q
 j of the

residual variance matrix	 namely the standard deviations of the speci�c factors. The

lower frame displays margins for 100 j=�
2
jt where �

2
tj is the j � th diagonal element
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Figure 8.8: Posterior summaries for the factor loadings matrix X:
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Figure 8.9: Dynamic factor processes and factor standard deviations.

of �t: These ratios measure percent total variation in each of the currency series that

is contributed by the idiosyncratic terms { generally non-negligible, and appreciable

for both GBP and ESP.

Similar displays appear in Figure 8.11 for elements of the parameters �;� and

U in the VAR(1) volatility model, (7.4). Speci�cally, the upper left frame displays

margins for the three scale parameters exp(�j=2) where the �j are the entries of

the stationary mean � of the VAR(1) model. Converting from the log-volatility to

volatility scales, these scale factors exp(�j=2) represent the standard deviations of the

implied stationary distribution, i.e., base levels of conditional variation in the three

factor processes. The rough ordering of factors according to marginal variability is

clear here. The upper right frame displays margins for the AR parameters �j in

�; indicating that all three are obviously very close to, but less than, unity, and so

representing high persistence in the volatility processes. The approximate posterior

means for the three �j are 0.97, 0.98 and 0.98, respectively. The lower frame displays
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margins for the standard deviations and correlations of matrixW; the marginal vari-

ance matrix in the VAR(1) volatility model. The earlier noted positive correlations

between factor processes are indicated here. Related numerical summaries provide

approximate posterior means of the variances in W as 0.50, 0.86 and 0.82, respec-

tively, while the corresponding posterior means for the variances in the innovations

matrix U are 0.027, 0.034 and 0.025, respectively.

Figures 8.12, 8.13, 8.14 and 8.15 display trace plots, autocorrelation functions and

histograms of marginal distributions of selected parameters to asses convergence of

the Markov Chain. For instance, each one of the columns of Figure 8.12 provides, in

order, information on the autoregressive parameters �j, the scale factor exp(�j=2) and

the marginal variancesW. The plot is divided in three groups of frames corresponding

to the three latent factors. Next, Figure 8.13 plots the trace plots of the loadings

matrixX and Figures 8.14 and 8.15 graph the corresponding plots for the conditional

mean vector � and the speci�c variances 	 respectively. As can be seen from these

plots, it seems that the Markov Chain converged to the true posterior distribution.

Reanalyses under ranges of di�use but proper priors were performed to assess

sensitivity. Across several choices of seemingly uninformative though proper priors,

the posterior results con�rm those from the analyses above.

The results from discount analyses and the dynamic factor model can be further

used in the decision making process, for instance in deciding on a fair option price

and/or the allocation of investments within a portfolio. As a matter of fact, the

time-varying conditional variances of each one of the variances could be used to price

derivate products on individual currencies with stochastic volatility following theory

suggested in Hull and White (1987). Moreover, the changes in the variance-covariance

matrix can have important consequences in the process of allocating assets dynami-

cally. That is, ideally at each time point an investor will allocate resources such that
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Figure 8.12: Trace plots, acf and histograms of some stochastic volatility model
parameters: �j, exp(�j=2) and W.
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Figure 8.13: Trace plots for the factor loadings matrix X:
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Figure 8.14: Posteriors for the mean parameter vector �.
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Figure 8.15: Posteriors for the speci�c variances  i.
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the expected return will be maximum with the minimum risk. In addition, the re-

sulting portfolios and their corresponding returns can be used in a model comparison

framework between the discount analyses and the dynamic factor solution.

8.3 Bayesian Portfolio Construction

Optimal portfolio selection has been of interest for academics and practitioners for

a long time. The standard approach is to �nd the optimal distribution of resources

by minimizing the risk for a given level of expected return. The major theoretical

work to generate optimal portfolios through a quadratic programming procedure is

due to Markowitz (1959). This theory involves generally a mean parameter and a

covariance matrix of the returns which are usually estimated based on historical data.

From the Bayesian point of view, Quintana (1992), Putnam and Quintana (1994a)

and Quintana and Putnam (1996) implemented portfolio rules to problems with �xed

income securities and futures contracts in currency and equity index markets respec-

tively. They use the predictive variance-covariance matrices calculated with discount

methods to �nd the optimal portfolios. The methodology here is based on the ex-

isting literature and is developed in the context of the international exchange rates

application.

Let yt be the q�dimensional vector of rates of returns on q currencies at time t.

The dynamic asset allocation theory assumes that at each time point t�1; an existing

investment in the various currencies under study may be reallocated according to a

portfolio at for the next time point. The elements of at are the $US amounts invested

in the corresponding currency. For the purpose of this thesis, no transaction costs are

assumed and the dollars may be reallocated freely and instantaneously to arbitrary

long or short positions across the currencies, subject initially only to a0t1 = 1: The

realized portfolio return at time t is the $US amount rt = a0tyt; and models may
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be compared on the basis of cumulative returns over chosen time intervals. The

portfolio allocation decision problem involves the general Markowitz mean-variance

optimization, and this is applied at each time point one-step ahead. In all models, the

time t situation is summarized through posterior one-step ahead means and variance

matrices for yt; denoted here by gt and Gt: These quantities can be calculated as the

mean and variance of the one-step-ahead predictive density of the returns at time t

as described in equations (7.14) and (7.15) from section 7.5.

The decision context targets minimization of the one-step ahead variance of re-

turns subject to speci�ed target means. For a speci�ed target mean return m; the

one-step-ahead portfolio at will be chosen to minimize the one-step ahead variance of

returns a0tGtat subject to constraints a0t1 = 1 and a0tgt = m: The so called e�cient

frontier is the set of portfolios that have maximal expected return given an upper

bound on the variance. It can be shown that the e�cient frontier is the solution

a
(m)
t that minimizes 1

2
a0tGtat over the constraint set, (Markowitz, 1959). The well-

known solution to this quadratic programming problem through Lagrange multipliers

is given the mean-variance e�cient portfolio,

a
(m)
t = G�1

t (agt + b1)

where

a = 10G�1
t e and b = �g0tG

�1
t e

with

e = (1m� gt)=d and d = (10G�1
t 1)(g0tG

�1
t gt)� (10G�1

t gt)
2:

Two other standard portfolio allocations can be derived in the same way. First, the so

called target-independent allocation derived at the boundary of the mean-variance

e�cient frontier leads to weights

a
(me)
t = (10G�1

t gt)
�1G�1

t gt;
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and second, the strictly risk-averseminimum variance portfolio which just depends

only on the estimation of the variance-covariance matrix, namely,

a
(mv)
t = (10G�1

t 1)�1G�1
t 1:

8.3.1 Special Portfolio Strategies

There are of course di�erent varieties an extensions of the three basic strategies

presented above as a result of including or removing constraints. The focus of this is

more on comparison of portfolio strategies rather than on comparison of models. For

instance, the restriction that a0t1 = 1 forces the decision maker to constrain his short

or long positions in the speci�ed market. However, there are many situations when

the optimal decision would be to take your money to the bank in, for example, high-

volatility situations. Consider then allocations in which the portfolios are completely

unconstrained; that is, remove the unit sum constraint on the allocation vector at.

This means that the allocation may be chosen without regard to resources, permitting

arbitrary long or short positions across the currencies. This typi�es the practical

working context in the global investments in large �nancial institutions and is in line

with recent work with discount models, (Quintana and Putnam, 1996). The mean-

e�cient portfolio with expected return target m, under an unconstrained strategy is

given by

a
(�m)
t = �G�1

t gt

where

� = m=(g0tG
�1
t gt):

A di�erent situation arises in the implementation of portfolios in higher dimension

which usually result in extreme weights on particular assets. A traditional strategy in

these cases is to introduce upper and lower constraints in the optimization problem,

lit < ait < uit. Typical choices of the bounds are lit = 0 reecting the fact that
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no short sales are allowed and a constant upper bound uit = u0. Consequently, the

higher level of u0 the more aggressive the portfolio in the sense of the few number of

securities held and the higher tracking error of the portfolio. The focus in this thesis is

on the three basic portfolio strategies, mean-variance e�cient, target independent and

minimum variance with traditional assumptions and restrictions. These strategies

will be used in the next section mainly for model comparisons in the international

exchange rates example.

8.3.2 Dynamic Portfolio Comparisons for Exchange Rates

Model comparisons are made with explicit focus on one-step forecast accuracy in

the context of dynamic portfolio allocations, essentially following the perspective of

Quintana (1992), Putnam and Quintana (1994a) and Quintana and Putnam (1996).

A similar perspective is adopted in Polson and Tew (1997) though with very di�erent

models. The comparisons here are based on posterior distributions from the models

�tted to the entire time series, so that they do not represent real-time, sequential

forecasts, but nevertheless do provide a coherent basis for model comparisons with

a utility function directly measuring real-world performance in terms of cumulative

�nancial return.

For comparisons, Figure 8.16 graphs the trajectories of the constrained optimal mean-

variance e�cient portfolio weights a
(me)
t from the three Bayesian discount analyses

and the dynamic factor model analysis reported above. The trajectories of the weights

a(�m)
t for m = 0:00016 under the factor model alone are displayed in Figure 8.17, for

clarity.

The weigths are graphed as percentages, i.e., simply 100 times their actual values, as

they are constrained to sum to unity. Figure 8.18 graphs the trajectories of cumulative

returns over time based on these four models in the frames in the �rst two rows.
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Figure 8.16: Dynamic weights a(me)
t for the mean-e�cient portfolio: all models.
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These four frames correspond to four di�erent �xed investment strategies: the two

risk-averse strategies a
(mv)
t and a

(me)
t ; and then two strategies a

(m)
t with daily target

returns m = 0:00016 and m = 0:00028 respectively. These appear in the order (top

left) a
(mv)
t ; (top right) a

(me)
t ; (center left) a

(0:00016)
t and (center right) a

(0:00028)
t : After

a period in which the model behave very similarly in the determination of portfolio

allocations, the changes in volatility in 1992 are more appropriately captured by the

most adaptive discount model (� = 0:9) and the dynamic factor model. These two

models proceed to clearly dominate the others in terms of cumulative returns under

the practically relevant strategies. It is interesting to note that, though the very

adaptive discount model produces cumulative returns that closely shadow the factor

model, the weights in the factor model are relatively much more stable over time. The

discount model adapts the weights quite widely as it permits very marked patterns

of change in the full variance matrix of returns, whereas the factor model assigns

changes in observed volatilities to appropriate model components and so induces

more stability in weight trajectories.

In order to compare portfolio strategies, unconstrained mean-variance e�cient

portfolios were also considered. The third row of graphs in Figure 8.18 displays the

cumulative return trajectories using the optimal portfolio weights a(�m)
t from this

strategy, to be compared to the earlier �gures using constrained portfolios. The

two graphs provides display under portfolios (lower left) a
(�0:00016)
t and (lower right)

a
(�0:00028)
t . As can be seen now, the dynamic portfolio model is very clearly dominant,

achieving cumulative returns that are about twice as large as those of the most

competitive discount model, and also exceeding those of the constrained allocations.

The response following the major structural changes in volatility at the end of 1992

leads to a marked swing in portfolio structure that the unconstrained allocations

capitalize in a major way in the factor model, with a persistent e�ect on cumulative
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Figure 8.18: Cumulative returns under di�erent dynamic portfolios.

returns thereafter.

The trajectories of optimal, uncostrained portfolio weights for the case m =

0:00016 under the dynamic factor model are graphed in Figure 8.19. The values

plotted are 100 times the actual weights divided by the total 10a
(�m)
t at each time

point, indicating the relative weight of each currency in the portfolio at each time.

This provides a direct comparison with corresponding trajectories of weights from

the unit-sum constrained allocation appearing in Figure 8.17, where the actual and
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Figure 8.19: Dynamic weights a
(�m)
t with m = 0:00016 in the unconstrained portfo-

lios: factor model. The weights are graphed here as percentages of the totals 10a
(�m)
t

at each time.

relative values coincide. The impact of the Britain's withdrawal from the EU ex-

change rate agreement, in late 1992, and the resulting marked increase in volatility

and the portfolio's response are very clear in Figures 8.18 and 8.19. The alloca-

tions shift swiftly and quite radically in extent to short positions on Sterling and the

strongly associate Peseta, while simultaneously adopting radically long positions on

the strong Mark and Yen. At the same time, the total investment dropped markedly;

the major changes in volatility led to the anticipation of high levels of increased risk,

and the total 10a(�m)
t invested in the marked decreased radically as a result. Figure

8.20 graphs the time trajectory of the total 10a
(�m)
t , indicating relative stability in the

uctuations around a level of unity, but with marked swings up and down in periods

of low and high volatility, respectively.
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8.4 Conclusions

The investigations indicate the feasibility of formal Bayesian analysis of structured

dynamic factor models. The analysis is accessible computationally with nowadays

moderate computational resources, and the empirical studies suggest that the analy-

sis will be manageable with 20-30 dimensional time series and several factors. More

extensive applications in short-term forecasting and on-line portfolio allocations with

higher dimensional models for longer-term exchange rate futures are currently in-

vestigated. The example here is suggestive of potential bene�ts, and supportive of

the view that exploiting systematic volatility patterns via factor structuring may

yield meaningful improvements in short-term forecasting and decision making in dy-

namic portfolio allocation, especially in the unconstrained portfolio optimizations as

illustrated in the �nal row of graphs in Figure 8.18. In the case of constrained port-

folio optimizations, the over-adaptive discounting method almost match the factor

model analysis in terms of portfolio allocation performance in some cases, though is

clearly eventually dominated in terms of cumulative return trajectories by the factor

model. The conjecture is that, in studies of forecasting and portfolio allocation with
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longer term horizons, such as 30-day exchange rate futures, and in extended models

that incorporate dynamic regression components, the factor modeling approach will

clearly dominate discounting methods. This is the subject of current and near-future

research.

The dynamic factor models illustrated are amenable to direct implementation

using our customized MCMC methods with the minimal/reference prior speci�cations

used here. The use of variance discounting methods on a reserved initial section of

the data to provide input to informative priors is important in identifying \ball-park"

scales for the U matrix of the VAR(1) SV model. Though not pursued here, other

aspects of such preliminary analyses may be used to determine informative priors

for other elements of the factor model. The established discounting methods are,

relative to dynamic factor models, trivial to implement in the current context, a fact

that is important in using discount methods to specify partial prior structure in the

dynamic models. The empirical �ndings here indicate that, not surprisingly with

this kind of data, moderately adaptive discount methods fare well in time of slow

change in volatility levels and patterns, but are relatively uncompetitive in cases of

more marked structural change. This is to be expected. Looking ahead, models

and approaches that attempt to simplify the process of factor modeling, perhaps

somehow integrating elements and concepts of variance matrix discounting into a

speci�ed factor structure, may be attractive from a computational/implementation

viewpoint.

8.5 Further Extensions and Current Research

In the factor model context as developed in chapter 7, there are several relevant tech-

nical and modeling issues to be explored. For instance, further study and empirical

assessments on time series with larger numbers of univariate components and larger
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numbers of factors are under investigation. Speci�cally, extending the exchange rates

example above, a data set with spot prices from q = 12 currencies is currently an-

alyzed using 5 latent factors. The currencies are, in order, the Deutschmark Mark

(DEM), Japanese Yen (JPY), Canadian Dollar (CAD), New Zealand Dollar (NZD),

British Pound (GBP), French Franc (FRF), Spanish Peseta (ESP), Australian Dol-

lar (AUD), Belgium Franc (BEF), Netherlands Guilder (NLG), Sweden Krone (SEK)

and Switzerland Franc (CHF). The �rst �ve series were chosen to represent economies

of �ve di�erent blocs. The latent factors and their corresponding estimated standard

deviations are plotted for illustration in Figure 8.21. One important point to men-

tion here is the fact that by increasing the number of factors in the model, the e�ects

from the CAD and JPY factors disappear. This is natural given the fact that the EU

countries have higher correlations between them and hence the factor model identi�es

factors that are more helpful in explaining the covariances in the observations. These

facts are interesting from the model uncertainty and model choice points of view by

addressing questions of choices about the numbers of factors, and about the ordering

of time series in the context of the speci�c structure adopted for factor loadings.

Heavy-Tailed Distributions

There has been plenty of studies that reinforce the idea that the conditional distri-

bution of the returns is non-normal for almost all �nancial time series. For example,

in model (7.1) the disturbance errors �t follow a normal distribution. Following the

approach in chapter 5, section 5.1 a scale mixture of normals for �t could be assumed

by introducing �t weights,

p(�tj	) =
Z
N(�tj0;	=�t)p(�t)d(�t);

where �t � Gamma(m=2; m=2) giving marginal t-distributions for �t with m degrees

of freedom. This way of modeling the disturbance errors allows us to make posterior
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inferences on outliers due to the speci�c factors �t. Moreover, this idea can be applied

to the distribution of the factors in model (7.1) and/or on the innovations of the log

volatility processes in (7.4).

Time Varying Loadings Matrices

Further model extensions under investigation relax the assumptions of constancy of

the factor loadings. In this line, Molenaar et al. (1992) proposed a dynamic factor

model for the analysis of multivariate non stationary time series introducing the idea

of lagged factor loadings.

Modeling the Factors

Following the discussion on chapter 5, there has been a lot of studies of the reduction

of dimensionality in vector time series. The idea is to identify unobserved common

factors with correlation structure that generate an observable vector of time series.

The extensions should include factors ft with dynamic properties and/or time series

models. There are many options of how to model the underlying factors; some

examples are:

� ft follows a k-dimensional ARMA(pf ,qf ). This assumption will imply that yt

will also follow a k-dimensional ARMA(py,qy), (Pena and Box, 1987). They

assume that the columns of the loadings matrix X are orthogonal.

� ft is a random walk plus noise. This model is called The common trends

model and is closely related to the SeeminglyUnrelated Time Series Equations

where the loadings matrix X has only one non-zero entry per row. Harvey et

al. (1994) used this model after applying the non-linear transformation to the

actual data and taking the volatilities as the common factors. This model has
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the property that q� k linear combinations are stationary, even though all the

elements of yt are only stationary in �rst di�erences.

� ft follows a k-dimensional time-varying autoregressive model.

In all these cases the DLMs forward �ltering backwards sampling algorithm can be

used to sample the posterior distribution of the factor scores ft.

Models for the Conditional Mean

The dynamic factor model (7.1) with stochastic volatility components as presented

in chapter 7, could be extended to allow for dynamic regression models on the con-

ditional mean �. This extension is likely very necessary for serious practical appli-

cations, where the dynamic factor structure is imposed on the errors of the model.

Particularly, extending the work by Quintana et al. (1995) and Quintana and Putnam

(1996) a shrinkage technique could be used in a DLM, such as,

yt = F0
t�t + �t; �t � N(0;�t);

�t = B�t + �t; �t � N(0;Ut);

�t = �t�1 + !t; !t � N(0;Wt);

where Ft is a matrix of observed explanatory variables, �t is a vector of system re-

gression parameters and more important �t is an error vector following a multivariate

stochastic volatility model as presented above, namely �t � N(0;�t). In this model,

the matrix B represent the link matrix that controls the shrinkage assumptions relat-

ing the beta coe�cients and the theta hyperparameters that follow a random walk,

(Quintana et al., 1995).

The experience to date lead us to believe that all these extensions will be very

fruitful and support the preliminary conclusions reached in this thesis about the

potential utility of factor models.
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Chapter 9

Latent Structure in Non-Gaussian

Longitudinal Time Series

The latent time series methodology developed in previous chapters is now extended

to data coming from non-normal distributions. The basic assumption is that the

parameters of such distributions are related through time and hierarchically across

possible several multivariate series. This is a new class of hierarchical multivariate

time series models developed for longitudinal data and that may have important im-

pacts in many socio-economic areas. For instance, the general methods developed

here can be used to �nd "performance indicators" as part of an attempt to intro-

duce accountability into public sector activities such as education, health and social

services, where the focus is on the development of quantitative comparisons between

institutions. The idea is to �nd a summary statistical measurement on an institution

or system which is intended to be related to the "quality" of its functioning, (Gold-

stein and Spiegelhalter, 1996). In particular, the contributions and methodology in

the following two chapters are motivated by studies of health care \quality monitors"

in the nationwide VA Hospital System. This section of the thesis represents, in part,

research that was performed in consultation and collaboration with the Veterans

A�airs Management Science Group, Bedford MA.
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9.1 The VA Hospital System

The performance monitoring system of the US Department of Veterans A�airs col-

lects, reports and analyses data from across the system of over 170 hospitals as

discussed in Burgess et al. (1996), sections 3 and 4. The VA Management Science

Group is interested in assessing and comparing clinical and health care process per-

formance between facilities using analytic strategies. Therefore, the main objectives

in a statistical analysis are those of adequately de�ning and accurately estimating

underlying measures of hospital-level performance in the monitor-speci�c areas. In

addition, the methodology should be able to address the special interest in infer-

ences about relative performance over time and across hospitals. To be more speci�c,

the statistical contributions in exploration and modeling of longitudinal data in the

context of this application are developed to:

� understand patterns of variability over time, in periods of single years, in

hospital-level and monitor area-speci�c performance measures across a selec-

tion of quality monitors, and

� understand patterns of dependencies between sets of monitors, in addition to

and in combination with assessment of time-variations.

These goals are motivated by policy interests in accurately estimating measures of

hospital-level performance in key areas of health care provision, in assessing changes

over time in such measures to monitor impact of internal policy changes (or the lack

thereof), and ultimately in connection with the development of management and

economic incentives designed to encourage and promote care provision at sustained

and acceptable levels.
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9.1.1 Data Structure

The data provided by the VA Management Science group are based on a uniform

process of data collection and consolidation across national databases, and encompass

a range of in-patient, outpatient and long term care activities at each of the VA

medical centers. The data is collected annually for each hospital providing care in

areas covered by speci�c monitors. The hospital-area records consist of the total

numbers of individuals who were exposed to a speci�c and well-de�ned outcome

in that area, and for how many such individuals that de�ned outcome occurred.

In addition, the VA provides information on one independent variable, which is also

included in each record. In this case this variable is , referred as theDRG predictor,

and represents a predicted or expected number of outcomes out of the total. This

quantity is based on assumedly exogenous prediction of the outcome proportion and

is designed to provide some degree of correction for hospital/monitor speci�c case-

mix and characteristics of the patient population pro�le. This thesis is focused on

exclusively on three quality monitors, codedM1;M2 andM3, concerning discharges

from the hospital in three areas,

� M1: General Psychiatric,

� M2: Substance Abuse Psychiatric and

� M3: Basic Medical.

The outcomes/responses in these monitor areas represent annual numbers of indi-

viduals under a binary classi�cation in an area of basic medical or psychiatric health

care. Speci�cally, the response recorded is the number of individuals who failed to re-

turn for an out-patient visit (appropriately well-de�ned) within 30 days of discharge.

Low return rates are indicative of low \quality" in these speci�c care areas. The

analysis presented here is based on records for a subset of 152 hospitals in the system
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Figure 9.1: Raw averages of observed response proportions over the eigth years for
monitorsM1;M2 and M3.

that have complete records. Each hospital reports information on the three monitors

for eight years, from 1988 to 1995. There is an overall suggestion of decreasing levels

of observed responses across the eight years and in all three monitors, most marked

in Monitors M1;M2 and, to a lesser extent Monitor M3, as can be seen in Fig-

ure 9.1, which graphs the simple average responses across years. The average DRG

values (not shown) do not show similar decreasing patterns indicating that this is

very likely a hospital system-wide feature, perhaps due to VA policy and/or general

improvements in care provision over the years. Figure 9.2 displays aspects of data

on the three monitors (columns) separately but combined over all eight years (1988-

1995). The upper row displays the observed proportions of successes in each monitor

against corresponding total numbers of patients in each case. The superimposed lines

denote pointwise 99% intervals based on assumed common binomial distributions for

the outcomes in each monitor (more discussion on this in the next section). The

second row of graphs displays the observed proportions versus the DRG-based pre-

dicted proportions. This display is redrawn in the lower row, but now with the DRG

predictor on the probability scale.
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Figure 9.2: Observed proportions in all three monitors combined over all years
1988-1995 for a total of 1216 points in each frame.

Figure 9.3 provides related graphs for each year of data separately, each point cor-

responding to one hospital in each frame. These pictures will be discussed in more

detail in the next section as part of the preliminary data exploration and basic mod-

eling perspectives together with some discussion on long-term work by CN Morris

and CL Christiansen (hereafter M&C). These authors have provided a �rm basis

for addressing key questions of de�nition and appropriate modeling frameworks for

estimation of performance measures (Burgess et al., 1996).
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Figure 9.3: Observed proportions in all three monitors (columns) for all years
1988-1995 (rows).
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9.2 Initial Perspectives and Notation

The nature of the data, counts out of totals, suggests the use of traditional binomial

models as a starting point. For instance, consider data only on ONE monitor collected

in ONE year across all hospitals i = 1; : : : ; I: Let zi be the number of patients, out of

the total ni, who failed to return for an out-patient visit within 30 days of discharge

from hospital i. Assume conditionally independent binomial models,

zijni; pi � Bin(zijni; pi) (9.1)

for each hospital i. Note that with this assumptions the unknown \success probabil-

ities" pi are hospital-speci�c and the totals ni are assumed uninformative about pi.

As it was mentioned before, Figure 9.2 displays the proportions zi=ni for the I = 152

hospitals, combined over all eight years for a total of 8� 152 = 1216 observations in

each frame, representing each of the three monitors. Super-imposed on the �rst row

of graphs are approximate 99% intervals under the binomial distribution (as ni varies

along the x-axis) assuming pi = p is �xed at the overall average proportion. Many

observations lie outside these bands indicating the very high degree of over-dispersion

relative to a single binomial model. This extra-binomial variation is evident in all

three monitors and for the eight years of study as can be seen in Figure 9.3. This

variation is to be explained by models that describe how the individual pi vary across

hospitals (and, later, across years), using a combination of regression on the DRG

predictor and random e�ects. However, in this case the values of the DRG predictor

variable lie in a very narrow range on the probability scale across the three moni-

tors. This is very clear in the third row of graphs in Figure 9.2. Though there is an

apparent positive association between the DRG variable and the observed outcomes,

evident in the second row of graphs, it is clear that the lack of variation will lead to

a high degree of uncertainty about any regression model on the DRG. The predictor
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simply does not vary substantially across the \design" space. For Monitor M1, for

example, the DRG variable is very close to 0.4 across all hospitals in all years. This

low variability will result in regression coe�cients with at likelihood functions.

Let di be the predicted proportion of \successes" for hospital i based on the

independent DRG variable. The di is supposed to predict pi on the basis of system-

wide studies of patient case-mix pro�les and historical data. Adopting the standard

logistic regression framework involves modeling �i = log(pi=(1 � pi)) as a linear

regression on some function of di; the natural choice being the centered observed

logit predictor xi = li� �l, where li = log(di=(1� di)) and this is assumed here. Write

�i = �i + �1xi (9.2)

for i = 1; : : : ; I: This gives a basic linear regression on the DRG-based predictor with

hospital population slope �1, allowing for hospital-speci�c intercept parameters �i:

These �i terms stand for all sources of extra-binomial variation not adequately cap-

tured in the DRG predictor and all the di�erences and variations in success rates due

to di�erences in patient pro�les across hospitals. These di�erences are confounded

with di�erences due to policies and practices in the area of care and therefore there

is no way of \unconfounding" these issues without additional covariate information.

Under the assumption of exchangeability for the �i parameters (random e�ects),

drawn from a hospital-population prior delivers a class of Bayesian hierarchical mod-

els related to those developed in Burgess et al. (1996), Christiansen and Morris (1997)

and Goldstein and Spiegelhalter (1996). Some other variations and generalizations of

the basic model are part of the standard Bayesian random e�ects generalized linear

models that have been used for institutional comparisons. Some of these variations

include models of M&C, as follows:

� Poisson approximations. In cases where ni is large and pi is small, appeal to

Poisson approximations to the binomial sampling model leads M&C to the class
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of PRIMM regression models in which zi is conditionally Poisson with mean

n�i (Christiansen and Morris, 1997). In such cases the logistic regression is

approximated by a log-linear regression with �i = x�1i �i where �i = exp(�i): The

PRIMM models of M&C adopt gamma distributions for the hospital population

priors of the random e�ects �i: In the case of monitors M1, M2 and M3

the conditions, of large ni and low pi, for the Poisson approximation are not

satis�ed. As can be seen in the pictures, the outcome proportions across are

concentrated in 0.15-0.85 for a wide variety of sample sizes.

� Normal approximations. In cases where the ni are reasonably large and the pi

are not close to zero or one, the binomial likelihood function p(zijni; �i) can

be adequately approximated as a function of �i by a function proportional to

exp(�(yi � �i)
2=si) where yi = log(zi=(n � zi)) and si = nip̂i(1 � p̂i) with

p̂i = zi=ni: This leads to the normal hierarchical model as developed in Burgess

et al. (1996). These models are certainly more adequate for the VA data and

hence a good choice for initial data exploration and a nice connection with

technical methods of posterior simulation in binomial models as will be seen.

In the next section basic random e�ects hierarchical models are developed and applied

separately for each one of the three monitors and for each year of data. These

models, as stated before, are close in spirit and form to those based on normal

approximations developed by Jim Burgess, Cindy Christiansen, Carl Morris and Ted

Stefos. However, the approach taken here is based on the exact conditional binomial

sampling distributions rather than approximations.

9.3 MODEL-1: Basic Random E�ects Model

The �rst approach to model data with binomial structure (9.1) is to assume normal

priors for the population distribution of the random e�ects �i on the linear regression
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model describe in (9.2), namely

�i � N(�ij�0; w
2); (9.3)

for some mean �0 and standard deviation w: An equivalent model can be found by

de�ning the zero-mean random e�ects

�i = �i � �0; (9.4)

hence model (9.2) is reparametrized to give

�i = �0 + �1xi + �i and �i � N(�ij0; w
2): (9.5)

This new \hierarchically centered" representation gives nice interpretations of the

parameters and hence is preferred. In this model, the level �0 represents the hospital

system-wide average in corrected responses on this logit scale. The �i terms represent

hospital-speci�c departures from the system-wide underlying level �0: It is clear that

posterior inferences for both the absolute random e�ects �i and the relative e�ects �i

are of interest. In addition, it is worth mentioning that the unexplained variability

in the logits �i, and hence in the probabilities pi, is related to the prior variance w2.

Large values of such variance represent high levels of heterogeneity in outcomes that

are not captured via the DRG predictor. For example, if w is very small, �1 = 1 and

�0 = 0 then E(�i) = xi and hence pi � di.

Individual analyses, for each monitor and year, are considered to investigate the

validity of this basic binomial regression model. The studies assume binomial struc-

ture (9.1) with normal population distribution of random e�ects (9.5) and di�use

reference priors for the additional parameters (�0; �1; w).

Posterior summaries for this basic single-year, single-monitor model, referred as

MODEL-1, are displayed in Figures 9.4 to 9.9 inclusive. The graphs display boxplots

of posterior distributions for selected model parameters. The boxes are centered at
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Figure 9.4: Summary interval estimates of �0t; �1t and !t using the single-year,
single-monitor MODEL-1.

posterior medians, have boxes drawn out to posterior upper and lower quartiles, and

lines from the quartiles to notches at points no further than 1.5 times the interquartile

range from the quartiles. Points are plotted outside these �nal notches to represent

the very extreme tails of the posteriors{most of these can be simply ignored, as almost

all the posterior probability lies between the notches (well over 99% under a normal

posterior). In the next subsections some comments on the posterior graphs are made

together with initial conclusions for each of the three monitors over the eight years.

Hospital population levels

The parameter �0 in (9.5) stands for the hospital population level in the VA system.

That is, at a mean DRG variate xi = 0; parameter �0 represents the average response

probability, on the logit scale, across the hospital system. Di�erences across years

149



-0
.4

-0
.2

0.
0

•
•••••••
••••

•••••••••
•

••••••••••••

••••••••••
••

••
••••••••
•••••••

•••••••••••••••
••••
•

•••••••

•••••••••••
••

••••••••••••••••

•••••••••••••
••

•••••••
••••••

••••••••••
•

•••••••••••
••

•••••••••••••••
•

••
••••••••••••

••••••••••••
•••

88 89 90 91 92 93 94 95

years

B
E

T
A

0

2
4

6
8

•••
•••••••
•

••••••••••
•

•••

••••••••
••••

•••••
•••••
•••••••••

•••••••••
•••••
•••
•

••••
•••••••••

••••••••
•••

••••••••••
••••••

••••••••••••
••

••••••

•••••

••••••••
••

••••••••••
•••••

•••••••••
•••

•••

88 89 90 91 92 93 94 95

years

B
E

T
A

1

0.
2

0.
4

0.
6

0.
8

•••••

••••••••••••••
•••

••••

••••••••••••••••
••

••••

••••••••••••••••••
•

•••••

••••••••••••

•••••

••••••••••••••••
•

••••••

••••••••••••
•••

•••••

••••••••••••••••
•••

•••••

•••••••••••••••••
•

88 89 90 91 92 93 94 95

years

S
D

 W

Monitor 2

Figure 9.5: Summary interval estimates of �0t; �1t and !t using the single-year,
single-monitor MODEL-1.

for a single monitor require explanations, possibly in terms of changes in system-

wide policies and practices, or in terms of otherwise uncontrolled \drifts" in levels

of quality. Posterior distributions of these parameters are plotted in Figures 9.4,

9.5 and 9.6 for monitors M1;M2 and M3 respectively. As can be seen from these

graphs there are meaningful di�erences in the �0 parameters across the eight years

in each of the three monitors. The main feature is a general decreasing trend in

�0 over the years for all three monitors, more markedly for Monitors M1 and M2.

This corresponds to generally decreased probabilities of return for out-patient visits

within 30 days of discharge, and the apparent similarities between Monitors M1

and M2 are consistent with the two being related areas of care, each related to

psychiatric discharges. Monitor M3, General Medical Discharges, exhibits a quite

abrupt increase in �0 in 1995, after decreasing and leveling o� in 1993-4; this requires
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Figure 9.6: Summary interval estimates of �0t; �1t and !t using the single-year,
single-monitor MODEL-1.

further consideration and interpretation from VA personnel.

DRG regression e�ect

Now consider the �1 regression parameters, referring to the second graph in each of

Figures 9.4, 9.5 and 9.6. Again there are apparent di�erences over the years within

each monitor, although the values are relatively stable compared with �0 and have a

lesser impact on overall conclusions.

Dispersion in hospital population of random e�ects

Now consider the standard deviation w that determines the dispersion in the random

e�ects distribution on the population of hospitals, lower graph in each of Figures

9.4, 9.5 and 9.5. Within each monitor, w appears essentially constant over the years
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and the range of values indicated supports appreciable variation consistent with the

high degree of extra binomial variation apparent in the data. This variability is

highest for Monitor M1, at s.d. levels of 0:6 � 0:7 on this logit scale, then Monitor

M2, at levels around 0:4 � 0:5; and with levels around 0:3 � 0:4 for Monitor M3.

As a benchmark for interpretation, consider a case in which the DRG predicted

proportion is 50% (so zero on the logit scale) and assume �0 = 0 so that baseline

population probabilities are around 0.5. A standard deviation of w = 0:5 leads to an

95% interval for the outcome probability of roughly 0:27� 0:73: Thus, even ignoring

the additional binomial variation about the outcome probability, the random e�ects

distribution covers much of the observed range of the data.

Random e�ects for three example hospitals

Figures 9.7, 9.8 and 9.9 display inferences on hospital-speci�c random e�ects for

three arbitrarily selected hospitals, those with station numbers 41, 92 and 2. In each

year, posterior boxplots for the corresponding hospital-speci�c relative levels �i are

graphed for Monitors M1;M2 and M3. These plots provide examples of the kinds

of patterns of variations exhibited by the random e�ects within individual hospitals.

One notable feature is that of evident dependence over the years in the �i within

speci�c hospitals, especially in terms of sustained signs. Though the series of length

eight are very short, this is supportive of systematic dependence structure over time

that is naturally expected: a hospital that has tended to be below the population

norm in terms of its proportions of outcomes in recent years will be expected to

maintain its below average position this year, so that the � parameters of this hospital

will tend to be of the same sign. Therefore, there is a clear need of some form of

time series structure to describe and incorporate such dependencies, and in order to

explore and assess their e�ects on estimation of all model parameters.
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Figure 9.7: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the single-year, single-monitor MODEL-1.

For the hospital population parameters (�0; �1; w), reanalyses under ranges of dif-

fuse but proper priors were performed to assess sensitivity. Across several choices

of seemingly uninformative though proper priors, the posterior results con�rm those

from the reference prior based analyses above. Model adequacy has been explored and

veri�ed through post-hoc residual analyses, examining plots and features of posterior

samples of well-de�ned residuals. This is not illustrated here, but it will described in

the more elaborate models of the next chapter. Additional ranges of analyses were

performed using the normal approximation to the binomial likelihood functions. In

general, very similar posterior results for (�0; �1; w) were delivered, indicating that

the normal approximations are indeed very good for inferring these parameters and

with these data sets. However, a small number of hospital/monitor pairs have very

low sample sizes ni in some years, and there are some in which the observed outcome
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Figure 9.8: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the single-year, single-monitor MODEL-1.

proportions are close to zero or one. In such cases, the posteriors for the correspond-

ing �i parameters cannot be expected to be necessarily reliable approximations, and

any errors in approximation must be expected to impact on inferences about other

parameters. Hence it is preferable to remain in the theoretically sound binomial

framework rather than to adopt the (technically and computationally more manage-

able) normal approximations directly. However, for much of the data the normal

model represents a good approximation.

An important conclusion at this point is the apparent need to consider models in

which the overall levels �0 of outcome responses across all hospitals vary year to year,

and in which the regression e�ects of the DRG variable (however weakly identi�ed

they may be) may also vary. In other words, management policies that operate

across all hospitals, and general improvements (or otherwise) in care provision that
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Figure 9.9: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the single-year, single-monitor MODEL-1.

impact all hospitals in similar should represented by changes in �0 from year to year.

Furthermore, its is desirable to introduce time series concepts to address the notion

of systematic patterns of variation over the years in hospital-speci�c e�ects on a

given monitor. In the �rst part of next chapter, a class of time series random e�ects

models that necessarily include additional components of unpredictable variability

in outcome probabilities as well as time series components, is discussed. All this is

developed in the single monitor context, and summary inferences from our analyses

of the three monitors separately are discussed and compared to these initial studies.
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Chapter 10

Multivariate Non-Gaussian Hierarchical

Time Series Models

This chapter continues the study of the VA hospital monitor time series, extending

the modeling approaches with new Bayesian models for discrete, multivariate time

series. In addition, the class of multivariate models developed here is related to the

dynamic factor models from chapters 6 and 7 through common statistical structure

enhancing the latent time series structure in the data. For instance, the initial mod-

eling described in the previous chapter indicates apparent variability over time in

the hospital/monitor population parameters �0 and �1; as well as the random e�ects

�i that explain much of the observed extra-binomial variability. Nevertheless, there

are indications of relative stability of the �i across years in some hospitals, which is

consistent with expectation. Unless policies and protocols in the monitor care areas

are radically changed from one year to the next, there should be stability in these

quantities as representing true quality levels; any changes beyond this reect random

variations due to the characteristics of the patient sample presenting at the hospi-

tal. The next stage of investigation concerns the structure of single monitor series

over time. Speci�cally, models that incorporate the view that the �i are expected

to remain stable within each hospital over such a short number of years, but that
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unexplained sources of variability at the hospital level are expected to induce random

changes year to year.

10.1 MODEL-2: Models for Single Monitor Time Se-

ries

The �rst approach towards a more general model is to introduce one pair of hospital

population parameters, �0 and �1, for each year separately, and explore analyses

that do not impose any further structure, simply allowing for the estimation of these

parameters. For example, the apparent decrease over time in the overall levels of

response on Monitor M1 will then be largely accounted for by estimating separate

�0 parameters for each of the eight years, but it is not anticipated in the model. This

model does not therefore provide a structure to explore or model dependence over

time in the � parameters, and so is not useful for prediction to future years without

modi�cation or intervention. This is not a criticism; since the goals of the study are

to evaluate patterns over time in the eight years of data and to explore inferences

about changes in hospital-speci�c e�ects over the years. Development of predictive

models for the � parameters would require the evaluation of expert opinion about the

reasons behind any inferred time evolution and the use of this in phrasing appropriate

predictive models.

For now and keeping the same focus on a single monitor as in the previous chapter,

write �it for the logistic random e�ects parameter of hospital i in year t; with t =

1; : : : ; 8 representing years 1988 to 1995 inclusive. The corresponding relative e�ects

are now �it = �it � �0t where �0t and �1t are the population parameters of the

logistic regression in each year t = 1; : : : ; 8: The �rst logical linear departure from

the random models of the initial study is to use autoregressions. Speci�cally, AR(1)

models are used for the series �it over time t; considered conditionally independently
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over hospitals. With such a short time span (8 years) more complex models are

largely untenable. Moreover, the AR(1) model is a natural, interpretable model that

describes this year's � and \close to" last year's but with a degree of \noise" added.

It also turns out to be adequate as a model of dependence through time for the three

monitors under study, and, as mentioned below, has a desirable consequence in that

the annual marginal distributions of the hospital-speci�c e�ects are the same across

the short span of eight years.

Modeling any form of time series dependence over the years in the �it quanti-

ties introduces partial stochastic constraints so that the �it are no longer as free to

vary as in the single year models MODEL-1 of section 9.3 where they are essentially

unconstrained, viewed simply as independent across years. Hence, it is necessary

to consider that some of the evident variation in the logit parameters �it will be

unexplained with this time series structure. Because of that, additional terms, rep-

resenting residual, unexplained variation, are included in the linear model for the

logit parameters. Speci�cally, the extension of the single monitor model in equations

(9.1), (9.2) and (9.5) is as follows. Independently across hospitals i = 1; : : : ; I; and

over all years t = 1; : : : ; 8; the data are assumed to arise from the set of 8I binomial

models

(zitjnit; pit) � Bin(zitjnit; pit) (10.1)

with logistic regression on the DRG predictors and random e�ects,

�it � log(pit=(1� pit)) = �it + �1txit + �it: (10.2)

This regression is similar to equation (9.2) but now the subscripting makes explicit

the year and hospital-speci�c parameters. In addition, the residual terms,

�it � N(�itj0; v
2) (10.3)

are included to model residual variation not explained by the regression and hospital-
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speci�c random e�ects �it: The time series components assume that, again indepen-

dently across hospitals i; the �it follow �rst-order autoregressions centered around

the current population level �0t in year t: For t > 1;

�it = �0t + �(�i;t�1 � �0;t�1) + !it; (10.4)

where !it � N(!itj0; u
2) independently over hospitals i and years t: At t = 1;

�i1 � N(�i1j�01; w
2): (10.5)

Here � is the autoregressive parameter and will generally be close to one, lying in

part of stationary region 0 < � < 1; and following the relationship w2 = u2=(1� �2):

Equivalently, in terms of the annual deviations of the hospital-speci�c e�ects from

the annual levels, �it = �it � �0t; related over time by

�it = ��i;t�1 + !it: (10.6)

Note that � and u are assumed constant in the time series components. This is

supported on the basis of exploratory and con�rmatory analyses, though could be

relaxed to allow for di�ering variances across hospitals and/or years as may be desir-

able for other applications. This class of multiple-year, single-monitor, hierarchical

random e�ects time series models has some important characteristics, as follows.

� Unconstrained year-to-year variation in the population level of logit-probabilities,

�0t and in the regression coe�cient on the DRG-based predictor, �1t.

� The hospital-speci�c relative e�ects �it are now structurally related over time

within each hospital according to the AR model. With an appropriately large

value of �; this implies high positive correlations between the �it in a given

hospital over the years. This is consistent with the view that, for example, a

hospital that is been generally \good" in a speci�c monitor/care in one year
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will have a high probability of remaining \good" the next year, and vice versa.

This is true irrespective of the system-wide changes in quality levels; they are

captured in changes in the �0t sequence, and the �it represent departures above

or below the system levels �0t:

� The constancy of � and u over years is su�cient (though not necessary) to

induce (desirable) stationarity into the model for the relative e�ects �it: Thus,

for example, the implied marginal distribution in any chosen year t is given by

�it � N(�itj0; w
2) (10.7)

with w2 = u2=(1� �2); independently over i: Equivalently, �it � N(�itj�0t; w
2)

for each year t: So, in each year, the relative random e�ects are a random

sample from a zero-mean normal distribution. This is consistent with a view

of no global changes in the hospital population makeup, variability in expected

levels being essentially constant over the short period of years once the DRG

predictor and any system-wide changes are accounted for through �1t and �0t;

respectively. Changes in relative performance of hospitals can therefore be

assessed across years.

� Residual variation in the logit probabilities not explained by either the DRG-

based regression or the correlated random e�ects is contributed by the �it in

equation (10.2). Estimation of the residual variance parameter v2 together with

all other parameters will provide indications of the extent of this \unexplained"

variability. With respect to the exploratory, single year model with no time

series structure in section 9.3, the original � parameters of equation (9.2) are

decomposed into two components: the new �it; still hospital-speci�c random

e�ects but now structurally related over time, and the purely residual and

unpredictable components �it: The model degenerates to the earlier non-time
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series model if � = 0; in which case the �it and �it terms are not distinguished.

The analyses to follow indicate relatively high time series dependencies with

appropriate values of � that are positive and signi�cantly large. As a result,

the \systematic" (though random) variation explained by the �it is isolated and

identi�ed separately from the unexplained variation in the �it:

One �nal feature to note, concerns the time series structure of the combined hospital-

speci�c random e�ects �it+�it above. This combined term represents a time series

whose structure is autoregressive, moving-average of order one, ARMA(1,1). The

addition of the residual/noise terms �it to the AR(1) process �it acts to modify the

correlation structure. Of course if v is small compared to w the modi�cation is small.

Summaries of analysis of each of the three monitors separately appear in Figures

10.1 to 10.6 inclusive, in formats similar to those from the preliminary analysis under

MODEL-1.

Hospital population parameters

Across years, inferences for the �0t and �1t quantities are essentially the same as under

MODEL-1, as is to be expected as these quantities are not constrained; the displays

of yearly boxplots for these quantities in each of the three single monitor analysis

appear in the upper two rows of Figures 10.1, 10.2 and 10.3 for monitors M1, M2

and M3 respectively.

For each of the monitor analyses, boxplots of posteriors for the monitor-speci�c

w appear in the lower row of Figures 10.1, 10.2 and 10.3. The supported ranges are

lower that those of the MODEL-1 analyses in each case. This is to be expected if the

variances v2 of the \unpredictable" components of variation in the random e�ects

model are non-negligible.

For the monitor-speci�c autoregressive parameters �; posterior boxplots appear
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Figure 10.1: Summary interval estimates of �0t; �1t, standard deviations w; v and
AR(1) parameter � using the multi-year, single-monitor MODEL-2.
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Figure 10.2: Summary interval estimates of �0t; �1t, standard deviations w; v and
AR(1) parameter � using the multi-year, single-monitor MODEL-2.
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Figure 10.3: Summary interval estimates of �0t; �1t, standard deviations w; v and
AR(1) parameter � using the multi-year, single-monitor MODEL-2.

in the lower row of Figures 10.1, 10.2 and 10.3. These indicate highly signi�cant

dependence structures in each case, with inferred values of � in the ranges 0:7�0:8 for

M1, 0:6�0:75 forM2 and 0:8�0:9 forM3. The posteriors have some overlap though

do suggest that the � parameters may be di�erent across monitors. The dependence

in the random e�ects time series is high in each case, but perhaps higher for M3

than M1 or M2, the latter two being more comparable. There are thus apparent

di�erences here between M3 and the other two monitors, perhaps associated with

the fact that latter two are more closely related health care areas, both involving

psychiatric discharges. These � values lead to smoothing in the estimation of the

individual random e�ects series for each hospital within each analysis, noted below.

For the monitor-speci�c standard deviation v of the unpredictable/residual com-

ponents of variation, posterior boxplots appear in the lower row of Figures 10.1, 10.2

and 10.3. These indicate non-negligible values, in the ranges of 0:3 � 0:37 for M1,
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Figure 10.4: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the multi-year, single-monitor MODEL-2.

0:27� 0:33 for M2 and 0:12� 0:16 for M3. By comparison with the posteriors for

the w parameters this indicates that the unpredictable/residual components of the

model contribute signi�cantly to the variability in outcome probabilities. In terms

of the variance ratio v2=(v2 + w2); the �it residuals contribute, very roughly, about

20 � 25% variation for M1, about 30-35% for M2, but only about 15% for M3.

Again there are quantitative di�erences between M3 and the other two monitors,

perhaps related to the underlying nature of the di�erences in health care area.

Random e�ects for three example hospitals

Summary inferences for the relative random e�ects �it for the three selected hospitals

are again given in terms of posterior boxplots for each year in each of the single

monitor analyses. These appear in Figures 10.4, 10.5 and 10.6 forM1,M2, andM3

respectively.
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Figure 10.5: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the multi-year, single-monitor MODEL-2.
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Figure 10.6: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the multi-year, single-monitor MODEL-3.
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The most immediate features relate to the apparent smoothing over the years

in the patterns of the relative random e�ects �it within each monitor. Relative to

the corresponding �gures from the exploratory analyses under MODEL-1, consecutive

values of the �it within each hospital are linked by the autoregressive model and, as

fairly high positive values of the autoregressive parameters are inferred, this leads

to a reasonable degree of shrinkage as each �it is now estimated partly by the data

in neighbouring years as well as by that in year t: The resulting smoothing is also

evident in the patterns of the absolute levels �it not shown here.

The next section ties three single monitor models together in a general multiple

monitor model: this is a binomial/logit model in which hospital-speci�c random

e�ects are related through time via a multivariate time series model representing the

relationships across monitors. The univariate submodels are precisely those already

developed in this section; these multivariate models explore and assess aspects of the

dependencies among the three monitor series.

10.2 MODEL-3: Multivariate Random E�ects Time

Series Model

The MODEL-2 class appears to provide satisfactory description of the dependence

structure over time in hospital-speci�c quality measures. The second key goal of

this study is to explore possible dependencies in quality monitor outcomes across

monitor areas. Hence the interest relies in possible dependencies among the hospital-

speci�c relative e�ects �it across the three monitors. For instance, M1 and M2

are related areas of psychiatric care, so it is expected that the quality levels are

positively correlated between these two monitors. M3 relates to general medical

care and so also might be expected to be positively related as representing some form

of \overall" quality at the speci�c hospital. The next step therefore is to tie the three
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sets of monitor data together into a model that allows for the investigation of the

structure of the joint distribution of sets of relative e�ects across the three monitors,

and of the nature of dependencies in changes over time in these e�ects.

This new class of models, referred to as MODEL-3, considers simultaneously mon-

itors j = 1; 2; 3 in each year t = 1; : : : ; 8 and for each hospital i = 1; : : : ; I: This

development is obviously general and can be applied to any numbers of monitors and

years. On the three monitors, the observed outcomes zit = (zi1t; zi2t; zi3t)
0; represent

three conditionally independent binomial responses out of totals nit = (ni1t; ni2t; ni3t)
0

and with \success" probabilities pit = (pi1t; pi2t; pi3t)
0; respectively. The joint density

of these data is

p(zitjnit;pit) =
3Y

j=1

Bin(zijtjnijt; pijt)

conditionally independently over hospitals i and years t: The general multiple-monitor

hierarchical/random e�ects model structure of MODEL-3 is as follows.

Regression and hierarchical/random e�ects structure

On the logit scale, �it = (�i1t; �i2t; �i3t)
0 with

�ijt � log(pijt=(1� pijt)) = �0jt + �1jtxijt + �ijt + �ijt (10.8)

for each monitor j = 1; 2; 3: Here xijt is the centered logit transform of the corre-

sponding DRG predicted proportion, i.e., with the mean for year t across all hos-

pitals i within monitor j subtracted. The � parameters are collected in vectors as

�0t = (�01t; �02t; �03t)
0 and �1t = (�11t; �12t; �13t)

0: With the 3 � 3 design matrices

Xit = diag(xi1t; xi2t; xi3t); the model is rewritten in vector form as,

�it = �0t +Xit�1t + �it + �it;

where �it = (�i1t; �i2t; �i3t)
0 and �it = (�i1t; �i2t; �i3t)

0: In each year, marginally, the

hospital-speci�c random e�ect vectors �it are conditionally independent over hospitals
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i and

�it � N(�itj0;W)

for some constant 3� 3 matrixW: This matrix represents the variability in the sys-

tematic components of corrected quality levels across the entire hospital population,

the related variability in changes in relative quality levels year-to-year, and the de-

pendencies between such quality measures across the three monitors. Notice that

essentially arbitrary correlations are admitted across monitors, and inference on the

elements of W will provide for assessment of such cross-monitor dependencies.

This model simply collects together the three single monitor models of the pre-

vious section and extends that framework to allow for possible correlation structure

across monitors via the multivariate normal distributions for the vectors of relative

e�ects �it: The covariance matrix W, de�nes and measures the joint variability and

dependence structure not only in each year, but also a modi�ed form of the year to

year changes in the e�ects.

Time series structure of random e�ects

The random e�ects vectors �it are correlated over years t: The same basic AR(1)

models for monitor-speci�c quantities is maintained, so that the autoregressive pa-

rameters are now indexed by monitor index j too. Then the three univariate AR(1)

models combine in the vector autoregression

�it = ��i;t�1 + !it

where � = diag(�1; �2; �3) is the diagonal matrix of monitor-speci�c autoregressive

coe�cients. The vector innovations !it are conditionally independent over time, and

normally distributed with

!it � N(!itj0;U) (10.9)
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for some variance matrix U to be estimated. Now the normal distribution �it �

N(�itj0;W) is the yearly margin under this vector AR(1) model. This implies that

W satis�esW = �W�+U; so that correlation patterns in U andW; while similar,

depend on the autoregressive parameters. In particular, for each monitor pair j; h the

covariance elements areWjh = Ujh=(1��j�h): The DRG-corrected hospital-speci�c

level parameters are now given by

�it = �0t + �it

for each i; and t: These follow the centered VAR(1) model

�it = �0t + �(�i;t�1 � �0;t�1) + !it (10.10)

for t > 1; and have yearly margins N(�itj�0t;W): Note again that the single mon-

itor MODEL-2 structures are embedded here with the addition of the cross-monitor

structure through W (equivalently U): In addition, note that (10.10) has the same

structure used in (7.4) to model the log volatilities in the dynamic factor model,

VAR(1) with correlated innovations.

Residual components

Residual, unpredictable variations in the binomial probabilities across hospitals and

years is described by the residual terms

�it � N(�itj0;V) (10.11)

with monitor-speci�c variances v21; v
2
2 and v23 on the diagonal of the matrix V; and

now admitting cross-monitor dependencies through the covariance elements of V:

The idea is to simply collect the monitor-speci�c residual parameters together in a

vector for the multiple monitor model, and add covariance structure that permits the

estimation of cross-monitor dependencies.
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In this case, the addition of the residual/noise terms �it to the VAR(1) process �it

modi�es the correlation structure giving a VARMA(1,1) model withN(�it+�itj0;W+

V) yearly margins. It is important to note that the overall levels of random e�ects

variability, and the associated overall measures of cross-monitor dependencies, are

represented through the yearly marginal variance matrix W +V. In summaries of

analyses below, posterior inferences on elements ofW+V; as well as the component

matrices separately are explored. It may be suggested that correlation patterns in

V might be expected to be similar to those in the time series random e�ects model-

led through W (and/or U): The current model does not anticipate this, leaving V

and W unrelated a prior��, but the framework obviously permits the assessment of

potential similarities in posterior inferences.

Prior distributions

Inference is based on posterior distributions for all model parameters and random

e�ects under essentially standard reference/uninformative priors for: (a) the annual

population parameters �0t and �1t; (b) the population residual variance matrix V;

and (c) the variance-covariance matrix U; the prior is completed with independent

uniform priors for the autoregressive parameters �j on (0,1). The implementation

of the model is performed using a customized Gibbs sampling algorithm detailed in

section 10.6 of this thesis.

10.3 Results for the VA

Summaries of analysis of the three monitor series combined in this multivariate,

multi-year model appear in the Figures 10.7 to 10.13 inclusive. The formats of �gures

follow those of the earlier models, with additional inferences about the correlation

patterns in W displayed as boxplots of posteriors as usual. The results relative to

170



-0
.2

0.
2

0.
6

•••••••••••••

•••••••••••••

•••••••••••••••••

•••••••••••••
•

••••••••••••••••••

••••••••••••

•••••••••••••••

••••••••••••
•

••••••••
••••

•••••••••

•••••••••••••••••

••••••••••••••

••••••••••••

••••••••••

•••••••••••••

••••••••••

1988 1989 1990 1991 1992 1993 1994 1995

years

BE
TA

0

0
1

2
3

4

••••••••••
••••

••••••••••••••
••

••••••••••
••••••

••••••••••••••••
•

••••
••••

•••••••••••••••••

•••••••••
••••••

••••••••••••
•

•••••••••••••

•••••••••••••
•

•••••••••••

••••
•

••••••••••••

••••••••••••••••••
•
•

•••••••••••
••••••

•••••••••••••
••

1988 1989 1990 1991 1992 1993 1994 1995

years

BE
TA

1

Monitor 1

Figure 10.7: Summary interval estimates of �0t and �1t using the multi-year, mul-
tiple-monitor MODEL-3.
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Figure 10.8: Summary interval estimates of �0t and �1t using the multi-year, mul-
tiple-monitor MODEL-3.
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Figure 10.9: Summary interval estimates of �0t and �1t using the multi-year, mul-
tiple-monitor MODEL-3.

the inferences deduced from the MODEL-2 analysis show the following features.

� There are only very minor changes evident in the posterior distributions for

population parameters �0t and �1t across years t: See Figures 10.7, 10.8 and

10.9.

� There are similarly almost no changes evident in the posterior distributions for

the variances v2j of the residual noise terms �ijt: The posterior distributions of

the standard deviations and correlations are displayed in the second frame of

Figure 10.13.

� There are similarly only very minor changes evident in the posterior distribu-

tions for random e�ects �ijt over the years for the three selected hospitals, 41,

92 and 2. See Figures 10.10, 10.11 and 10.12 forM1;M2 andM3 respectively.

� Figure 10.13 provide summaries of the marginal posteriors for the three autore-

172



-0
.5

0.
5

1.
5

••••
•••••••

•••••
••
•

•••
••••••••••

••••••••
••

•
••••
••••••
••

••••••••
••

••••••••
•••••••••••

••••••••••••
•••
•

•
••••••••••

••••••••
••
•

•
••••
•••••••••••

•••••••••••
••
••

••••••
••••••••••••
•

•••••••••••••
••••••••

•••
•••
••••••••

•••••
•••

88 89 90 91 92 93 94 95

years

EP
S1

-1
.5

-0
.5

0.
5

•••
•••••••••

••••••••••
•••

•••••••••••••

••••••••••••
••••
•

••••
•••••••••••

••••••
•

••••
••••••••••••••

•••••••••••••
••

••
••••••
••••••

••••••••••••••
••

•
••••••••

•••••••••••••••
•••

•
••••
••••

••••••••
•••

••••
••••••••

•••••••••
•••••
•
•

88 89 90 91 92 93 94 95

years

EP
S2

-1
.5

-0
.5

0.
5

••••••
••••••••

••••••••••
••••

•

••••••••
••

•••••••••
•••

•
•••••••
•••••

•••••••
••
•

•
•••••••••••••

•••••••••
••••
••
•

•
•••••••••
••••

••••••••••••
••
•

•••
••••••••••••
•••••••

••••••••••
•
•

•••••
••••••

•••••••••
••••

••••
•••••••••
••••

••••••••
••

88 89 90 91 92 93 94 95

years

EP
S3

Monitor 1

Figure 10.10: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the multi-year, multiple-monitor MODEL-3.
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Figure 10.11: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the multi-year, multiple-monitor MODEL-3.
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Figure 10.12: Summary interval estimates of hospital-speci�c random e�ects �it for
three hospitals using the multi-year, multiple-monitor MODEL-3.

gressive parameters in �: These are essentially similar to those delivered in the

individual MODEL-2 analyses, as might be expected.

� Figure 10.13 also provide summaries of the marginal posteriors for elements and

functions of the variance matricesW and V: First, note that the posteriors dis-

played for the standard deviations under both W and V are essentially as in

the separate MODEL-2 analyses. The new parameters here are the correlations

between the monitor e�ects, both in the systematic component W and in the

residual componentV: Posterior boxplots are displayed here for the correlations

in bothW and V; and, most importantly, in the combined varianceW+V: As

mentioned above, it is this latter matrix that most fully described cross-monitor

structure within each year. The lower left frame of Figure 10.13 summarizes

inferences on the standard deviation and correlation elements of W+V: This

indicates fairly low overall correlations, consistent with the generally low cor-
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Figure 10.13: Summary interval estimates of population parameters for MODEL-3,
including standard deviations and correlations of the variance matrices W;V and
the overall W+V and the AR coe�cients �.

relations exhibited by each of W and V separately. Denoting posterior means

by \hats" and writing E for the column eigen vector matrix of Ŵ+ V̂, then

Ŵ+ V̂ =

0
B@ 0:417 0:044 0:009
0:044 0:271 0:014
0:009 0:014 0:136

1
CA ; E =

0
B@ 0:961 �0:275 �0:015
0:273 0:957 �0:097
0:041 0:089 0:995

1
CA :

This indicates correlations betweenM1 andM2 of around 0.132, betweenM1

and M3 of around 0.036; and between M2 and M3 of 0.073. These are quite

low correlations, though they do support the earlier suggestion that the cor-

relation between M1 and M2 might be higher than that between either M1

and M3, or between M2 and M3, in view of the care areas of origination.

The eigenvalues of Ŵ + V̂ are roughly 0:43; 0:26 and 0.13; so the principal

components explain roughly 52%, 32% and 16% of variation described by this

estimated variance matrix, indicating that all three vary appreciably and that
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no reduction to two or fewer seems appropriate. Posterior uncertainty about

the variance matrices, and the eigenstructure, does not materially impact these

qualitative conclusions. To exemplify this, the full posterior sample produces

the following approximate posterior means and 95% intervals for the three eigen-

values ofW+V: 0.42 (0.38-0.48), 0.25 (0.22-0.29) and 0.13 (0.11-0.16), closely

comparable to the estimates quoted above. Evidently, the eigenvector matrix

is dominated by the diagonal terms, and all three are close to unity; note that

the eigenvector matrix would be the identity were the monitors uncorrelated.

The �rst column represents an average monitor e�ect, dominated by M1 and

M2 and essentially excluding M3; this may be viewed as a psychiatric care

component alone. The second column represents a contrast between M1 and

M2, again essentially excluding M3; the �nal column almost wholly repre-

sents M3 alone, and to the extent that the coe�cients for M1 and M2 are

non-ignorable, contrasts these two psychiatric care monitors with the general

medical monitorM3.

Investigating conditional distributions provides additional insights into the lev-

els and nature of dependencies. For example, consider the relevance of depen-

dencies by looking at questions like \how much might the M2 e�ect change if

the M1 e�ects changes by e?". Various such exercises have been undertaken,

and simply con�rm that the levels of correlations inferred in our analyses are

so low as to really limit their impact on predictive questions, especially in the

context of the realistic levels of posterior uncertainties about the population

parameters, the �0t; �ij;t�1 and so forth. Hence, this level of correlation struc-

ture between monitors, though certainly non-negligible, is relatively minor. The

story may, however, be quite di�erent with other collections of monitors.

� Finally, Figures 10.14, 10.15 and 10.16 display twenty randomly chosen sets of

176



years

EP
S1

-0
.8

-0
.4

0.
0

0.
4

88 89 90 91 92 93 94 95

years

EP
S1

-0
.6

-0
.2

0.
2

88 89 90 91 92 93 94 95

years

EP
S1

-1
.0

-0
.5

0.
0

88 89 90 91 92 93 94 95

Monitor 1

Figure 10.14: Selected posterior samples for hospital-speci�c random e�ects �ijt on
monitorM1 in hospitals 41, 92 and 2.

posterior sampled values for the relative random e�ects �it for hospitals 41, 92

and 2. These summaries and examples the kinds of patterns of variation exhib-

ited by the random e�ects individual hospitals. In addition these graphs high-

light the smooth, systematic dependence structure over time discussed above.

10.4 Model Assesment

Residual structure analysis

Additional graphs in Figures 10.17 to 10.18 inclusive are illustrative of graphical as-

sessments of model adequacy via more-or-less standard Bayesian \residual analysis".

The primary concern is to identify and investigate any apparent residual structure in

the data following model �tting. Referring to the approximate logistic normal ver-

sion of the binomial model in section 9.3, note that the model implies approximate
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Figure 10.15: Selected posterior samples for hospital speci�c-random e�ects �ijt on
monitorM2 in hospitals 41, 92 and 2.

years

EP
S1

-0
.8

-0
.4

0.
0

0.
4

88 89 90 91 92 93 94 95

years

EP
S1

-0
.6

-0
.2

0.
2

88 89 90 91 92 93 94 95

years

EP
S1

-1
.0

-0
.5

0.
0

88 89 90 91 92 93 94 95

Monitor 3

Figure 10.16: Selected posterior samples for hospital speci�c-random e�ects �ijt on
monitorM3 in hospitals 41, 92 and 2.
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(standard) normality and conditional independence of the standardized data residu-

als eit � (yit��it)=sit where, extending the subscripts to the current model, yit is the

logit transform of the observed outcome proportion zit=nit and sit the correspond-

ing approximate standard deviation, for each i; t: In the simulation-based analysis

of the exact binomial model here, the full joint posterior distribution for all model

parameters and random e�ects are repeatedly sampled. This means that a sequence

of samples of the set of �it is also sampled, which represent draws from their poste-

rior distribution. These lead to trivially computed values of the eit which similarly

represent samples from the posterior distribution of the standardized data residuals.

Using any one of these samples of residuals numerical and graphical measures of con-

cordance with, or departures from, the theoretical normal distribution are computed,

and so model �t is assessed. The graphs in Figures 10.17 and 10.18 display some

graphs using just two sets of sampled residuals on monitor M2 in year t = 1995;

the �nal year of the data. These are representative of all monitor/year residuals and

repeated sampling from the posteriors produces very similar graphs. For these sam-

ples, the plots include a simple graph against hospital number, a graph against the

corresponding sample sizes nit; a normal quantile plot and a simple histogram. None

of these graphs indicate any kind of meaningful departures from normality, and as

this is maintained across residual samples, it provides support for model adequacy.

More formally, the graphs in Figure 10.19 summarize the posterior distributions

of the actual data residuals eit for monitor M2 in year t = 1995: The �rst row of

Figure 10.19 displays graphical summaries of this posterior distribution in terms of

marginal posterior 95% intervals for each hospital, with posterior means marked.

The hospitals are ordered here according to the posterior medians of the underlying

outcome probabilities pit on this monitor in this year. There are no outlying hospitals

or other worrisome features evident in this display. This comforting conclusion is
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Figure 10.17: Summaries of a randomly chosen draw from the posterior distribution
of the observed residuals eit for all hospitals on monitorM2 in 1995.

supported by additional displays of aspects of the posterior distribution of the ordered

observation residuals. The bottom pictures of Figure 10.19 display a normal quantile

plot and a histogram of the posterior means of the ordered observation residuals for

all hospitals i: The curve superimposed on the histogram is the standard normal

density function. The quantile plot includes vertical lines representing approximate

posterior 95% intervals showing the uncertainty in the marginal posteriors for the

ordered residuals. The conformity with normality here is excellent.

The next section describes some summary inferences for all hospitals on one mon-

itor in one year to illustrate additional possible uses of the models and further aspects

of model �t.
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Figure 10.18: Summaries of a second randomly chosen draw from the posterior
distribution of the observed residuals eit for all hospitals on monitorM2 in 1995.

10.4.1 Summary Inferences for Monitor M2 in 1995

To illustrate the possible additional uses of these models in exploring the variability

in outcomes across the hospital system, we have considered only outcomes on only

Monitor M2 in the last year of the data, 1995. The analysis produces simulation-

based descriptions of the joint posterior distribution for all M2/1995 parameters,

namely the full set of quantities

�0; �1; f�i; �ig

for i = 1; : : : ; I and where the subscripts for monitor (j = 2) and year (t = 1995)

are dropped for clarity here. So �0 and �1 are the hospital population level and

DRG-regression coe�cient in 1995, and the �i and �i are the systematic and residual

random e�ects for hospital i onM2 in this year. Refer to equation (10.8) and suppress

the subscripts j and t. The particular analysis summarized is based on a posterior

sample with Monte Carlo sample size 5,000 for all these quantities; see section 10.6
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Figure 10.19: Top: Posterior 95% intervals with means marked for the observation
residuals eit for all hospitals on monitor M2 in 1995. Bottom: Normal quantile
plot with 95% intervals (left) and histogram of the posterior means of the ordered
observation residuals (right).
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Figure 10.20: Posterior 95% intervals for outcome probabilities pi (top) and corre-
sponding ranks (bottom) on monitorM2 in 1995 for all hospitals ordered by posterior
medians of pi.

for details of the implementation.

Absolute outcome levels and comparisons across hospitals

For each hospital i, the corresponding posterior sample for the actual quality outcome

probability are computed, pi = 1=(1 + exp(��i)) where �i = �0 + �1xi + �i + �i: This

was done, followed by calculation of posterior medians and approximate 95% (equal

tails) intervals for each pi: These intervals, with medians marked, appear in the

top frame of Figure 10.20. The hospitals are ordered by the posterior medians so

computed, and labeled by actual station numbers. The small number of hospitals

with low sample sizes in M2 are identi�able here as they have wider intervals than

the majority; the width of the interval reects the spread of the marginal posterior

which is a decreasing function of sample size.

If interest lies in questions about thresholds for the pi; they can be directly ad-

183



dressed using these posterior distributions. The probability that any pi exceeds or

lies below any speci�ed threshold can be immediately deduced from the posterior for

pi: A crude version of this across hospitals would involve simply drawing a horizontal

line at the speci�ed thresholds on the graphs in top frame of Figure 10.20. Superim-

posed on the intervals are the values of the observed outcome proportions zi=ni; for

comparison. Note that most of the observed outcomes are well within the interval

and often very close to the median of the corresponding pi: This partly reects the

large sample sizes ni in most cases that lead to very inuential observations and so

�tted values that will be close to observed outcomes. The model is not, however,

over-�tting, as is con�rmed by the earlier discussions of residual structure analyses.

Note, however, that the picture needs modi�cation to more adequately represent the

�t; these intervals are summary estimates of the true outcome levels pi; and so the

variability expressed by the width of the intervals does not incorporate the natural

binomial variability in the outcomes around the levels. To do this, additional sam-

ples of binomial outcomes are computed by drawing conditionally binomial counts

z�i � Bin(z�i jni; p
�
i ) for each i; and where p�i represent the set of posterior draws for

pi: This produces the posterior predictive distribution for actual outcomes at each

hospital. These can be summarised in the same way as the pi; in terms of interval

estimates for the actual outcomes; the resulting 95% intervals with medians marked

appear in the top frame of Figure 10.21. Again, the actual data are superimposed,

and it is now clear that the additional binomial variability broadens the intervals so

as to very adequately cover the observed data.

This latter graph helps to immediately identify outcomes that are rather extreme

compared to their posterior predictive distributions. These tend to be at hospitals

with low sample sizes, and some further investigation of speci�c hospitals agged in

this graph, and also noted in the following graphs, may be of interest. For example,
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Figure 10.21: Posterior 95% intervals for actual outcome proportions (top) and
observed sample sizes ni (bottom) on monitorM2 in 1995 for all hospitals.

stations numbered 66, 86 and 114 are the three hospitals with observed outcome pro-

portions most over-predicted, and cases 101, 152 and 151 those most under-predicted.

These are all cases for which the sample sizes ni are relatively small, as is seen from

the bottom plot of Figure 10.21. Of the three over-predicted, the DRG-predicted

proportions are very large relative to the majority of the hospitals, as is seen in the

plots of Figure 10.22. The model naturally adapts to these lower observed outcomes

for such cases, as is evident in the top graph in Figure 10.23. This displays approxi-

mate 95% posterior intervals for the combined random e�ects �i+�i for each hospital

i: These are plotted on this logit scale in a format similar to the top picture in Figure

10.20 and with hospitals plotted in the same order for comparison. Note that these

\low" hospitals have random e�ects lower than average, indicating that the model

has indeed adapted to the extreme observations. The intervals are relatively wider

for these cases, indicative of the smaller sample sizes. This adaptation is, however,
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Figure 10.22: Observed value of DRG predicted proportion (top) and corresponding
logits (bottom) on monitorM2 in 1995 for all hospitals.

constrained by the model form and also by the the high, and hence inuential, values

of the corresponding DRG predictor. The basic issue is that the DRG predictor for

these cases seems too high, a suggestion that might be the subject for further investi-

gation and study. Nevertheless, the �t of the model to even these very extreme cases

is very good, consistent with earlier subjective assessment of graphs of sampled data

residuals.

Relative outcome levels and comparisons across hospitals

To further investigate the relative performance of hospitals, the hospital-speci�c de-

partures from population levels are examined, i.e., the combined random e�ects �i+�i

for each i: As noted above, the top picture of Figure 10.23 displays approximate 95%

posterior intervals for each of these quantities for all hospitals, with the hospitals

in the order chosen for the top picture of Figure 10.20 for comparison. There is a
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Figure 10.23: Posterior 95% intervals for combined random e�ects �i+ �i (top) and
corresponding ranks (bottom) on monitorM2 in 1995 for all hospitals.

general increasing trend in the random e�ects through the hospitals in this order,

consistent with the ordering by outcome probabilities. The pattern is not monotonic,

however; the probabilities include the e�ects of the DRG-based predictor, and the

current graph focuses exclusively on the relative performance levels free from the

regression e�ects. The bottom frame in Figure 10.23 displays related posterior inter-

vals, in the same hospital order evaluating 95% posterior intervals for the ranks of the

hospitals in terms of increasing levels of �i + �i: Evidently, the four or �ve hospitals

with the highest estimated outcome probabilities have very high ranks, indicating

that their true outcome probabilities are indeed very likely to be among the largest

few across the system. Similar comments apply to those with the lowest estimated

probabilities. Among the majority of the hospitals, however, there are much higher

uncertainties about rankings, with posterior intervals spanning fairly wide ranges.

This way of investigating relative performance should be contrasted with that based
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on the outcome probabilities themselves; the bottom frame of Figure 10.20 displays

the plot of posterior intervals for rankings of the pi displayed in the top picture of

that same Figure, which gives a very di�erent picture and resulting inferences than

that based on the rankings of e�ects �i+ �i: The di�erences are important as the two

ranking graphs address very di�erent questions: Figure 10.20 summarises absolute

performance, impacted by patient-mix and other confounding factors; Figure 10.23

represents relative quality levels once these factors are accounted for through the

model, and a �rmer basis for assessing relative performance due to hospital-speci�c

policies and practices. This is evident in the cases of hospitals 66, 86 and 114 noted

above, for which appropriately lower rankings are indicated in the lower frame of

Figure 10.23 than in the \unadjusted" rankings in the lower frame of Figure 10.20.

Even then, there is high uncertaintry about rankings for most hospitals, not only

those with small sample sizes, reecting the inherent di�culties in ranking now well

understood in this and other areas.

The posterior distributions summarised here can be explored in various other

ways. Subsets of hospitals can be selected for further such summary and deeper

investigation, for example. Similarly, questions about changes in hospital-speci�c

e�ects can be addressed by looking at interval estimates of the parameters measuring

changes year to year. Much can be extracted from posterior analysis that has not

been illustrated here.

10.5 Conclusions

The key summary conclusions arisisng from this new class of multiple monitor, hier-

archical random e�ects time series model are as follows.

� The inferred patterns of change over time in the key population levels �0jt and

DRG regression coe�cients �1jt are essentially the same in all models explored.
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There are evident changes in �0jt that require consideration and interpreta-

tion by VA personnel. There are di�erences over the years in the regression

coe�cient �1jt too, though these changes are less marked.

� The multiple monitor time series models isolate changes over time and de-

pendencies among such changes in the hospital-speci�c random e�ects across

the three monitors. Though dependencies across monitors exist, they are ap-

parently quite small. There are negligible di�erences in inferences about the

key population quantities/parameters in extending from from the single moni-

tor MODEL-2 framework to the linked multiple monitor MODEL-3 framework, at

least for these three monitors. With other sets of monitors or other contexts,

dependence patterns may be stronger and then the MODEL-3 framework of more

interest. There will be bigger and possible meaningful di�erences in inferences

about hospital-speci�c random e�ects in cases of very high correlations between

monitors, and in cases when the sample sizes ni are much smaller than is typical

with these three monitors.

� A critical feature of this work has been the identi�cation of several compo-

nents of variability underlying within-year variation and across-year changes

in observed quality levels. The important part of this is the partitioning the

hospital-speci�c variation in outcome probabilities into two components: one,

a partially systematic and positively dependent AR component, represented by

the �ijt; and two, the purely unpredictable component represented by the �ijt:

In each monitor separately, and with con�rmation from the multi-monitor stud-

ies, the latter are very signi�cant, and contribute between 15-30% of the total

random e�ects variance on the logit scale. The extent of the contribution is

monitor-speci�c, with that for the general medical discharge monitorM3 being

signi�cantly lower than either of the (more comparable) psychiatric monitors
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M1 and M2. Thus hospital-speci�c levels of M3 are more stable over time

and hence more predictable.

� Summary graphs of posterior inferences for speci�c monitor:year choices can

provide useful insight into the distribution of outcome probabilities across the

hospital system, about relative levels of performance, and about changes over

time in such levels. Issues of how to most e�ectively summarise and use such in-

formation require consideration. Speci�c hospital/monitor/year outcomes that

show up as evident extremes in these analyses may require further investigation.

� It should be clear that the models and computational methods (detailed in sec-

tion 10.6 below) may be applied in other contexts, and that the basic binomial

sampling model may be replaced by other non-Gaussian forms as context de-

mands. The expectation is that the work will be developed in such ways and

that the models will �nd use in various other applications in the socio-economic

arena.

10.5.1 Further Extensions

There are various modelling assumptions that could be explored and tested by fur-

ther development of the existing framework. These include extensions to allow for

non-normal error distributions for the components of random e�ects �ijt and �ijt,

as discussed in chapter 5, section refHTC. It is relatively straightforward to replace

the normality assumptions with alternative, heavy-tailed error distributions, such as

Student-T, in order to explore questions of robustness and sensitivity. The conjecture

is that on the basis of the residual analysis and exploration to date, such extensions

would not materially impact on the analysis or substantially change the summary

inferences, although this may not be the case in studies of other monitor series.

One further addition planned is to extend the analysis to incorporate arbitrary
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patterns of missing data. The current �ndings are restricted to analyses of 152

hospitals on which data is available on each of the three monitors in each of the eight

years of study. Seven more hospitals in the data base have outcomes reported only

on subsets of monitor/year pairings, so were omitted from the study. The models

can be extended to incorporate these, and, more generally, to allow for any patterns

of missing data.

A related development also planned for the near future involves extension to

within-year predictions for model validation. In conjunction with the developments

for missing data, minor changes to the analysis may be made to allow for reanalysis

with selected hospital/monitor cases removed from the data set, but with the model

still including such cases in analysis. This leads to posterior distributions for the

parameters at these hospitals that are updated from the priors based on information

from the other hospitals, but which are not now based on the actual outcomes at

the omitted hospitals. Exploration of the concordance between these true outcomes

and the posterior predictions provides us with out-of-sample, or cross-validatory,

assessment of model adequacy.

10.6 Methodology and Computation

The �tting of the binomial/logit random e�ects time series models, both single mon-

itor and multiple monitors, involves new statistical methodology and computational

techniques. The models presented share much of the structure and conceptual basis

of models recently published in Cargnoni et al. (1997). In addition, the multivari-

ate model developed in this chapter is closely related to the dynamic factor model

from chapters 6 and 7 through common statistical structure. Therefore, some of the

components of the computational methods developed for the factor models are in-

corporated in this generalised linear models context. The methodology is novel and
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will apply to other hierarchical generalised linear models with time series structure,

and be of relevance to researchers in many socio-economic areas.

Implementation of the Gibbs Sampler

In each model class the analysis is performed using customised Markov chain Monte

Carlo (MCMC) simulation methods to evaluate, explore and summarise posterior

distributions. Technical details for the most general MODEL-3 class are illustrated

here. Details for the other models are routine simpli�cations. All summarised results

are based on over 100,000 simulations of posteriors, which are generated following

10,000 \burn-in" simulations that are discarded. Of the total 100,000, a set of 5,000

is subsampled spaced 20 apart so as to break correlations and lead to essentially

independent samples for summary analysis.

For the MODEL-3 class � denotes, as before, any subset of the relevant prameters

f�0t;�1t;V;U;�;�i;t;�itg. For the remaining variables together with the full data

set write ��. The Gibbs/Metropolis-Hastings framework then involves iteratively

resampling from exact conditional posterior distributions p(�j��) for some subsets of

parameters, and from proposal distributions that approximate conditionals for other

parameters, the latter then subject to accept/reject tests to ensure the accepted

samples are from the true posterior. In turn the algorithm goes as follows.

� �0t given �
�
0t

� �1t given �
�
1t

� V given V�

� U given U�

� � given ��
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� (�it;�it) given (�it;�it)
�:

The relevant conditional posteriors and simulation structures are now detailed for

each of these steps. Note that the conditional distributions for U and � are exactly

the same as the ones developed for the dynamic factor model in chapter 7 and are

rewritten here just to make the chapter self-contained.

Sampling �0tj�
�
0t

The �0t are conditionally independent with full conditional posterior distributions,

under reference priors, given by

p(�01j�
�
01) /

IY
i=1

p(�i1j�01)

and, for t > 1;

p(�0tj�
�
0t) /

IY
i=1

p(�itj�i;t�1;�0t;�0;t�1):

The posteriors are then multivariate normals,

�01j�
�
01 � N(�01jb01;W=I) and �0tj�

�
0t � N(�0tjb0t;U=I);

where

b01 =
IX

i=1

�i1=I

and, for t > 1;

b0t =
IX

i=1

f�it � �(�i;t�1 � �0;t�1)g=I:
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Sampling �1tj�
�
1t

Under reference priors, the �1t vectors are conditionally independent over t; with full

conditional posterior distributions N(�1tjb1t;B1t) for each t; and where

�1t = B1t

IX
i=1

X0
itV

�1(�it � �it) and B�1
1t =

IX
i=1

X0
itV

�1Xit:

Sampling VjV�

Assuming a reference prior for the variance-covariance matrixV, conditional posterior

is the inverse Wishart distribution Wi(V�1j8I;H) where

H =
IX

i=1

8X
t=1

�it�
0
it:

Sampling UjU�

Assuming a reference prior for the variance-covariance matrix U, the conditional

posterior is given, in terms of the inverse U�1; by

p(U�1jf�itg;�) / p(U�1)p(f�itgj�;U)

/ p(U�1)
IY

i=1

p(�i1j�;U)
8Y

t=2

p(�itj�i;t�1;�;U)

/ a(U)Wi(U�1j7I;G)

with

G =
IX

i=1

8X
t=2

(�it � ��i;t�1)(�it � ��i;t�1)
0
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and

a(U) = jWj�I=2exp(�trace(W�1A)=2)

where A =
PI

i=1 �i1�
0
i1 andW = �W�+U: The inverse Wishart distribution is used

as a proposal distribution in the Metropolis-Hastings algorithm. That is, given a

\current" value of U and correspondingW; a \candidate" value U� from the inverse

Wishart distribution is sampled, and accept it with probability

minf1; a(U�)=a(U)g

where W� = �W�� +U�.

Sampling �j��

Conditional on �� the posterior for � depends only on the random e�ects �it and U

via

p(�jf�itg;U) / p(�)p(f�itgj�;U)

/ p(�)
IY

i=1

p(�i1j�)
8Y

t=2

p(�itj�i;t�1;�)

/ p(�)N(�i1j0;W)
8Y

t=2

N(�itj��i;t�1;U)

where W = �W� + U is easily evaluated as a function of � and U: Write � =

(�1; �2; �3)
0 for the diagonal of �; and E = diag(�i;t�1): Then the conditional posterior

may be written as proportional to

p(�)c(�)N(�jf;F)

where

f = F
IX

i=1

8X
t=2

E0U�1�it and F�1 =
IX

i=1

8X
t=2

E0U�1E;
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and

c(�) = jWj�I=2exp(�trace(W�1A)=2)

where A =
PI

i=1 �i1�
0
i1 and W = �W� + U: Under independent uniform priors

for the �j; the full conditional posterior distribution for � is the above multivariate

normal form truncated to the (0; 1) regions in each dimension, and then multiplied

by the factor c(�): This may be sampled in several ways; in particular a Metropolis

Hastings algorithm is used taking the truncated multivariate normal component as

a proposal distribution. That is, given a \current" value of �; with corresponding

matrices � and W; a \candidate" vector �� is sampled from this truncated normal,

compute the corresponding diagonal matrix �� and variance matrix W� such that

W� = ��W��� +U; then accept this new � vector with probability

minf1; c(��)=c(�)g:

Sampling �itj�
�
it

Simulations are based on proposal distributions derived from the normal-logit ap-

proximations to the data model. Write

~yit = yit �Xit�1t = �it + �it

where yit is the vector of logit transforms of the observed outcome proportions. Under

the model structure and assumptions, �it � N(�itj0;V+ Sit) where

Sit = diag(si1t; si2t; si3t)

is the diagonal matrix of approximate data variances in the normal-logit model.

Combined with the model equations

�it = �0t + �(�i;t�1 � �0;t�1) + !it
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and the initial version for the �i1; this gives us a multivariate dynamic linear model

with known variance matrices and state vector sequence �it: Standard results for

DLMs now apply, as in West and Harrison (1997). To sample from the full conditional

posterior distribution a multivariate versions of the forward-�ltering, backwards-

sampling algorithm were implemented as detailed in the Appendix A.1 and used

in this thesis in several places in chapter 5 and 7.

Sampling �itj�
�
it

Given the just-sampled values of all �it; we again use the normal-logit data model

to generate candidate values of the �it that are then tested for acceptance based on

the exact conditional posteriors. As above, the approximate normal-logit data model

serves to provide a very useful candidate generating model, as follows. For each i

and t the exact conditional posteriors are

p(�itj�
�
it ; zit) / p(zitjnit;�it)p(�itj�

�
it)

where the likelihood function p(zitjnit;�it) is the product of the three binomial-logit

functions, and the conditional prior p(�itj�
�
it) is the trivariate normal

�itj�
�
it � N(�itj�it +Xit�1t;V):

Again using the normal-logit approximation to the binomial data models, the

approximate, and conditionally independent, normal posteriors are obtained

�itjyit � N(�itjmit;Qit)

where

Qit = (V�1 + S�1
it )

�1 and mit = Qit(V
�1(�it +Xit�1t) + S�1

it yit)

for each i and t:
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Use these latter normal distributions as proposal distributions: generate candidate

�it values from each of this set of approximate posteriors, and accept/reject them

according to a Metropolis-Hastings test. It is easily seen that this is a simple test,

based on the ratio of the exact binomial to the approximate normal-logit likelihood

functions. Speci�cally, if �it is the current, \old" value of �it from the previous

MCMC iteration, a new value ��
it from the probing distribution N(�itjmit;Qit) is

accepted with probability

minf1; a(��
it)=a(�it)g

where a(�) is the ratio

a(�it) = p(zitjnit;�it)=N(yitj�it;Sit);

i.e., the ratio of the product of the three exact binomial likelihood components to

the product of the three approximate normal-logit components. Note the very close

similarities of this method to that in multinomial time series modeling in Cargnoni

et al. (1997)
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Appendix A

Useful Results

A.1 MCMC in Dynamic Linear Models

To obtain a sample of a full set of state vectors �t in normals or conditionally nor-

mal DLMs, Carter and Kohn (1994) and Fr�uhwirth-Schnatter (1994) introduced the

prototype simulation method named Forward Filtering, Backwards Sampling. The

algorithm is de�ned in three basic steps:

1. Calculate the standard forward updates �tjDt � N(mt;Ct) 8t.

2. Sample the last state vector from �njDn � N(mn;Cn).

3. sample backwards through time for t = n� 1; n� 2; : : : ; 1; 0 sequentially from

�tj�t+1;Dt � N(ht;Ht) where �t+1 is the value sampled in the previous step.

A.1.1 Forward Filtering

Detailed description of theory behind the equations and models described below can

be found in West and Harrison (1997), sections 4.3 and 16.2. Consider the Dynamic

Linear model de�ned by the quadruple fFt;Gt;Vt;Wtg and written in state space
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form for each t,

yt = �t + F0
t�t + �t �t � N(0;Vt)

�t = �t +Gt�t�1 + !t !t � N(0;Wt)

�0 � N(m0;C0)

for some prior moments m0 and C0. Assuming that �t and !t are independent and

mutually uncorrelated DLMs theory leads to the following updating equations:

(a) Posterior at t� 1:

�t�1jDt�1 � N(mt�1;Ct�1):

(b) Prior at t:

�tjDt�1 � N(at;Rt);

where

at = �t +Gtmt�1 and Rt = GtCt�1G
0
t +Wt:

(c) One-step forecast:

ytjDt�1 � N(ft;Qt);

where

ft = �t + F0
tat and Qt = FtRtF

0
t +Vt:

(d) Posterior at t:

�tjDt � N(mt;Ct);

with

mt = at +Atet and Ct = Rt �AtQtAt0;

where

At = RtFtQ
�1
t and et = yt � ft:
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A.1.2 Backwards Sampling

The backwards sampling algorithm as described in West and Harrison (1997) section

15.2.3 requires drawing samples from the conditional distributions �tj�t+1. This is

done from the �ltering recurrences inWest and Harrison (1997) section 4.7. Explicitly,

�tj�t+1 � N(ht;Ht);

where

ht =mt +Bt(�t+1 � at+1)

and

Ht = Ct �BtRt+1B
0
t;

with

Bt = CtG
0
t+1R

�1
t+1:

A.2 Matrix Normal Distributions

Dawid (1981) and West and Harrison (1997) de�ne the class of matrix-variate normal

distributions for matrices of jointly normal quantities. The n � p matrix X has a

matrix normal distribution with meanMn�p, left variance (columns) �n�n and right

variance (rows) �p�p if it has a density function given by

p(X) = (2�)�np=2j�jp=2j�jn=2 expf�0:5 � trace(X0��1X��1)g:

One important property of this distribution is that all marginal and conditional

distributions of the elements of X and linear combinations of them are normally dis-

tributed. See above references for more details on the properties of this distributions

which is traditionally denoted as

X � N(M;�;�):
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Random number generation from this distribution can be performed easily by gener-

ating a matrix Z of np independent standard normal samples and computing,

X =M+ LZH0;

where � = LL0 and � = HH0.
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