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Abstract

The nonparametric approach to statistical modeling is appealing because it readily
accommodates non-standard relationships in data. This dissertation is a first step to
understanding the usefulness of Polya tree priors for modeling in multidimensional
Euclidean spaces. In particular, the Polya tree prior is applied to a multidimensional
Euclidean space. Using binary perpendicular recursive partitioning of a hypercube
in X, it is shown that marginal distributions of Polya tree priors are Polya trees,
and a conditional predictive distribution simulation scheme for exploring conditonal
relationships among K variables in a K-dimensional space is developed. Its useful-
ness for missing data imputation is also discussed. To address partition dependence
— a critical limitation of Polya trees — the Randomized Polya tree is defined and
developed. This new framework inherits the structure of Polya trees but induces
smoothing of discontinuities in predictive distributions. Theoretical aspects of the
new framework are developed, followed by discussion of methodological and compu-
tational issues arising in implementation. Analyses of two data sets highlight aspects

of inference with randomized trees. Future directions for research are discussed.
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Chapter 1

INTRODUCTION

1.1 Motivation

Bayesian nonparametric and semiparametric approaches to flexible modeling in R¥
have long been active areas of research. Discussion of all Bayesian methods for ex-
ploration of dependence structure, density estimation, and prediction in multidimen-
sional spaces would go far beyond the scope of this dissertation. A small sampling
of the vast collection of such methods includes mixture models (see West (1992) for
an overview) and mixtures of Dirichlet processes (Ferguson (1973), Antoniak (1974),
Lo (1984), Kuo (1986), Escobar and West (1995), Miiller et al. (1997), and many

others).

In a nonparametric framework for modeling random samples, observations X,
Xo, ..., X, belong to a set €2, and for j € 1,... ,n, X; ~ P, where the distribution
P is unknown and comes from a family of distribution functions P; the Bayesian
approach to this problem requires P to be regarded as an unknown parameter and a
prior distribution placed upon it. The nonparametric approach is appealing because
it, in principle, provides opportunity for accommodating non-standard relationships

in data relative to more constrained parametric models. Polya tree priors (Lavine



(1992), Mauldin et al. (1992)) can be used to model an unknown distribution P
by recursively partitioning the sample space. While some authors anticipate the
usefulness of Polya tree priors in ®% for applied statistical modeling — e.g., Fienberg
et al. (1996) for nonparametric function estimation in a data disclosure context and
Walker and Mallick (1997) for a multivariate hierarchical random effects models — the
framework for modeling with Polya trees in R¥ has yet to be applied to multivariate
problems for K > 1. This dissertation is a first step to fully understanding the Polya

tree priors for applications in R¥.

Partition dependence is a major drawback of the Polya tree prior (Ferguson
(1974), Lavine (1992)). Basically, partition dependence is when the partition speci-
fied for the model strongly influences resulting inferences. The problem of partition
dependence is not restricted to Polya trees; any statistical method relying upon a par-
tition of a Euclidean space can meet this criticism. Hartigan (1996) mentions concerns
about lack of ‘amalgamation’ of observations in neighboring bins of a Bayesian his-
togram build from a fixed set of candidate partition points as an issue, as do Wolpert
and Lavine (1995) in their work with Markov random fields for univariate density
estimation. Our initial work with Polya trees confirmed that partition dependence is
a problem which must be addressed when modeling with Polya trees. In this disserta-
tion, the ‘randomized Polya tree’ method is developed for smoothing discontinuities
of the posterior predictive density that are induced by partition dependence.

The remainder of this chapter is devoted to a review of theoretical work pertinent
to the development of Polya tree prior, from Ferguson’s 1974 unification of several

classes of random distribution functions under the tailfree process framework to a

review of the Polya tree prior (Lavine (1992), Mauldin et al. (1992), Lavine (1994)).



1.2 Previous Work
1.2.1 Tailfree Processes

In an important early review of Bayesian nonparametrics, Ferguson (1974) describes
tailfree processes, which were first defined by Freedman (1963) and Fabius (1964).
He unifies several classes of random distribution functions previously described in
the literature, including Dirichlet processes (DP) (Ferguson, 1973), the continuous
singular distributions of Dubins and Freedman (1967), and the absolutely continuous
(with probability 1) distributions of Kraft (1964) and Métivier (1971), by showing
them all to be tailfree processes. The tailfree process described by Ferguson is essen-
tially the Polya tree prior which is later defined and investigated by Mauldin et al.
(1992), Lavine (1992), and Mauldin and Williams (1990).

Before discussing these papers in detail, tailfree processes are explained. Let
[T = {mm;m=0,1,...} be such that my, 7, ... is a sequence of measurable partitions
on a space (2, B); m,,41 is a refinement of 7, for each m; and J7_, 7, generates B,

a o—algebra of subsets of 2. Let P be a random probability measure on (2, B).

Definition 1.1 (Tailfree Process (Ferguson, 1974)) The distribution of a ran-
dom probability P on (€, B) is tailfree with respect to {m,} if there exists a family

of nonnegative random variables {Y,, p;m =1,2,... B € m,,} such that

o the families {Y1 p; B € m1},{Ys,5; B € ma},... are independent

o foreverym=1,2,...,if Bjem; (j=1,...,m) is such that By D By D -+ D

B, then P(B,,) = H;nﬂ Y.,

Tailfree processes are conjugate; if the distribution of P is tailfree with respect
to {m,} and if X,..., X, is a sample from P, then the posterior distribution of P
given Xy,..., X, is tailfree with respect to {m,}.

3



Some key results related to tailfree processes and the development of Polya tree

priors are now presented.

1.2.2 Dirichlet Processes

The Dirichlet process (DP), one of the most widely-used and researched Bayesian
nonparametric methods, is very closely related to the Polya tree. The DP will now
be defined and notation will be introduced to motivate upcoming comparisons with

Polya tree priors.

A random probability measure P on (€2, B) is a Dirichlet process on (€2, B) with
parameter aFPy (denoted P ~ DP(aP,)) if for every n = 1,2,... and measur-
able partition By, Bs, ..., B, of ), the joint distribution of random probabilities
(P(By),...,P(By,)) is Dirichlet with parameters (aPy(By),...,aFPy(B,)). The pre-
specified probability measure, Py, the base measure, is the prior guess and expectation
of P: E(P(B;)) = Py(B;). The precision parameter, «, describes the degree of faith
in the choice of Py; « could be regarded as a “prior sample size” (Antoniak, 1974).
The Dirichlet process selects discrete distributions P with probability 1 (Ferguson
(1973), Blackwell (1973) and Blackwell and MacQueen (1973)).

Antoniak (1974) develops mixtures of Dirichlet processes (MDP) to handle the
case in which the unknown random distribution is a mixing distribution for a param-
eter which selects a distribution — e.g., X ~ N(u,1), p ~ P, P ~ DP(aF,). The
MDP approach is appealing for applications where there is a natural mixture com-
ponent intrinsic to the problem, or for Bayesian kernel density estimation, in which
mixtures of parametric kernels are mixed with respect to a DP (Ferguson (1973),
Ferguson (1974), Antoniak (1974), Lo (1984), Kuo (1986), West (1992), Escobar and
West (1995), Miiller et al. (1997)).

The DP selects a discrete distribution with probability 1, which is a drawback



for many applications. Using MDP could be a solution when the mixing parameter
indexes continuous distributions; despite this, the discreteness of the DP remains a

common criticism of the DP.

1.2.3 Polya Urn Scheme and Tailfree Processes

Tailfree processes were first described in terms of the Polya urn scheme by Blackwell
and MacQueen (1973), who show that the limit of the sampling distribution of random
variables X1,..., X, drawn from a Polya urn scheme as n — oo converges to a

distribution P that arises from a DP.

Mauldin and Williams (1990) also employ the Polya urn scheme to generate
random distribution functions — moreover, their construction involves generating
a random distribution from a tree of Polya urns. Their strategy is as follows: Let
E = {0,1} represent a set of outcomes — e.g., labeled balls in an urn. Let E™ be the
set of all sequences in the m—fold product £ x E x ... x E, and let E* = U2, E™
be the set of all finite sequences of zeros and ones, including the empty sequence ().
Associate with each € € E* an urn B, containing one ball labeled 0 and another ball

labeled 1. Generate a number X; € [0, 1] as follows:

Draw a ball from urn By; call its label ¢;

Replace the drawn ball with label ¢; with two identically labeled balls

Draw a ball from urn B, ; call its label €,

Replace €, with two identical balls

Go to urn B,

Continue the process



The random variable X is equivalent to the sequence (€1,€s,...) and can be

written in terms of its dyadic expansion.

Draw a second number, X5 € [0, 1], in the same manner as X; was generated, only
now using the same set of urns B. — both updated and non-updated urns — following
the generation of X;. The resulting empirical distribution function converges to a
random distribution function which was first constructed by Dubins and Freedman

(1967).

1.2.4 Polya Tree Prior

Lavine (1992) and Mauldin et al. (1992) formally define and develop the Polya tree
prior. The Polya tree prior is a tailfree process that allows probability 1 to be given
to sets of continuous, absolutely continuous, and discrete distribution functions —
the Polya tree prior is a generalization of the Dirichlet process. The development
of the Polya tree prior by Lavine (1992) focuses on the binary tree construction
used by Mauldin and Williams (1990) and Ferguson (1974) for constructing random
distributions on the real line.

First, we describe the Polya tree prior as described by Lavine (1992). As before,
let £ = {0,1}, E° =0, E™ be the m-fold product EXEx...xE, E* =J°_, E™, and
e € E*. Let Q be a separable measurable space, and IT = {7, : m = 0,1, ...}, where
To, M1, .. is a sequence of partitions such that (J°_, 7, generates the measurable
sets. Every B € m,,,1 is obtained by splitting some B’ € 7, into two pieces. Let the
support €2 be denoted by By or my. For every ¢ € E*, B,y and B, result from the
splitting of B. in two: B, = B, |J B1.

Definition 1.2 (Polya Tree Prior (Lavine, 1992)) A random probability mea-

sure P on Q has a Polya tree prior with parameter (I1,.A), and is written P ~



PT(I1, A), if there exist nonnegative numbers A = {a. : ¢ € E*} and random vari-

ables Y ={Y. : e € E*} such that:

(i) The random variables in 'Y are independent
(ii) For each € € E*, the distribution of Y. is Beta with parameters (.o, 1)

(1ii) For everyn =1,2,... and every e € E™,
:P(Bel...en) = H YVEI---Q’

The Y, represent the probabilities of partition elements B,y given B.. Let Y and
1 —Y} be the probabilities that X; € By and X; € B; and, more generally, let Y. and
1 — Y, be the conditional probabilities of X; € B,y and X; € B.1, respectively. Polya
trees are conjugate; for the prior given above, Y.|X ~ Beta(oe + Y 95, (Xi), a1 +
> 0p.,(X;)), where dp_, (X) is the indicator function of X € B.,.

Lavine (1992) provides a canonical construction of the Polya tree prior on . One
issue to consider is how to construct the partition II. Center the PT prior about
a distribution @ as follows. Let X ~ @, where @ is known and continuous, and
the distribution function of ) is G. Then, select II to be the set such that all B, €
{(G7H(k/2™), G ((k+1)/2™)]} for k = 0,...,2™ —1 at each level m of the tree. For
the resulting partition II, Q(By) = Q(B;) = 0.5 and Q(B|Q:) = Q(B:1]Q:) = 0.5.
To center the prior around @ = U(0,1), select all B, € {(k/2™, (k + 1)/2™]} for all
E.

Another issue to consider is the selection of the parameters in A. Parameters a.
in A determine both how strong the prior distribution will be with respect to data
and the general structure of F.. As previously mentioned, Ferguson (1974) highlights
conditions on A which yield discrete, continuous singular, and absolutely continuous
distributions with probability one. While further details and results will be given
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in the next chapter, note that for level m = 1,2,..., a = 27 implies a Dirichlet
process, & = 1 implies a Dubins-Freedman distribution, and o = m? implies an
absolutely continuous distribution with probability 1 (Ferguson, 1974). Therefore,
through selection of A and (), one can center the Polya tree prior about a distribution
@ arbitrarily closely, as determined by A, in a manner directly analogous to the

specification of a baseline measure and precision parameter in the Dirichlet process

— A can again be thought of as a precision parameter and () as a base measure.

Figure 1.1 shows an example of the construction of a Polya tree prior on (0, 1]
(Ferguson, 1974). At the top level of the tree, the top partition element, By = 2 =
[0,1] is split in half at the dyadic rational, 0.5. At the second level, the resulting
halves, By = (0,0.5] and B; = (0.5, 1], are children, or child urns, or subcells of the
partition element By : By = By By.

The notation of Mauldin et al. (1992) differs from the above notation in that
E ={0,1,... ,k} for some integer k, where k > 1. Polya tree priors are defined
directly on BN = E x E x ... and Polya tree distributions are induced on € via
measurable functions d : EY — Q. For example, if Q = [0, 1] as in Ferguson (1974),

k=1,g:EN —10,1]:

d(El, €9y ... ) = Z 67;272-.

=1

1.2.5 Finite Polya Tree

Computation with Polya trees might be hindered by the need to update the infinite
number of parameters which describe the tree. The finite Polya tree, which is also
called a ‘partially specified Polya tree’ (Lavine (1994); Mauldin et al. (1992)) ad-
dresses this concern. The finite Polya tree is constructed to be identical to the Polya

tree up to a finite, pre-specified level m. However, the Polya tree parameters in the
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Figure 1.1: Construction of a Polya tree prior on (0, 1] (Ferguson, 1974)



set A are updated only to level m in the finite Polya tree. Lavine (1994) discusses two
scenarios for which it might be reasonable to update only to a pre-specified level M.
The first case is when the parameters in A are constructed to increase rapidly enough
that as the level of the tree increases, the posterior updating of the distributions of
Y, beyond level M based on a data set of size n does not affect the prior strongly.
The second scenario in which finite Polya trees are appealing arises from concerns
of prior elicitation; it might be possible to elicit prior information about parameters
near the top of the Polya tree and information about aspects of the distribution such
as shape and modality, but it could be unreasonable to expect to elicit meaningful
prior distributions for each and every parameter of the Polya tree prior. The former
of these two scenarios is most of interest here; most, if not all, of the prior distribu-
tions to be used in this thesis entail a specification of the a,’s to be increasing rapidly
as the level of the tree increases.

The finite Polya tree will now be defined. The notation to be used here builds
upon that set forth in the Polya tree prior definition of the previous Section. Let
S be a finite subset of E* such that, for every € = ¢;---¢, € 5, €¢---¢; € S
(j < m) as well, and suppose we have specified values for the parameters describing
the partition elements and the subset of A of interest, { B, Be1, e, 1 : € € S}. Let
Ty = {P(Bw), P(Bq) : € € S} be the random probabilities assigned by the partially
specified Polya tree. Let Ty be the mass distribution of P given T7; then, P = (71, T3)
and the distribution of P is equal to the distribution of 77 times the distribution of

T, given Tj.

Definition 1.3 (Finite Polya Tree (Lavine, 1994)) The random variable Ty has
a finite Polya tree distribution with parameter (B®,A®) if there emist sets BY =
{Beo, By : € € S}, numbers A% = {a, a1 : € € S} and random variables Y° = {Y, :

€ € S} such that:
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1. all the random variables in Y° are independent;
2. for every e € S, Y, has a Beta distribution with parameters oo, Qe1;

3. for everye=¢€---€, €9,

(0= (1 v ) TE 1 7).

Jj=1;¢;=0 Jj=1e;=1

T, should be selected so that (77, T5) is consistent with prior beliefs about P. Let
v be a measure on the support of P. Let P be the set of all possible distributions
of the form (77,73) which are to receive mass 1 under any reasonable prior. Let F
be the event that (77,73) € P. So long as (T,T3) given E is such that 77 has a
finite Polya tree distribution and Pr[P << v] = Pr[dP/dv > 0 a.e.] = 1, T; can be
selected in any fashion. Lavine (1994) searches over the class of prior distributions
which are consistent with the available prior information to obtain bounds on prior

(and posterior) quantities of interest.

1.2.6 Some Other Methods Relying on a Partition

Andreev and Arjas (1996) argue that in nonparametric Bayesian density estimation,
‘the space of all density functions is too large for one to set up a prior supported
by the whole space,” and because Bayesians are concerned with finding posterior
distributions over the set of all possible density estimates, it might be desirable to
approximate a ‘true’ density by examining a restricted set of possible functions which
are arbitrarily close to the ‘true’ density in some prespecified fashion. The finite Polya
tree approach addresses this consideration by considering how to estimate a ‘true’
distribution function reasonably well by assessing the error of estimates of quantities

of interest, such as predictive distributions, means, etc. The practical considerations
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of computation are accounted for as well by the finite Polya tree, in that computation

can only be done up to a finite number of levels of a tree.

In addition to the finite Polya tree, there have been many other Bayesian meth-
ods in which unknown distribution function is modeled by somehow partitioning the
sample space of interest. Perhaps the simplest method entails placing a Dirichlet con-
jugate prior on the (multinomial) probabilities of the partition elements which would
be updated by a count of the observations falling into the various partition elements.
Histograms are often used to summarize information about arbitrary densities. Harti-
gan (1996) develops an envelope histogram to reflect the uncertainty associated with
selecting a histogram. Usually, the histogram is not of primary interest but is rather
a tool for estimating a ‘true’ underlying density. Lavine (1994) discusses searching for
upper and lower bounds on posterior and posterior predictive quantities of interest
when using finite Polya trees. The class of histograms can be used to approximate
a ‘true’ (absolutely continuous) distribution (density) arbitrarily well (Andreev and
Arjas (1996); Lavine (1996)).

Wolpert and Lavine (1995) place a Markov random field on a partition of the real
line to estimate a density function. They illustrate that beliefs about the density, such
as monotonicity and continuity, can be incorporated into the model via parameter
choice; this is also the case with the Polya tree prior (Lavine 1992, 1994). Sometimes,
in Markov random field modeling, the partition is of intrinsic interest; one could easily
imagine the points of a lattice of a Markov random field (MRF) applied to a spatial
process as representing geographical observation posts of particular interest — e.g.,
lakes, factories, etc. For other scenarios, the partition is not of primary interest and

is employed solely for convenience or necessity.

The main conceptual difference among Polya trees and these other methods is the

underlying assumptions about the dependence structure. The dependence structure
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induced by the tree entails specification of probabilities at level j, conditionally in-
dependent given the parent partition element at level j — 1. This obviously differs
from a histogram, in which the partition and probabilities of partition elements can
be chosen in any manner, so long as the sum of the piecewise constant densities is
1. For the Markov random field prior, the probabilities of the partition elements are
independent given the nearest neighbors of the partition elements. The definition of
‘neighbor’ can be made to suit one’s modeling purposes; some common specifications
entail either taking the partition elements that are directly connected to each cell
by a single line segment on a regular lattice, or defining neighbors to be all adjacent
partition elements to the partition element of interest. For some applications, the
dependence structure will be of primary importance, while for others it is merely

chosen for convenience.

For all of these methods, parameter specification is critical, as is true for the Polya
tree. Each method has its own set of advantages and disadvantages. Computation is
a major factor to consider. While arbitrarily fine partitions lead to better approxi-
mations of densities via histograms (Andreev and Arjas, 1996), numerical problems
could result with histograms if there is such a huge number of partition elements that
computing probabilities of the cells results in small enough probabilities for numeri-
cal problems to enter in. Computational time involved with implementing a Markov
random field prior is of concern to Wolpert and Lavine (1995) and Lavine and Lozier
(1998), who simulate posterior distributions of interest with the Markov chain Monte
Carlo methods of Metropolis-Hastings and Gibbs sampling, respectively; Wolpert and
Lavine (1995) elect to implement Metropolis-Hastings over a ‘glacially slow’ Gibbs.
Lavine (1998) shows how to compute exact posterior distributions and to simulate
from the exact posterior distribution of interest in a conditionally Gaussian Markov

random field, which is an improvement over implementing a Gibbs sampler or other

13



MCMC simulation algorithm. The method is promising in terms of computational
efficiency, but thus far is limited application to conditionally Gaussian Markov ran-
dom fields, and the full impact of computational costs of operations such as matrix
inversion and random variate simulation, which are related to factors such as sample
size and dimension of the sample space, on posterior computation and simulation

remains to be seen.
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Chapter 2

MULTIVARIATE POLYA TREE PRIOR

This Chapter begins with notation to be used in describing the Polya tree priors in
RX, building upon that introduced in Chapter 1. Issues such as specifying absolute
continuity of distributions and marginal distributions of Polya trees in ®% are con-
sidered, and a simulation scheme to obtain conditional predictive distributions and

its applicability to missing data imputation is described.

2.1 Notation

The notation and some terminology to be introduced in this Section will be used
throughout the dissertation. Much of this directly extends from the development in
Chapter 1.

Define a perpendicular split of an axis of a hypercube in ®% to be a split of the
axis by a line which is perpendicular to that axis. The “perpendicular splits” of
a hypercube will be all perpendicular splits of each axis of the hypercube made in
this fashion. Let K be the dimension of the random vector (X7,..., Xg) that lies
in a K —dimensional hypercube. There are 2X children for each urn B, resulting
from binary perpendicular splits along each axis of a K —dimensional hypercube. Let
E ={0,1,...,25 — 1} and € be a element of E. Define a function b, : £ — {0,1}
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to be of value equal to the v bit in the binary representation of €; e.g., if € = 6
and K = 3, b1(€) = ba(¢) = 1 and b3(e) = 0. Let © = (04,... ,0k) be the K—length
vector that is the binary representation of €; i.e., 6, = b,(¢), the v component of ©.
For K =1,¢=0.

Figure 2.1 highlights the binary perpendicular partitioning applied to the axes of
the unit square, and shows the equivalence relationship of € and © in 2. As shown,
€ is an integer-valued index of the children of the unit square, while the equivalent
binary vector © = (64, 6,) represents the left/right (0/1) orientation of each child
partition element with respect to the cut points along the axes (the cut points are
0.5 in this case, as denoted along the axes of Figure 2.1); 6, corresponds to X, the
v component of the random vector X1,..., Xg. Just as for the Polya tree in Figure
1.1, this notation is employed in this fashion at subsequent levels of the tree. The
relationship between € and O illustrated in Figure 2.1 extends to other dimensions of
the hypercube.

Unless otherwise stated, F will equal {0, 1,...,2% —1} in the following discussion.
Lete € E. Let E™ = EXEX...xE be the m—fold product of E. Let E* = J°_, E™
and ¢ be an element of E*. Let EY = Ex E x ---. Let Q be a separable measurable
space, mp = Q and II = {m,;m = 0,1,...} be a sequence of partitions such that

Ue_o ™m generates all the measurable sets and such that every B € m,,4 is obtained

by splitting some B’ € 7, into 2X pieces.

2.2 Polya Tree Priors on R

Polya tree priors on ®* are now constructed, using the framework and notation
presented by Mauldin et al. (1992). Lavine’s 1992 presentation is equivalent, though
the notation of Mauldin et al. (1992) is more convenient for the purposes of this
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X, 05
0= CE
0 05 1
Xl

Figure 2.1: Binary splitting along axes of a cube in R2. For axis v, corresponding
to X, (v =1,2), 8, =0 if the urn is below the cut point 0.5.

Chapter. Mauldin et al. (1992) point out that if there is a measurable mapping ¢ of
E" into another space S, then random distributions on S can be obtained via Polya
tree priors. One strategy for measurably mapping the Polya tree structure from EV
to RE will be given in two steps: a mapping from EV to IX (where I = [0,1]) will
be given, and then a second mapping from I* to R¥.

One can measurably map ¢ : EN — I'f via

o0

1
1/) 61,62,... ZQ_TL b1 Gn .. ,bK(Gn))I

n=1

where b;(€) is as previously described. The measurability of the components 1; of :

00
’QZ) 61,62,... Z

implies the measurability of ¢ (Billingsley (1995), Section 13, p. 183). Ferguson
(1974), Lavine (1992) and Mauldin et al. (1992) discuss ¢ : E — I, where K =1

and b;(€) = e: P(e) = Y(er, €2,...) = > " . Define a second measurable function,
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v 1% — RE. Map EN — RE via
p=70v
The composition ¢ is measurable, as the composition of two measurable functions is

measurable (Billingsley (1995), Theorem 13.1(ii)).

In !, a suitable Borel-measurable function, v, would be the inverse CDF, G, of
a pre-specified distribution function (Lavine, 1992); for example, if X ~ @ a priori
and @ has CDF G, where G can be of parametric form (e.g., U(0,1)) or any other
form. Similarly, {v;} for i = 1,..., K could be chosen to be an inverse CDF.

In this case, let II be the partition of R* (or a subset thereof) induced by binary

perpendicular splits of the axes of the hypercube. Let
A = {oee = (00, ety -, 0o _yy) 1€ € E™}

A random probability measure P on RX has a Polya tree prior with parameter (A, IT).
One small difference from Definition 1.2 is that the random variables Y = {Y., =
(Yoo, Ye1, ..., Yooxcy)) : € € E*} now have independent Dirichlet distributions, rather

than the Beta distributions.

2.3 Continuity of Predictive Distributions in R*

Kraft (1964) and Métivier (1971) discuss conditions for which Polya trees on (0, 1]
will yield absolutely continuous distributions with probability one. Schervish (1995)

generalizes these theorems to arbitrary tailfree processes.

First, let P be a random probability measure which follows a Polya tree prior.

By Theorems 1.121 and Lemma 1.124 (pp. 66-68) (Schervish, 1995):

Theorem 2.1 (Schervish (1995)) Suppose each element of the partition 11 has a

positive measure with respect to a measure v and for every j, B, . .. € T (the set
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be such that, for all k and all

of partition elements at level k in a tree). Let Y,

E(Klek) — V(Bel...ek)/V(Bq...,ek,l)' [f

1---€f

B

€1...€L 7

= Var(Ye,..e

< 00
2 pern (B(Vey )

then with probability 1, P is absolutely continuous with respect to Lebesque measure.

The above theorem provides a criterion by which to select a probability density
function that is absolutely continuous with probability 1, provided the conditions

of the Theorem hold, of course. For example, if the PT prior is such that a., =

(em?,... ,em?) for all ¢ € E™! and constant ¢ > 0, then
i Var(Ye..cn) z‘”: 2K — 1
SUP L
pean (BE(Veren))? 4=t 20K (2K em? 1)
<

2 S (o eni)

m=1

9]
- )Y
m=1

< Q.

Of course, if E(Y,, . .) # V(Be..e,)/V(Be... cr_,), then the Theorem cannot be ap-
plied. However, this result can be applied when the partitioning results from dyadic
rational perpendicular splits.

Other results with less stringent criteria ensuring P is continuous with probability

1 are given by Mauldin et al. (1992).

2.4 Conditional Predictive Simulation

To address the issue of nonparametric learning about relationships among variables
throughout R a method for simulating the conditional predictive distribution of ran-
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dom variables X, ..., X given X; 1, ..., Xk (j < K) based on the Polya tree prior
is now developed. Conditional predictive distributions are of interest because one can
learn about relationships among random variables X1, ..., Xk by exploring the dis-
tributions of a subset of the random variables, e.g, X,... , X}, given another subset
of variables, e.g, Xj;1,...,Xk. The relationship of X;,...,X; given X;;4,..., Xg
may vary according to the particular values of X;,q,... , Xg.

A computational scheme to simulate the conditional predictive distribution of
interest is presented here. The quantities which are necessary for the simulation of
the conditional predictive distributions can only be computed up to a finite level m in
the tree. Thus, a conditional predictive distribution simulation scheme is developed
here which is based on the finite Polya tree framework in R¥, where the space is
partitioned via recursive binary perpendicular splits of the axes of % up to level
m. The points X1, ..., Xk all fall along the partitioned space. Let Xi,... , Xx be a

random vector in RX.

Conditional Predictive Distribution Simulation

Let X = (Xy,...,X;, Xj41,...,Xk) be a random vector with distribution F', where
F follows a Polya tree prior on R%, where the partition is induced by recursive
binary perpendicular splits of R%. For each component X; of X,..., Xg, let ©0) =

(9?), Géi), . ,9,(7?) be the binary representation of X; up to level m. Let
IRV 1 1 NG j
{00 Hor = O, 00000y (09,65), o))

be the collection of vectors corresponding to Xy,...X; from levels a to b. Let v(-) be

Lebesgue measure; of particular interest here, V(B{a(i) « ) is the Lebesgue measure
1

mJi=1

of the partition element B , which is computed as the product of the lengths

{050 3K,

of the K axes of the K —dimensional hypercube, B{e(i) K -
I:mJi=1
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Notice that:
p(Xl,... ,Xj | X]'_|_1,... ,XK) (21)

0.8 p(Xl, ,Xj,X]'+1,... ,XK)

i K 1
x p({ei:zn}my(B—

{e(l) )

_ (i) K 1
- p({gl:c z:l)V(B

{e(l) )

00 HE O} ) x el
Xp({ ct+1:m z_1|{ l:c 1_1) X V(B{a(z) )

l 1

; 1
= p({oN K ) ——
p({ 1: } _I)V(B{egf) Kzl)

: V(B )
i {0
Xp{O o 0L, 1000 1 ) B s )

(8} O )
et Lim S i=j+1117 e I/(B{ o8 )
_]+1
(B 4 )
p({ c 1|{ lc 1}7, 17{ lc 1= ]-l—l) V(B{G() i )
({91 1} 1 {99}'[3 1) :
T By ) x v By )
. V(B )
H(l) _ 9 0 #
{0 e HOL o {01 E ]+1)I/(B{9(l) i)

(B{ O —J+1)
A O ) 2
mYizji1
The first two lines of the equation result from proportionality. On the third line,
the arguments to the function, the Xi,..., Xk, are rewritten in terms of their bi-

nary vectors up to level m; the v(-) terms are included because the binary vectors
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representing X, ..., Xg included here only represents levels 1 to m. The following
equalities result from rewriting the second line in terms of conditionally independent
components.

Let
a = {ggﬁl:m}gzl b= {ggi) g:l c= {9@:71}?:1 d= {91(: i=j+1 €= {9c+1 m}z =j+1

In terms of these identities for (a-e) and {9 J_,, the last line of Equation 2.1 is

proportional to p(b|cde), and:
p(blede) o p(albede) x p(e|bed) x p(bled)
= p(ae|bed) x p(bled)

Since a is unknown at level ¢, p(ae|bed) must be computed (up to a normalizing

constant) by summing over all possible values of a; this results in p(e|bed):

p(elbed) Z p(aelbed)
all{a}

~ Z { ﬁ {g(ll))}f( 1} } « Z/(B{agzl 1}j— )
> K (B{gm i )

()
{a(i:l) i=1

(@) J l=c+1
W g1y Fima all{{0$)}K 1}

Also,

By i)
Yoy } V(B

bled) o X

plthed) o { —= e ha7 e

i 1 1
all{{00)}E |}

If the partition elements at each level are all of equal size, then the v(-) terms cancel
out in the computation of the multinomial probabilities of the 2/ possible values for

{9&” {:1. Otherwise, they must be evaluated.
To summarize, simulate b = {9 _, by first computing

p(blede) o p(bled) x p(elbed)
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for all 2/ possible values of b (i.e., {9&") 7_)), where:

(B{gm i )

l:ic—1

{a(l)
p(bled) o { } §

all{{6{')} K 1}

and

i {9(11)} = (B{%li e )
p(6|bcd) X Z {H Z - }X (B{g(z) i ) )

(#)
all{{0 {‘9(1;1) i=1

l=c+1 -
(et =t} all{{0)}5 |}

and secondly by drawing {93) {:1 based on the resulting multinomial probability

vector.

The two key components of the computation at each level ¢ are:

a) The “prior” probability of {9 _, given Xy,..., X, up to level ¢ — 1 and

Xjt1,...,Xg up to level c.

b) The “likelihood” component, i.e., the probability of X,,1,..., Xk beyond level
c given the possible values for Xi,...,X; at level ¢ (i.e., the probability of the
“tail” of Xj+1, c. ,XK)

Once the Polya tree prior is updated to the posterior, simulation of X;,...,X;
given X;,4,..., Xg can be done, bit by bit, at each level of the tree by simulating
{9&” {:1 at each level c=1,... ,m.

To illustrate the conditional predictive simulation with a small Polya tree with
two levels, an example of a Polya tree in R? is given. Let (X, X5) be a random
vector in [0, 1]. For this two-level tree, denote the binary representations of X; and
X, by (le), 951)) and (9( ), 9(2)), each vector corresponding to bits at levels 1 and 2.
Suppose one is interested in simulating the distribution of X; given x5 = 0.05. An
illustration of the Polya tree is presented in Figure 2.2; the conditional probabilities
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of the partition elements at level 1 are given on the Figure as (1/3,1/4,1/6,1/4).
The value that is being conditioned on, zo = 0.05, is denoted by a dashed line in
Figure 2.2. Since x5 = 0.05 implies (952), 9&2))’ = (0,0)’, the partition elements that
have probabilities (Yoo, Yior) = (1/3,1/6) are the only ones of interest; the other
two partition elements at level 1 can be ignored. In this case, the partition elements
at a given level are all of the same size, and so the v(-) terms are constants in the
multinomial probability vector and thus can be ignored.

To simulate 951), the probabilities of 951) being equal to 0 or 1 must be computed:

(0" =0 | (6”,65”) = (0,0))
o p(B1” = 0/61 = 0) x p(65” = 06 = 0,61 = 0)
= p(01" = 061 = 0) x {p(65” = 0,65" = 06 = 0,6}" = 0)
+p(65 = 0,657 = 1161 = 0,6 = 0)}

1/3
T 1/3+ 1/6(1/20+ 1/10)

= 1/10

and, similarly,

(0" =110, 07) = (0.0)) o {21/ 1/4) = 1/6

3+1/6
Normalizing 1/10 and 1/6 results in the probability of 9§1) = 1 to be 0.625. Next,

simulate le) by drawing from a Bernoulli with parameter 0.625. Suppose le) is drawn

to be 1. At level two, go to the lower right hand partition element corresponding
to Y1 = 1/6. Compute the probabilities of 952) being 0 or 1 given 9&2) = 0 as
1/41—{—741/4 — 1/2. Then, simulate 6{* ~ Bernoulli(1/2).

As can be gleaned from this example, one could equivalently draw at point
p(Xi,..., X;|X 41, .., Xk) from a multinomial distribution with probabilities based
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1

Figure 2.2: Example: Conditional Predictive Simulation. The unit square is split
into quadrants (bold solid lines) at (X, X3) = (0.5,0.5) at level 1, resulting in four
partition elements at level 1; the probabilities of these partition elements are indicated
by the following Y’s: (1/3, 1/4, 1/6, 1/4). At level 2, the quadrants corresponding
to xs = 0.05 (indicated by the dashed line) are further split into quadrants (thin
solid lines). The conditional probabilities of the resulting partition elements at level
2 given X; < 0.5 and xo = 0.05 are denoted by the Y’s at level 2 (1/20,1/10), and
the conditional probabilities at level 2 given X; > 0.5 and x5 = 0.05 are (1/4,1/4).
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on the set of 2™ candidate paths that the point (X;...,Xg) can possibly follow
down the tree. Such a direct multinomial draw based on 2/™ cells is computationally
infeasible for even moderate-sized problems: for a tree updated to m = 10 levels and
for j = 3, the resulting multinomial probability vector would be of length 23, which
would require a vector of size 2'° megabytes for 8-byte double-precision numbers! The
simulation scheme described in this section circumvents this problem by exploiting
the conditional independencies in the tree. As mentioned in Chapter 1, the precision
with which a finite Polya tree models the ‘true’ underlying distribution can be reg-
ulated by selecting a partition of desired fineness. In the same vein, a density can
be estimated by a histogram arbitrarily well by taking arbitrarily fine partition ele-
ments (Andreev and Arjas, 1996), as mentioned in Chapter 1. With the conditional
predictive simulation scheme, one can explore in greater detail conditional predictive
distributions on higher dimensional Euclidean spaces than one would be able to with

a brute force multinomial-Dirichlet histogram-like method.

2.5 Missing Data

For examining and processing arbitrary data sets, missing data will inevitably be
encountered. Missing data can appear in a problem via censoring or by complete
omission. Lavine (1992) discusses the special case of censored data; he illustrates how
to build a partition II on the real line when all that is known is that an observable x is
less than some quantity xy (p. 1226). Another aspect of missing data — especially in
K —dimensions — is if for a vector X = (X1, X»,... , Xg), components (X;,,...,X;)
are missing. Imputation of the missing quantities may be desirable in such a case.
Missing data can be treated as an unknown variable in the problem, and via Bayesian
imputation one can numerically integrate out the missing data in the posterior. In

this case, missing data are assumed to be missing at random (MAR) and the missing
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data mechanism is ignorable (Little and Rubin, 1987); that is, the probability of a
data point missing is independent of X.

As will be shown in this Section, the conditional predictive simulation scheme can
also be readily employed for handling missing data that arises in the form of missing
components of an observed random vector X, ..., X, which follows a distribution
F. This F comes from a finite Polya tree distribution with parameter (I1°,.A),
where IT° is a partition induced by binary recursive perpendicular splitting, A° is the
usual finite Polya tree parameter set, and Y° is the usual set of Dirichlet-distributed
parameters in the finite Polya tree.

Because the conditional predictive simulation scheme is employed here to impute
data, the imputation of missing data can only be done up to a finite level m. Let n; be
the number of missing components of the vector X; , ..., X;. (n; € {0,1,... , K —
1}), so that at least one component is observed. Let ji, ..., jn.s Jnit1y -« 5 JK

be a rearrangement of the indices {1,..., K} of the vector X;,,..., X, such that

iK

X

of X; are missing, and components X, i

components X;. ,..., X -
J1 In;+1

b,

are

observed. Let
[ n
D={{o%) Y,

represent the observed data (i.e., observed components of the data vectors), and

l in; \n
M= {{egl?m}g:ﬁ i=1

represent the missing data (i.e., missing components of the data vectors).

The observed-data likelihood is:

n.m I{n;=0} m
CCURES V01 {3 D OIS | RPN

i=1 =1 TN T B

I{n;>0}
] (2.2)

ic+l:m

where the component denoted by I{n; = 0} results from the usual likelihood under
the Polya tree if X; is fully observed, and the component indicated by I{n; > 0}
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results otherwise. The resulting posterior distribution of Y° based on the observed

data is, of course,
p(¥°1D) o p(D[Y*)p(Y®).

Since the posterior quantities of interest — Y and M — are available via the following

analytical forms,
p(#°1D) = [ (9|, D)p(ar D)

and

p(M|D) = / p(M1Y5, D)p(¥S|D)dy*,

a chained data augmentation algorithm (Tanner, 1996) can be implemented to obtain

samples from p(Y®|D) and p(M|D) by iterating over the following steps. Simulate
’%S ~ p(%S|M7 D)

M ~ p(M|D,Y")

where p(Y°|M, D) is the usual Polya tree posterior given the “completed” (i.e., the
imputed and observed) data and p(M|D,Y%) o p(M, D|Y%).

p(M|D,Y%) is simulated as follows. Impute the missing components of X;, {Gf?m {gl

via a multinomial probability vector of length 2/»™ which is the number of all pos-
sible paths observation X; can follow down the tree. Each component of the multi-

nomial vector is of the form:

Y,

GO
p({gllm}g:ll|{97zlm}{in 1795) = m
n 2 e Yoy,

1 Jng
all {00 1

Notice, however, that:

m

{01, 45 0 9% = [0 N

c=1

P00 115

! i, !
{92(1':)&1 ?:1’ {egl?m}{ijnrkl’ 15‘5)
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Each term in this product is written in exactly the same form as the equation used
in the previous Section, upon which the conditional predictive simulation scheme is
based. Thus, one can implement the conditional predictive simulation scheme to
draw the missing components of X; by simulating {6;,, }?ll in the manner described

in the previous Section.

2.6 Marginal Distributions of Polya Trees

In this section, marginal distributions of multivariate Polya tree priors will be de-
rived. The proof relies on the fact that a random vector of length 2% that follows
a Dirichlet distribution has the same distribution as a vector of 2% independent
Gamma-distributed random variables (with common scale parameter and shape pa-
rameters coming from the Dirichlet parameter vector) divided by the sum of the 2%

independent Gamma random variables.

Theorem 2.2 (Marginal Distributions of Polya Trees) Suppose F is a Polya
tree prior on RE, with parameters (11, A), where I is a recursive binary perpendicular

partition. Then, the j—dimensional marginal distribution of F' is a Polya tree.

Proof: Let {Y{ } be a Dirichlet-distributed random vector of length 2*, with a

l
gg)m}le

2k length parameter vector {a{a(l) v }:
I:mJi=1

Yoo .} ~ Dirichlet({am 1 })

{Y{e(’) 1k } has the following equivalent parameterization: the distribution of a Dirich-
I:mJti=1

let random vector is that of a vector of written in terms of a collection of independent
Gamma random variables with common scale parameter (Johnson and Kotz, 1976).

For each random vector {Y, } of length 2%, introduce 2* random variables,

O]
gl:m};cZI
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A each of which has a Gamma distribution with parameter equal to one of

l
{05:271};6:1 ’

the 2% parameters in the Dirichlet parameter vector, {a }, for one of the 2%

possible values of {HY)m}f:l Each Z follows a Gamma distribution with shape

parameter o m b ; the Z have a common scale parameter. Then, Y{

{05, GRS

has the same distribution as

l
eg:Zn};czl

MU

2 L
1 =1
all{{6") yk_}

To obtain the j-dimensional marginal distribution of F', compute 2/ random variables

with respect to all possible values of {Hﬂ)m}f:jﬂ, for all

by summing over Z, ) .,
{al:m}lzl
NTURT
Mygw yi = ) 210038,

all {0 Vi 1}

Since the sum of independent Gamma random variables with the same scale param-

eter is Gamma (DeGroot (1986), p. 289): M{a(” :
1:

m

;  follows a Gamma distribution
=1

with shape parameter » aif ol 3 and with scale parameter that is com-
4

0
Eiad o0,

mon to the 25 Gamma distributed random variables introduced above.
Then, for each {9 7_,, there is a random variable, Y{*@m ; » which has the
1imJSi=1
same distribution as

M{g(n

> M(l)J

all{{6) Y_} =t
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The collection of 27 components of the Dirichlet random vector {Y*

o0 3 } describe
1:mJi=1

the marginalized components of the Dirichlet vector:

Woo it~ Dmfhl“(” b= { > %;ﬁ%})
all {63, }_; 41}
Thus, repeat the above calculations for every vector Y at level m, and for all

levels m. The set of all {Y{* } and all {a’{‘ } describe the marginal Polya

00 Moy 00 Moy
tree on the partition induced by the recursive binary perpendicular splitting on 7.
To illustrate, suppose F' is a Polya tree in ®2. The parameters at level 1 follow a

Dirichlet distribution as usual:
(Yoo, Yo, Yie, Yi1r) ~ Dirichlet(ooy , agrr, aigr, 011/),

just as in Figure 2.1. If one is interested in finding the one-dimensional marginal
distribution of F' with respect to the first axis of the square, one must sum over the
cells created by splitting the support of second axis via a binary perpendicular split.
So, in Figure 2.1, this marginalization occurs at level 1 at which agy and ag are
added together and oy and aqy. are added as well. The marginal distribution of Y
would then be (Yoo + Y017, Yior +Yi1/) ~ Dirichlet(coy +o1r, i +aq17). This type of
summation can be repeated at all levels of the tree. Notice that the marginalization
leads to increased Dirichlet parameters; for example, for a tree in %2 for which the
prior parameterization is Y ~ Dirichlet(l,[,1,1), where [ is the level of the tree, the
marginalization results in the Dirichlet parameters of the marginal Polya tree at level

1 being equal to (2, 21).

2.7 Ordinal Data

Modeling with Polya trees in RX when a component of X is ordinal can be imple-
mented via a recursive partition of C' categories, by initially splitting the C' categories
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into two partitions. The partitions can be of any size, but if the partitions are of as
equal of size as possible, given the previous level, then the ordinal category can be
described by a minimum number of levels of the tree. Consider the latter partitioning
strategy. This partitioning scheme will yield a tree with its deepest branch describ-
ing the ordinal data to be of |[logs(C)] levels. For example, if X = (X, X,) and
X is continuous while X, € {0,1}, the support By is split into four child partition

elements as usual, for some cut point c¢y:
{ X1 <oy Xo =05 { X1 <oy Xp = 1} { X1 > ep; Xp = 0} { X1 > ¢p; Xo = 1}

At level 2, the partitioning can be done with respect to only X;, so eight child
partition elements result; each element above for which X; < ¢y will become two
elements, based on whether X; < ¢y and similarly, for X; > ¢y, two child partition
elements result based on whether X; < ¢; for some cut points ¢y < ¢y < ¢;.

If C'is a power of 2, the partitioning can be done up to level log,(C). Otherwise,
the partitioning can be done on subgroups of size based on powers of 2; for example,
for C' = 12 the split can be based on whether a data point falls in a subset of 4
elements or in the other 8 elements. The subtree based on the subset of size 4 can
be updated |logz(4)] levels, while the other subtree extends |logy(8)] levels. This

structure can be expanded to accommodate any number of categories.
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Chapter 3

RANDOMIZED POLYA TREES

3.1 Motivation: Partition Dependence

One critical drawback of Polya trees is that the partition IT has a strong influence on
posterior and posterior predictive distributions. For example, suppose X is a random
variable on the sample space (0, 1] and X|F ~ F, where the Polya tree prior for F is

constructed via the following construction:

F ~PT(II, A)
I ={(k/2™, (k+1)/2"]} (k=0,...,2m—1) (3.1)
A={ay, =, =m?} at level m

Suppose one data point is observed, x; = 0.51. Figure 3.1 shows the posterior

predictive density with respect to Lebesgue measure on (0, 1]; computations are done
to 15 levels of the tree. The strong role of the partition, I1, on the posterior predictive
density is clearly depicted in Figure 3.1; there is a sizable jump at the dyadic rational,
0.5, which is the split point of (0, 1] at level 1. Similarly, jumps due to the partitioning

at levels 2, 3, etc. of the tree are visible at the dyadic rationals 0.75, 0.625, etc.

The partition can be chosen for convenience. The only non-trivial tailfree prior

for which partition dependence is not a problem is the Dirichlet process (Ferguson,
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1974). Lavine (1992) suggests using a dyadic rational recursive partition when there
is no pressing reason to select the partition in any special manner; even for other
modeling approaches that require a choice of partition, such as Bayesian histograms,
the ease of using a dyadic rational partition might outweigh concerns about partition
dependence (Hartigan, 1996). The inferential focus of many Polya tree applications is
not on how a particular partition affects posterior inference, which makes the strong
influence of the partition on the posterior particularly disconcerting. It is therefore
desirable to develop a method which reduces the role of the partition on posterior

distributions.

One strategy for reducing the effect of partition dependence is to employ a ran-
domized Polya tree approach, which is developed in this Chapter. The general idea
is to randomly jitter a fixed partition to induce smoothing of the discontinuities that
result from using a fixed partition. The randomized tree is constructed here by build-
ing upon the recursive dyadic partition as follows. At each level of the tree, a bit of
randomness is added to the selection of partition element cut points. To partition
(0, 1], a partition cut point is selected to be “near” the dyadic rational, 0.5, at level
1; at the second level, the cut points are selected to be “near” 0.25 and 0.75; and cut
points at subsequent levels of the tree are selected in this fashion. Concrete details
of this particular construction follow in the upcoming Sections. For now, just note
that the partitioning in the randomized tree that is developed here is based on the
dyadic rational partition specification, but it is conceivable that many other variants
on this construction could be developed as well.

Using this idea, each observation x; in a data set of n observations is given its own
partition, with each partition being a small, random perturbation of the underlying
dyadic rational partition. The resulting n partitions can be intuitively regarded to be

centered about the dyadic partition. An obvious question might be why one would
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choose to use n partitions rather than just one random partition applied to all n
observations. This model would imply that there is a single underlying partition
which would be interesting to learn about. By introducing n random partitions, the
partitioning is hierarchical in nature. This is reasonable in light of the motivation
for building the randomized tree model, in which one is trying to reduce the effect
of the partition on inference rather than to learn about an “underlying” partition
of interest. In addition, for many applications, numerical problems are likely to
result for moderate to large n if just one random partition is used in the analysis;
the resulting posterior distributions would consist of factors which are powers of n;
consideration of this small detail should be clear once the model specification is given
in the upcoming Sections. Another variant of the approach to be developed here is to
jitter partition elements just at level 1, or just at a few levels near the top of the tree;
this is appealing because the discontinuities that are induced by a fixed partitioning
at the top levels of the tree are the most influential of the set of all discontinuities
that result from partition choice. It is straightforward to accommodate this special
case by modifying the methods presented in this Chapter.

In this Chapter, the randomized tree approach will be developed. Throughout
this chapter, the sample space will be assumed to be (0,1]; the methods presented
here can be extended to any space on the real line by transformation, and then to

multivariate problems directly, as is done in Chapter 4.

3.2 Construction of Partition for the Randomized
Polya Tree

Just as the partition for the Polya tree is constructed recursively, so is the partition
for the randomized tree. To motivate the illustration of the recursive partitioning

in the randomized tree, first recall from Equation 3.1 that for the Polya tree, Il
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Figure 3.1: Posterior predictive density for a Polya tree prior on (0, 1], computed
to 15 levels, with IT = {(k/2’, (k+1)/27]} k=0...,27—-1,j7=1,2,..., with prior
Yp,..0, ~ Beta(j?,j*), based on one observation, z; = 0.51.

is constructed on (0, 1], via recursive dyadic rational partitioning, by splitting the
interval into halves at 0.5, resulting in By = (0,0.5] and B; = (0.5,1] so that By =
ByUB;. The resulting By and B; are further split into halves to yield By = (0, 0.25]U
(0.25,0.5] and B; = (0.5,0.75] U (0.75, 1].

For the randomized tree, partitioning is observation specific. For a single obser-
vation x, (0, 1] will be split not into halves but into pieces of sizes #; and (1 — 3), so
that By = (0, 4;] and By = (f1,1]. Then, By and By will each be further split into
two pieces of size determined by proportion 3y (or 1 — /) of their length: By = (0, /3]
becomes By = (0, 51 32]U (5152, 1], and similarly By = (84, 81+ (1—01) G2]U(B1+(1—
(1) 52, 1]. At level 3, a new parameter (33 is introduced, and the partition elements
of level 2 are split according to proportion 5. Figure 3.2 shows this recursive parti-
tioning of (0, 1] to level 3 of the tree. The partition element cut points are denoted
on Figure 3.2 as functions of (3, (s, (5.

This method of recursive partitioning occurs at all subsequent levels of the tree,

as a parameter (; is introduced at each level j of the tree. Further, the {3;} are
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Figure 3.2: Recursive partitioning of (0, 1] via randomized tree to three levels of
tree. Cut points appear on the graph as functions of 3, (5, (5

taken to be independent. Define the vector (6;,...,60,, 1) as the path taken down
the tree by this specific . The vector, = (04, ..., Bn), determines the cut points

Aoy ..0,,, of the partition elements can be computed at any level m as:
m j—1
I{j#m -
Noveos = 306,77 T 871 - )" (32)
j=1 =1

(Ag is defined to be the cut point at level m = 1, as shown in Figure 3.3.) Each
vector [3 is specifically tied to an observation x; a second observation, x*, has its own

vector, #* and hence its own partition points A*.

From comparison of Figure 3.2 and Equation 3.2 with Figure 1.1 of Chapter 1, it
is clear that (; = 0.5 would yield the dyadic partition IT of the Polya tree (Equation
3.1). Because the objective is to add just enough variation to the choice of {f;} to
move the partition away from II, it will be desirable to select {3;} to be close to 0.5.

Each z; has its own partition, which is determined by its own set of parameters
{8}, with partition cut points as determined in Equation 3.2. For observation

z; (i = 1,...,n), the collection {Xy, o :m = 1,2,...} induces a sequence of

im—1
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Figure 3.3: Recursive partitioning of (0, 1] via randomized tree to three levels of
tree. Cut points appear as subscripted {A} on the graph.

partitions:

A ={ (0,1]; (0, A9) U[Ag, 1]; (0, o) U [Ao, Ag) U [Ag, A1) U [Aq, 1]; ete. } (3.3)

where the cut points are now subscripted by ¢ to emphasize that this partition cor-
responds to observation z;.

Figure 3.3 shows the partitioning in terms of the cut points Ay, o rather than

in terms of {3, } (Figure 3.2). In comparison to Figure 1.1 of Chapter 1, the structure
of Figure 3.3 implies that given A;, z; conditionally follows some distribution F; that
is constructed by the partitioning. To study Fj, observe the following by comparing
Figures 3.3 and 1.1:
Relating F' and F; given A;:

F(0.5) = Fi(y,) (3.4)

F(0.25) = Fi(\o,), F(0.75) = Fi(\y,)

F(0.125) = Fy(Ap,), F(0.375) = Fi(Aoy,), F(0.625) = Fy(A1o,), F(0.875) = F;(A1,)

etc.
Conditional on the function A; and the underlying distribution F', this infinite col-

lection of equalities identities Fj. This structure is studied in detail in the following
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two Sections.

3.3 Definition of the Random Map A;(-)

The construction of A; from a collection of independent terms, {f; }, implies a func-
tion A;(-), which determines the partition of (0, 1] for the observation, x;. In this
section, this function, A;(-), will be studied. The key result of this Section concerns

invertibility of A;(+).

Definition 3.1 (Functional Form of A;(-)) Let z; be some point in (0, 1], written
in dyadic expansion as z; = Z;; Hij/Qj. Consider unique dyadic expansions of z;
by selecting 0;, according to the rule that 0;, = 0 if z; < Zizl 0;.27%, and 0;, =1
otherwise. The collection of independent terms {3;,} determines the map Ay(+) from

(0,1] to (0, 1] such that:
r; = Ni(z) = Ay (Z eij/2j> = Zgijﬁinij
=1 =1

where Hij = Hg;ll ll_ail (1 — ﬁil)gil’ and Hi1 =1.0

As mentioned in Section 3.1, the cut points will be selected to be “near” the dyadic
rationals. To do this, one can select ;; to be near 0.5, say, within a small distance
7 from 0.5; thus constrain 3, to fall in an interval (0.5 £ 7) for “small” 7 (e.g, 0.01,
0.05, 0.10); much more will be said about the choice of 7 later. This constraint also

bounds ;; away from 0 and 1.

Theorem 3.1 (Invertibility of A;()) The function A;(-) is invertible; i.e., for ev-

ery x; € (0,1] there is a unique z; € (0, 1] such that A;(z;) = ;.

Proof: The structure of the tree is exploited to show that A;(-) does indeed have an
inverse. Select any z; € (0, 1] according to the rule that yields a unique dyadic expan-
sion for x;, as put forth in the Definition 3.1. The function A; defines a partition of
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(0,1], TT,,, which guides us to finding z; = A;'(x;) via finding the vector (6;,,6;,,...),
which represents the unique binary expansion of z;. To find this (6;,,6,,, .. .), follow z;
(1 - ﬁil)ail <

x4; otherwise 6;,, = 0. After finding (6;,,6;,,...), set z; = >°2, 6;;277. To see that

1-6;,

j

down the tree: at each level m, set 6;, = 1if Y7 | B, Hilj{j i

this z; is unique and satisfies A;(z;) = x;, note that by construction it is not possible
to select the 6;; in such a way that there are two binary representations of the same

number. To see that A;(z;) = z; is indeed true, notice that for all m,

m 7—1 m 7—1 m

1-6; ) 1—0; ) 1-0; _
Zﬂi;ﬂia‘ H/Bil (1=Bi)" < wi < Zﬂi;ﬂia‘ H/Bil l(l_ﬂiz)a”jLH B, (1= 0)"
j=1 =1 j=1 =1 =1

(Recall that 3;; is “near” 1/2, and thus the case of 3;; = 1 is automatically ruled
out.) The difference between the lower and upper bounds on the interval containing
x; converges to 0 as m — oo. The convergence of the partial sums defining A;(+)

implies A;(z;) = x; almost surely. O

3.4 Relating F' and F; via A;()

Given the invertibility of A;(+), the connection between F; and F' conditional on A;
can be explored. It is known that z;|A;, F ~ Fj; that is, conditional on A; and F,
observation x; has distribution Fj. Further, the z; are conditionally independent

given the A; and F. By construction (Equation 3.4), the following equality holds:

In other words, if z; ~ F(-), then Fj is the distribution implied by x; = A;(z;).
The invertibility of A;(+) allows for A;'(z;) = z; and a variation on Equation 3.5
is:

F(A; () = Fiws) (3.6)



This is an explicit form of Fj in terms of A; and F. Note that A; now can be seen to

be a random perturbation of F' but on the quantile scale, as will now be discussed.

3.4.1 A;(-) and Random Quantile Functions

In the Polya tree literature, the results of Dubins and Freedman (1967) and Mauldin
and Williams (1990) pertain to random quantile functions; these authors develop con-
tinuous and strictly increasing, and hence invertible, random distribution functions
on (0,1]. While their development is much more general than that of the develop-
ment of the function A;(-), where each A; is constructed for a single observation z;,
it is interesting to notice that A;(-) is similar, but not identical, to one of the func-
tions studied by these authors. Dubins and Freedman (1967) generate a probability
measure, P,, where g is a uniform distribution on the line v = 1/2; 0 < y < 1,
Mauldin and Williams (1990) demonstrate how to generate this P, via construct-
ing a distribution function, h, via the dyadic rationals as follows. Set h(0) = 0 and
h(1) = 1; draw h(1/2) ~ U(0, 1) at step 1; independently draw h(1/4) ~ U(0,h(1/2))
and h(3/4) ~ U(h(1/2),1) at step 2; and so on. A;(-) differs from A(-) in that the
collection of points drawn by Mauldin and Williams (1990) at step m: {h(c) : ¢ €
{k/2™, (k 4+ 1)2™};k = 0,1,...,2™ — 1} are all drawn independently, conditional
on steps 1,... ,m — 1, whereas the values of A;(-) at step m are all functions of
Biyy -+, Bi,, and thus are not independent. It is beyond the scope of this subsection
and this dissertation to explore further connections between examining a single A;(+)
and the random functions of Dubins and Freedman (1967) and Mauldin and Williams
(1990), though future research on this topic could be interesting. With the random-
ized tree, a random distribution is constructed, in part, by constructing a collection

of n A; functions, which is a different approach than that taken by these authors.

Let u be be a random variable in (0,1) and let z; be such that Fj(x;) = u. By
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Equation (3.6),
u = Fi(z;) = F(A7 (z:)).

)

By invertibility of F' and Fj, and the fact that F, '(u) = a,

F'(u) = A7'(x)

which implies

Ay(FHu)) = F; H(u), or equivalently, A;(Q(u)) = Q;i(u)

where () is the quantile function of F' and ); is the quantile function of F;. Thus,
A;(Q()) is the quantile function corresponding to Fj. The nature of the randomized
tree is clear here: the A; randomly “distorts” @, the quantile function corresponding

to F.

3.4.2 Marginal Distribution P(z;|F)

Recall from construction and Equation 3.5, to model an observation x; as coming
from a distribution Fj, first model z; ~ F and then set z; = A;(z;). This is equivalent
to saying that x; follows F; given F" and A;. Given this construction, the marginal
distribution of z;, p(z;|F'), which results from integrating P(z;|F, A;) with respect to
dP(A;) (and noting that A;(-) and F' are independent by definition), is discussed. As
the A; are independent, and independent of F', it follows that given F' the z; are still
independent. The prior for A;, derived from that for the {f; }, will be assumed to
be the same for all i. Then the z; have a common distribution P(z;|F). An explicit

form for this cannot be derived, but note the following. Conditional on F',
P(|F) = /m(x,.)dp(A,.) — /F(A;l(xi))dP(Ai).

42



In the special case that Z; ~ U(0,1), the above expressions imply P(z;|F) =
E{A7 (x:)}-

The exact form of P(z;|F) above is difficult to interpret analytically. However, it
may be explored via simulation. The effect of various choices of prior distributions for
{ on A;(-) is now examined to assess how “different” the simulated distribution for
is with respect to a fixed Polya tree distribution F'; that is, how much variability is
added by A;(-)7 It is important to understand how much variability A;(-) adds via the
randomized tree. For a fixed F', what is the prior predictive distribution of P(x;|F)?
This prior will be influenced by the choice of the prior distribution on f; , 3, ...
which in turn determines the function A;(+).

First, select the prior distribution of the {3;} as follows. The {f;} will be

independent a priori, and will come from a uniform distribution which is concentrated

about 0.5:

p(Bi) =U05—7,05+7) j=1,2... (3.7)

The prior distributions for {f;, } will determine how variable the function A;(-) will
be. The hyperparameter, 7, will typically be selected to be small. The objective
of the randomized tree is to allow for some jitter of the dyadic partition to induce
smoothing. It is not necessary to select A; to be very noisy. The objective pursued
by specifying a prior for 3;; is to induce a reasonable amount of randomness to the
partition by effectively centering A;(z;) about the line A;(z;) = z; (which corresponds
to the dyadic partition) by centering and concentrating the prior for 3;, about 0.5.
The influence of various choices of 7 will be explored in this Section.

F is fixed to be a U(0, 1) distribution (Y;,, = 0.5 for all m, and IT = dyadic rational
partition), and computation of the tree is carried to 15 levels. Figures 3.4-3.5 display
100000 MCMC draws from the simulated distribution for x;. Each row of subfigures in

the Figures corresponds to one choice of 7. In each row, a histogram of the simulated
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distribution for x; appears on the left; in the center column appears a histogram of
®!(-), the inverse of the standard normal cumulative distribution function (CDF)
of 1, with a superimposed line indicating the standard normal density function; and
in the right hand column appears a normal quantile plot of a random subsample of
1000 of the 100000 simulations of ® (), plotted against quantiles of the standard
normal distribution. The disparity or agreement between the samples and the N (0, 1)
density, as reflected by the subfigures in the center and right hand side columns, will
reveal how close or far the simulated distribution is from uniformity. The simulated
distributions for 7 = {0.01,0.05,0.10} are presented in Figure 3.4, and those for
7 = {0.25,0.33,0.5} are displayed in Figure 3.5. The lower the value of 7, the
closer to uniformity of the simulated distribution. As 7 increases, the median of the
simulated distribution is sampled from a wider range, which pushes the mass of the
distribution toward the edges of the unit interval. Another feature of the histograms
of the samples in Figure 3.5 is that there are bumps visible at approximately 0.25 and
0.75, which are clear for 7 = 0.25 and 7 = 0.33. A hint of the cup-shaped pattern
in the distribution which is so clear in Figure 3.5 for larger values of 7 appears in
the form of small dips at about 0.5 for 7 = 0.05 and 7 = 0.10 (Figure 3.4). These
bumps could be due to the effect of the variable median being replicated at all levels
of the tree. Another explanation for the bumps is that the Lebesgue measure of the
partition element sizes plays a role in the predictive distribution; small values of the
Lebesgue measure of a partition element will increase the predictive density, while
comparatively larger values will decrease it. The presence of these small bumps at
about 0.25 and 0.75, as well at other locations throughout the distribution, could
be due to the effect of the variable partition element size. Note that for all values
of 7 examined in Figures 3.4-3.5, this effect does not seem to dominate the overall

pattern of the simulated predictive distributions. The normal quantile plots reveal
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generally linear patterns to the quantiles of the simulated values for xy, suggesting
the distributions of ®'(-) (center column) may approximate normal distributions

with variances greater than 1.

3.5 Model Specification for the Randomized Polya
Tree

For the randomized tree, the partition is regarded as random. This entails specifi-
cation of the prior distributions on the 3;’s. These details are now provided in this
section. The likelihood and prior distributions for the f3;,’s as well as for Y, the col-
lection of parameters following Dirichlet distributions which describe the conditional
probabilities of belonging to various partition elements in the tree, will be presented.
A computational scheme to be implemented to obtain simulations of conditional pos-

terior distributions will be presented in Section 3.6.

Notation

First, some notation is set forth. Let €., = €; - - - €, be a vector of zeros and ones
which denotes a general path down the tree to level k. Let 6; , = (6;,,...,6;,) be a
0/1 valued random vector denoting the path that z; takes down the tree to level £.

The distinction between €;.;, a general path down the tree, and 6;, ,, which describes

iy
the path followed down the tree by observation x;, must be made. There is an €
to describe every possible path down the tree to level k, but there are only n 6; ,’s
— one for each observation. Let 3; = (f;,...,3;,) be vectors of random variables
corresponding to observation x;, up to level £ of the tree. The set of all 5;,,..., 0,

parameters corresponding to observations will be written as the collection {;}1,, or

{p;} for short. Finally, denote the observed data by (z1,...,z,), or {x;} for short.
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Finite (to level m) Model

The development of the randomized tree and the function A;(-) in the previous
sections entails specification of the model for an arbitrary number of levels in the
tree. In practice, it is not possible to compute the tree for an arbitrary number of
levels when f3;; and Y, are unknown beyond a pre-specified finite level, m, as will be
clear from the model to be specified. However, one can specify a probability model
based on a randomized tree which parallels the finite Polya tree prior (Lavine, 1994)
which is described in Chapter 1. For the parameterizations to be used in this thesis
— the ag,..; increase rapidly (e.g., ac,..e; = cj? for level j) as the level j increases —
it makes sense to stop updating the tree parameters beyond some chosen level m if
the sample size n is small enough relative to parameter values of a, ..., that the
prior on {Y¢,..c,,..c,,; } Will not be strongly affected by n observations.

From here on, the finite tree model presented here will have a piecewise constant

density on each interval B at level m of the tree; i.e., the distribution on each

€1 €Em

B.,..., will be uniform. This finite Polya tree specification is analogous to setting

Bipyoms; = 0.5, and to setting Y, beyond level m (5 = 1,2,...) equal to

e €t
1/2. Let Y and A° be parameters of the finite Polya tree updated to level m (see
Definition 1.3).

To re-emphasize, the process studied here is defined on [0, 1], and suitable trans-

formation to the real line can be done to handle any subset of . Extension to R¥

is straightforward.

3.5.1 Prior Distributions

The prior distribution for {f;;} was given in the previous Section (Equation 3.7).

The prior for Y, oand £ =0,... ,m —1is:

Y€1:k710 ~ Beta(afl:k—l(]’ aGl:k711)7
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which is the usual (finite) Polya tree prior as in Definition 1.3 of Chapter 1.

3.5.2 Likelihood

By construction, the resulting likelihood function is:

m
p(xla"' 7xn|957{ﬁi17"' 7ﬁim}?:1) X H H iy (38)

i:l ll m k=1
Here the v(-) terms are the Lebesgue measures of By, , and is a function of the
parameters which describe the partition for F;, (3;,, ..., ;. ), and of the path which

x; follows to level m, 6;

llm

By,,.) Hﬁ,k H(L— By )l (3.9)

The product, [[,-, Yy, ., results from the multiplication of the conditionally inde-
pendent probabilities of x; belonging to Bgil_k given x; is in parent partition element

By, at level k — 1.
1:k—1

7

3.5.3 Posterior Distributions of Model Parameters

Combining the likelihood and prior distributions yields the joint posterior distribu-
tion:
p({ﬁila s 7/8im = 17% |l‘1, cee n)
i 1 1
Qe 0— Qe 1—
X H H 0;,, X p(ﬂik) H Yel,:klol qulklll
= llm k=1 all{El:k_l}
Exact computation of the marginal posterior distributions of model parameters given

data is not possible. Simulation of these marginal posterior distributions by imple-

menting Markov chain Monte Carlo (MCMC) (Gelfand and Smith (1990); Tierney
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(1994); Gilks et al. (1996)) to obtain draws from the full conditional posterior distri-
butions of the parameters of interest will be performed. Computational details follow

the model specification.

Conditional Posterior Distribution for Y°

The conditional posterior distribution for Y;, o € Y® given {;} and {x;} is a Beta

distribution with parameters a; and as, as in the usual Polya tree model:

Yv€1:j710|{ﬂi}a {xz} ~ Beta(ala a2) (310)
where

n n
a1 = Qey;_jo + Z[ [€15-10 =6, ] Ay = Qe g1+ Z[ [e1j11 =06;,,]

i=1 i=1

(3.10a)

The posterior updating of the Beta parameters (a.,,; 0, @, ;1) to the values (a1, az)
occurs as follows: if 2; follows the path €;.; down the tree to level j (i.e., 6; = €15),
the Beta parameters for Y . will be incremented by 1. Each of the parameters a;
and ay is equal to its prior value plus a count of the number of observations falling

into partition elements B, o and B, 1, respectively.

Conditional Posterior Distribution for (;,

By inspection of the joint posterior distribution, it is clear that the posterior factor-
izes; i.e., the (3; are conditionally independent over ¢« = 1,... ,n. The conditional

posterior distribution of each [; is:

p(Bis - Bin |95, 2:) o v(By, ) ][ Yo, p(Bi) (3.11)
k=1

A complication in simulating from the conditional posterior distribution for ;
above is that one does not know which B,..., contains z;. Prior to sampling /3;, one
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of the possible 2™ partition elements at level m, B, ..., that is to contain x; must
be selected. Computational approaches for this scenario will be discussed in Section

3.6.

3.5.4 Posterior Predictive Distribution

Now that conditional posterior distributions for the parameters have been derived, the
posterior predictive distribution for x,.; can be computed. As usual, the predictive
distribution is derived by integrating with respect to the posterior distribution of
parameters and conditioning on observed data. Integration with respect to {3;}7,

averages over the effect of the partition:

p($n+1|$1, s 7xn) = /p(xn+1|{ﬁi}zn17 HS) X p({ﬁz‘};b:p 15‘S|xla s 7xn)dﬁl A dﬂnd%‘s

= [{ [ sttt pi60105 |

x p({ B}, Yoz, ..o 2)dBy .. dBadY®
(3.12)
The second line in the above equation is due to the independence of (,.; and
By, Bn. Given the data zi,...,z,, simulate the p(z,1|z1,...,2,) via simu-
lation of the posterior distributions of {3;}"_, and Y°. Then draw 3, from its prior
distribution, along with an indicator for the path x,,; would take down the tree,
Ont1ys--- 5 Ony1,,, which would be drawn from multinomial distributions based on the

updated distributions for Y.

3.6 Implementation of the Randomized Tree

A hybrid MCMC sampler is constructed here by combining a Gibbs step to sample
Y% from its exact full conditional posterior distribution, p(Y*|{8:}, z1,- .. , z,) (Equa-
tion 3.10), and by sampling 3 via an independence Metropolis step. First, updating
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the parameters A° for the distribution of Y and how to simulate the distribution of
Y5 ay,. .., 2, {6} is discussed, and then how to construct an independence Metropo-
lis sampler for ;. This is followed by a discussion of the convergence of the resulting

transition distribution for this hybrid MCMC sampler.

3.6.1 Updating the Conditional Posterior Distribution for Y

The conditional posterior distribution for Y, . ¢ follows a Beta distribution (Equa-
tion 3.10). As described earlier, the parameters for the Beta distribution of Y¢, . o,
ap and ag, reflect the number of observations falling in B, ; plus prior parameter
values (Equation 3.10a). It is only necessary to keep track of parameters for Y, cor-
responding to partition elements B, ; where data fall. Conditional on {{f; }72,}7,,
if data do not fall in a partition element B, the prior values of the distribution of
Y, are taken for a; and as. Details on how to keep track of parameters a; and a-

while computing with the tree structure are provided in Appendix C.

3.6.2 Simulation of the Conditional Posterior Distribution
for ﬁz

An independence Metropolis-Hastings algorithm is implemented to simulate a vector
B; from a proposal distribution, and then accept the draw with a certain probability.
The stationary distribution of 3; given x; and Y* is given by Equation 3.11. Define

a proposal density, ¢(3"), to be the prior:

Proposal distribution: ¢(87"") = H U0.5—71,05+7)
j=1
Because of the tight priors on the (3;, one would expect that the priors and posteriors
for the 3; should be similar. Thus, the independence chain constructed in this way

should yield reasonably high acceptance rates. It is also very easy to implement, and
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is very fast in comparison to Gibbs sampling. f3; is drawn from a proposal distribution

and then the draw is accepted with acceptance probability

ot r) = min{ 1, "L,

where ﬂi(t) comes from the last simulation cycle, and w(ﬂi(t)), the weight function,

is equal to p(8;]Y°,z;)/q(B;), which is the target density divided by the proposal
density. The distribution ¢(= p, in this case) is bounded away from 0 given the

choices of 7, n and m.

3.6.3 Convergence of the MCMC Algorithm

Completion of the above simulations {3, Hst} at timest = 1,2, ..., means one cycles

though the following steps:

Y5O o p B a, . a)
t
B9~ p(BYY 2y, )

In order to ensure that the Markov chain constructed here indeed converges to the
target distribution of interest — the posterior distribution p({3:}, Y|z, ... ,z,) —
it must be shown that the transition kernel of our hybrid, cyclic MCMC scheme is
ergodic — i.e., the transition kernel must be irreducible, aperiodic, and positive Harris
recurrent. Two results from Tierney (1994) (Propositions 3 and 4) support uniform
ergodicity of our Markov chain, which in turn implies ergodicity. First, an indepen-
dence kernel with a bounded weight function w(-) is uniformly ergodic. Second, any
transition kernel constructed as a cycle which contains a uniformly ergodic kernel is

uniformly ergodic. Our weight function, w(/;), is bounded:

m Yo, 2r "
0 ;) = (27)™ ; = =
<w(f) = (27) ]1_[1 63791]. (1- Bij)ei]. { (0.5 —17) }
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The quantity, {I[;, ﬂilj_eij(l - ﬂz-j)gihi}’l, is bounded above by (0.5 — 7)™, the

product, H;"Zl Ybil:j is bounded above by one, and 7 and m are fixed.

3.7 Randomized Tree versus Polya Tree

An experiment was done to highlight how the randomized Polya tree prior differs from
the Polya tree prior in addressing the partition dependence problem exemplified in
Figure 3.1. The analysis shown in that figure is repeated, only this time employing
simulation of the randomized tree and of the Polya tree. The trees are updated to
15 levels.

Figure 3.7 shows simulations of 100000 MCMC draws from the posterior distri-
bution of a Polya tree prior updated after observing one data point equal to 0.51,
along with three analyses from randomized trees for 7 = 0.025, 0.05, and 0.10. The
randomized tree appears to be doing well at smoothing discontinuities. Figure 3.6
shows the histograms of the resulting samples for (3,..., 315, for 7 = 0.05. The
histograms indicate that the marginal posterior distributions of the {3;} are roughly
uniform, with small deviations for particular 3;, such as (3, (5, and 37, for example.

Figure 3.8 displays another analysis in which a sample size of 10 was used, in
which the data points were equidistant from each other and fall along the sequence
(0.5,0.55). Similar benefits arise from employing the RT framework as are apparent
from Figure 3.7.

Of course, it is unlikely that a tree would be applied to an analysis of a data set
with one observation. These analyses are simply to illustrate the effect of the partition
on inference via Polya trees and randomized trees. The analysis in which the value
of x is 0.51 could be criticized for “exaggerating” the effect of the randomized tree
on reducing the influence of the partition on inference. In fact, analyses of a data
set using Polya trees and randomized trees are compared in Chapter 4. Suppose the

o4



betal beta2 beta3

o Q o
& & 2
o o o
046 048 050 052 054 046 048 050 052 054 046 048 050 052 054

150
150
150

(=] o
n wn
betad beta5 beta6
o
n
Y
o o
3 o] E
B 3 3
o o o
0.46 0.48 050 0.52 0.54 0.46 0.48 050 0.52 0.54 0.46 0.48 050 0.52 0.54
beta7 beta8 beta9
o
wn
N
o o
o wn n
n — —
—
o o o
0.46 048 050 0.52 0.54 0.46 0.48 050 0.52 0.54 0.46 048 050 0.52 0.54
betalO betall betal2
o
0
N
o
o n o
s - 4
3 3 3
o o o
0.46 0.48 050 0.52 0.54 0.46 0.48 050 0.52 0.54 0.46 0.48 0.50 0.52 0.54
betal3 betald betals
(=]
g g g
3 3 I
o o o
0.46 0.48 050 0.52 0.54 0.46 0.48 050 0.52 0.54 0.46 0.48 050 0.52 0.54

Figure 3.6: Histograms of f,..., (15 (10000 subsampled from 100000 iterations)
for the analysis with n =1, 7 = 0.05.
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Figure 3.7: n=1 (x; = 0.51): Simulations of posterior predictive distributions for
Polya tree prior (upper left) and randomized Polya trees computed to level 15. 7 €
{0.025, 0.05,0.10}.

Polya tree Randomized tree (tau=0.025)

4000
4000

2000
2000

o S
2 0.4 0.6 0.8 1.0 0.6 0.8 1.0

0.0 0. 0.0 0.2 0.4
Prediction Prediction
Randomized tree (tau=0.05) Randomized tree (tau=0.10)

3000
2500

0 1000
1000

-
2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

0.0 0. 0.0 0.2

Prediction Prediction

Figure 3.8: n=10: Simulations of posterior predictive distributions for Polya tree
prior (upper left) and randomized Polya trees computed to level 15. 7 € {0.025,
0.05,0.10}.
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same analysis is repeated on a data set consisting of x = 0.05; Figure 3.9 shows the
results of this analysis. In the left column of the Figure, the prior parameters of the
trees are set to be equal to the square of the level of the tree, just as was the case in
Figures 3.7-3.8. The randomized tree is still doing a nice job of reducing the effect
of the partition. Of course, with respect to the nesting of the partition elements on
(0,1], 0.05 is an extreme enough value that one would not expect the randomized
tree to reduce the effect of the partition as dramatically as is demonstrated in Figure
3.7. However, it is encouraging to see from the Figure that the effect of the partition

at the first two levels of the tree is reduced in this case.

In the right column, the prior parameters are set to 0.1 times the square of the
level. The point of this sub-analysis is that the randomized tree is still doing a nice
job of reducing the effect of the partition under a different parameterization, and,
more importantly, the re-emphasize the fact that there are many parameters and
combinations of parameter choices that will influence the inference. The partition
(and randomizing of the partition) is just one of many factors that must be accounted

for in data analysis.

3.7.1 Monitoring Markov Chain Monte Carlo Trajectories

The results of Section 3.6.3 ensure that the transition kernel resulting from the
Markov chain Monte Carlo algorithm for simulating the randomized tree parameters
converges to the target distribution of interest. To address the question of whether
convergence has been reached by the Markov chain implemented here, several stan-
dard diagnostic measures are employed in this Section to examine the MCMC output
from one of the analyses of Section 3.7, the analysis of the data set consisting of the
single point, 1 = 0.51, and parameter 7 = 0.05. The acceptance rate for the § vector

which is sampled by an independence Metropolis step is 75%.
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Figure 3.9: Simulations of posterior predictive distributions for Polya tree prior
computed to level 15 with a@ = level® (upper left); a Polya tree with a = 0.1a?
(upper right); randomized Polya tree (lower left) with 7 = 0.05 and o = level?;
randomized Polya tree (lower left) with 7 = 0.05 and o = 0.1level?.

The trajectories of the MCMC samples are examined visually, and diagnostics

which are part of the Bayesian Output Analysis program (BOA) (Smith, 1999) are

implemented. BOA is available from
http://www.public-health.uiowa.edu/boa/

In particular, autocorrelations and cross-correlations of sampled output are examined,
and the Brooks-Gelman-Rubin (Brooks and Gelman, 1998), Heidelberger-Welch, and
Raftery-Lewis diagnostics are implemented. Descriptions of these diagnostics are
available in Brooks and Gelman (1998) and in Best et al. (1995). (Many of these
diagnostics are also available in CODA (Best et al., 1995), but BOA is better able to
handle numerous MCMC chains than CODA, which will be important for upcoming
analyses in Chapter 4.)

The MCMC trajectories were monitored for the example in which z; = 0.51.
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Lag 1 | Lag5 | Lag 10 | Lag 50
G, | -0.0074 | 0.0057 | -0.0100 | 0.0076
Gy | 0.0095 | 0.0013 | 0.0021 | 0.0061
B3 | -0.0061 | -0.0081 | 0.0221 | -0.0084
By | 0.0173 | 0.0023 | 0.0007 | 0.0076
Bs | -0.0211 | 0.0024 | 0.0055 | -0.0111
Bs | 0.0064 | -0.0047 | -0.0060 | 0.0044
67 | 0.0035 | -0.0035 | 0.0015 | 0.0049
Bs | 0.0105 | -0.0093 | -0.0038 | -0.0095
By | 0.0162 | -0.0021 | -0.0026 | -0.0136
Bio | -0.0049 | -0.0145 | -0.0031 | -0.0171
G11 | 0.0020 | -0.0004 | -0.0067 | -0.0021
Bia | -0.0025 | -0.0115 | -0.0092 | -0.0040
Gy | -0.0144 | 0.0045 | -0.0093 | -0.0015
Ba | 0.0203 | 0.0011 | -0.0129 | 0.0172
G5 | 0.0126 | 0.0087 | 0.0001 | -0.0188

Table 3.1: Autocorrelations of the MCMC samples for

Figures 3.10-3.12 show MCMC trajectories for an evenly-spaced subsample of 2000
of the 100000 simulations of 3y, ..., 315. The trajectories do not indicate any serious
signs of lack of convergence; the trajectories do not appear to become “stuck” in
any parts of the space, nor do the trajectories appear to wander about the space in
any sort of erratic fashion, which would indicate a lack of convergence; in fact, the
trajectories appear to follow rather regular patterns of oscillating about the space,

which indicates that mixing of the Markov chain is good.

High autocorrelations suggest a slow-mixing chain, which is important to know
for assessing how long to run a Markov chain in order to adequately sample all inter-
esting regions of the space. Dependence among the sampled Markov chains, which
would be indicated by high cross-correlations and would suggest slow mixing as the
high dependence might restrict where in a highly-dimensional space the chain travels,
appears to be absent from the MCMC output; Tables 3.1-3.2 show the autocorrela-

tions and cross-correlations of the Markov chains of the {;}12,. The lack of notable
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B B fs B B B B
1

By | -0.0254

Bs | -0.0157 -0.0086 1

By | -0.0008 0.0026  0.0242 1

Bs | 0.0035 0.0130 -0.0103 -0.0137 1

B | -0.0023 -0.0045 -0.0069 0.0174 -0.0102 1

B; | 0.0118 0.0075 0.0044 -0.0006 -0.0050  -0.0058 1

Bs | -0.0096 0.0039 0.0068 -0.0031  0.0165 0.0113 0.0026

By | -0.0045 0.0146 0.0142 -0.0105 0.0112  -0.0052  0.0012

Bio | 0.0022 -0.0134 -0.0048 -0.0107 -0.0028  -0.0007  -0.0104

Gi1 | 0.0109 0.0024 0.0047 -0.0015 -0.0095  -0.0007  0.0094

Bia | -0.0156  0.0188 -0.0008 0.0014 -0.0154  -0.0131 -2¢-06

B3 | 0.0071 -0.0068 -0.0022 0.0046  0.0101 0.0037  -0.0077

B4 | 0.0136 -0.0118 0.0002 0.0029  0.0009  -0.0033  -0.0003

G5 | -0.0290 0.0037 0.0016 -0.0010 -0.0023  -0.0204  -0.0086
s By Bio B Bia Bis B4

By | -0.0228 1

Bio | 0.01020  0.008 1

By1 | -0.0073 -0.0132 0.0112 1

Bia | -0.0160 0.0004 0.0083 0.0119 1

By | -0.0064 -0.0029 -0.0054 0.0177  0.0055 1

B4 | -0.0008 -0.0095 -0.0128 -0.0170 -0.0036  -0.0113 1

G5 | 0.0182 -0.0143 -0.0071 -0.0097 0.003613 -0.002654 0.005127

Table 3.2: Cross-correlations of the MCMC samples for
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Estimate 5% Estimate 75% Estimate 75%

61 0.999916 0.999940 || Gs | 0.999904 0.999906 | G171 | 0.999908 0.999937
B> | 1.000028 1.000463 | (57 | 1.000345 1.001923 || B2 | 1.000011 1.000413
B3 | 0.999992 1.000347 || Gs | 1.000270 1.000697 | (13 | 0.999954 1.000111
By | 1.000364 1.002201 || Fy | 1.000306 1.001164 | [i4 | 0.999911 0.999935
O5 | 0.999913 0.999941 || (1o | 1.000116 1.000853 || Bi5 | 1.000286 1.001764

Table 3.3: Estimated correction reduction scale factors and 97.5% quantiles of the
estimated correction reduction scale factors. This is an estimate of the upper bound
on how much the confidence interval of the posterior distributions for § will shrink if
the iterative simulation is continued indefinitely, based on the Brooks-Gelman-Rubin
convergence diagnostic applied to two Markov chains with over-dispersed starting
values. Values in both columns are nearly 1, indicating that the two Markov chains
are essentially overlapping.

correlations among the trajectories is a positive sign that the sampler has reached
its stationary distribution, as strong correlations would suggest that the chain is

slow-mixing and thus quite likely may have yet to reach the stationary distribution.

The Heidelberger and Welch diagnostic showed that the chains for 3 all passed the
stationarity test; for one chain, the diagnostic indicated that all samples came from
the stationary distribution, while the diagnostic applied to the second set of chains
suggested that initial iterations need to be omitted from four of the fifteen chains
(1000-4000 of 10000 iterations). The Raftery-Lewis diagnostic reported a “burn-in”
of two steps; the measures of dependence between samples of the chain, dependence
factors, were computed to be in the range of 0.95 to 1.06, which are close enough
to 1 to indicate that the dependence in samples is not high enough to cause alarm
that convergence has yet to be reached. The main idea of the Brooks and Gelman
(Brooks and Gelman, 1998) diagnostic compares the simulated distributions obtained
from independent multiple simulations, started at over-dispersed starting values, and
compare them to the resulting distribution based on combining multiple chains to
form one chain. BOA output provides potential scale reduction factors for each chain,

pi,; for j =1,...,30, as well as a multivariate summary, the multivariate potential

61



betal

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

beta2

beta
0.50 0.54

0.46

0 20000 40000 60000 80000 100000

iteration

beta3

0.50 0.54

beta

0.46

0 20000 40000 60000 80000 100000

iteration

betad

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

beta5

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

Figure 3.10: MCMC trajectories (a subsample of 2000 of 100000 simulations) for
B, ..., B for the analysis with n =1, 7 = 0.05

62



beta6

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

beta7

beta
0.50 0.54

0.46

0 20000 40000 60000 80000 100000

iteration

beta8

0.50 0.54

beta

0.46

0 20000 40000 60000 80000 100000

iteration

beta9

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

betal0

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

Figure 3.11: MCMC trajectories (a subsample of 2000 of 100000 simulations) for
B, - .., B1o for the analysis with n =1, 7 = 0.05.

63



beta6

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

beta7

beta
0.50 0.54

0.46

0 20000 40000 60000 80000 100000

iteration

beta8

0.50 0.54

beta

0.46

0 20000 40000 60000 80000 100000

iteration

beta9

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

betal0

0.54

beta
0.50

0.46

0 20000 40000 60000 80000 100000

iteration

Figure 3.12: MCMC trajectories (a subsample of 2000 of 100000 simulations) for
Bi1, .- ., P15 for the analysis with n =1, 7 = 0.05.
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scale reduction factor, which treats the vector 3; as one entity. In our analyses, two
Markov chains are implemented, each with over-dispersed starting values and different
random seeds. Table 3.3 shows the estimate and 97.5% quantiles of an estimated
upper bound on how much the confidence interval of the posterior distributions would
change if the chains were run to infinity. The “shrink factors” are basically equal to
1, which supports the assertion that convergence has been reached. The multivariate

potential scale reduction factor is 1.001973.

3.8 Randomized Trees in [0, 1]*

In this Chapter, randomized trees have been developed on the unit interval (and
to R! by transformation). Application of randomized trees to the hypercube [0, 1]%
(and thus to RE, by transformation of each axis) is straightforward. Each axis of the
hypercube has its own set of {3;} which are independent a priori. Let ﬂi(j) be the
vector of 3 parameters for axis j (j = 1,..., K) for observation z;. Then, the prior

becomes:

n

p({{87, . By o TTTT ] 28

i=1 j=1I=1
The resulting likelihood is:
. n m

p(xla"' 7xn|957{{/87,(1])7 ) ( H ifail-l

i=1 l/ {(J) } ) '
1:m
00) () 9(1) . ..
where V(B{Q(J) e ) = HJ 0 lﬂ” " (1 = 3;7)" . The resulting conditional

1im

posterior distributions of the parameters follow immediately. In the next Chapter,

the randomized tree will be applied to a multidimensional Euclidean space.
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Chapter 4

APPLICATIONS

4.1 Analysis of Earthquake Data

The purpose of this analysis is to demonstrate how randomized trees can be used to
explore data sets consisting of continuous variables, and how conditional predictive
distributions based on randomized trees can be used to explore interesting features
of the data. A comparison is made to an analysis using a Polya tree prior.

Simonoff (1996) analyzes a data set of earthquakes which were analyzed and de-
scribed by Frohlich and Davis (1990). n = 2178 earthquake events of magnitude
5.8 to 6.9 occurring between January 1964 and February 1986 were reported by the
International Seismological Center. Frohlich and Davis (1990) show how single-link
clustering (SLC) could be used to evaluate spatial clustering of earthquakes and how
SLC allows for quantitative assessment of whether certain earthquake activity is clus-
tered or isolated. Simonoff (1996) approaches the problem from a frequentist density
estimation standpoint, examining, for example, how location (latitude and longitude)
of earthquakes varies with depth of earthquake occurrence, using conditional density

estimation for exploring multivariate densities.

Four variables are provided in the data set — latitude, longitude, magnitude, and
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depth of earthquake. The depth variable describes how many kilometers below the
Earth’s surface the earthquake occurred. The distinct pattern of the depth data
(Figures 4.5-4.6) is explained by Simonoff (1996) as follows. When earthquakes are
initially reported, depth is reported initially in rough terms — shallow, or zero depth,
or to within 100km depths. Some further processing of the data attempts to confirm
whether certain quakes are indeed shallow. Quakes which are confirmed to be shallow
but cannot be measured accurately are given a depth of 33km, the assumed depth of
the Earth’s crust. Magnitude on the Richter scale is always greater or equal to 5.8

and less than or equal to 6.9 in this dataset.

Figures 4.1-4.6 display the data. As is clear from Figure 4.1, the earthquakes oc-
cur in distinct clusters, for the most part; most of the activity recorded occurs off of
the coast of southeast Asia in the south Pacific Ocean and around Indonesia. Another
notable cluster is detectable along the west coast of the Americas. Clusters of activ-
ity are also apparent in the middle east, Mediterranean and south Atlantic Ocean.
Isolated activity, which is also of interest, is notable at various points throughout
the world. Figure 4.2 displays the data for earthquake location by magnitude. The
frequency of earthquake occurrence decreases dramatically as magnitude increases.
Figure 4.3 shows earthquake occurrence for three groupings of magnitude values —
low, medium and high. Note that the earthquakes of highest magnitude, with mag-
nitudes in the range of 6.5-6.8 (high) and colored as red in Figure 4.3, occur in areas
of highest earthquake density, with a couple of exceptions — one earthquake on what
appears to be a fault line just below South Africa, and a cluster of earthquakes north
of Russia at approximately 60 degrees longitude at Novaya Zemlya — this cluster turns
out to represent 22 underground nuclear explosions. Occurrence of earthquakes by
ranges of depth (km) is presented in Figure 4.4. The marginal plots of data (Figure

4.5) and pairwise plot (Figure 4.6) are shown here as well. As is clear from Figure
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4.5, magnitude is measured in discrete units which approximate a true, underlying
continuous distribution. In Section 4.1.2, the continuity of magnitude is assumed and

the discreteness of the actual magnitude measure is ignored.

One question of interest is, can location of earthquake be predicted, given mag-
nitude? This question is focused on in the upcoming analyses. Before proceeding
with the data analysis, a couple of caveats regarding the analysis of this data are
mentioned. The first concerns ‘edge effects;” the data actually fall on a sphere — i.e.,
Earth — with location on that sphere that is determined by latitude and longitude;
the methods used here assume the data fall along a hypercube, and that each variable
is represented by an axis along the hypercube. In reality, this is not correct if we
are to examine the entire globe/Earth at once. In order to rectify the matter, one
must account for edge effects on the longitude scale. It does not appear that this
feature of the data was explicitly incorporated into Simonoff’s 1996 density estima-
tion examples. However, it will be shown that this is not a serious obstacle. It does,
however, pose an interesting wrinkle that might be worth pursuing if the random-
ized tree method is to be applied to spatial data in the future. A second caveat is
that prior information about specific fault lines is not incorporated into this analysis.
For the purposes of illustrating the randomized tree methods this is not a problem.
However, for future analysis one might include this information into the model. It
is hoped that the nonparametric nature of our methods will detect and explain in
further detail what these fault lines are like and where they might be located; one
also might expect to learn about isolated vs. non-isolated earthquakes. All graphs

from the conditional predictive distribution simulations are presented in Appendix

A.
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Figure 4.1: Data of earthquake occurrence.

4.1.1 Conditional Predictive Distribution via the Polya Tree

The conditional predictive distributions of location given magnitude are simulated.
Before conditional predictive distributions are simulated via the randomized tree
approach, these analyses using the finite Polya tree prior are included so that com-
parisons to the randomized tree can later be made. For the analyses, the Polya tree
prior is updated to 10 levels. The a parameters are set to 0.1(level)? at each level
1,...,10 of the tree, and G is selected to be the uniform CDEF. Figures A.1-A.3
display the results. Judging from the data on location of earthquakes given vari-
ous values of magnitude (Figures 4.2-4.3), these conditional predictive simulations
appear to be quite reasonable. The effect of the partition is clear in all of the sim-
ulations via the box like patterns, and it becomes more pronounced as magnitude
increases and the number of observations of higher magnitude decreases. Compared

to lower magnitudes, there is not a lot of information about higher magnitudes for
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Figure 4.2: Data of earthquake occurrence (red), by magnitude.
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green: magnitude in (5.8, 6.0) blue: magnitude in (6.1, 6.5)  red: magnitude in (6.5, 6.8)

Figure 4.3: Data of earthquake occurrence, by range of magnitude.
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Figure 4.4: Data of earthquake occurrence, by range of depth.

71



Depth (km) Latitude

o
o ®
I
—
@ o
N N
2] o 2]
2 ® @
Q. [=%
£ 8 £
8 2 8 o
o N
: bR,
° Bl v e e e e o | bl LRI 1|
0 40 100 160 220 280 340 400 460 520 580 640 60 -40 20 O 20 40 60 80
Longitude Magnitude
o
- 8
3 o
o 14
59 5 g
L o oL 3
£ g
8§ K 8 8
N
- N L |
o Uhl\u“ﬂ‘u\‘n il ﬂll.m““ uh”m \\h‘mu.‘ " Ld"\\l\m‘h“d‘“.Im‘|\||mh|m‘m\||‘ H H h\" o ‘ ‘ ‘
-180 -140 -100 -60 -20 20 60 100 140 180 58 59 6.0 6.1 6.2 6.3 6.4 65 6.6 6.7 6.8 6.9

Figure 4.5: Marginal barplots of earthquake occurrence data.

updating the relatively flat prior. Thus, it seems that in these analyses, the problem

of partition dependence is more pronounced in cases when there are few observations.

4.1.2 Conditional Predictive Distribution via the Random-
ized Tree

Several analyses using the randomized tree are presented. To assess the effect of
various modeling assumptions on the randomized tree, parameter values of 7 and GG
(the CDF by which data are transformed via G~! from R to [0,1]) will be explored.
In some analyses, the longitude variable is in the range (—180,180), and for other
analyses, longitude is in (—120,240); the range of this variable is altered to see how
sensitive our results are to ‘edge effects,” i.e., to the selection of the endpoints of
the sample space. While edge effects are not a central focus of the research nor the
motivation for this analysis, it is important, nevertheless, to recognize that this is an
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issue. For the first few sets of analyses, the conditional predictive distribution of loca-
tion given magnitude will be simulated, and then that of location given depth will be
simulated. The joint predictive distributions of latitude, longitude, and magnitude,
as well as the joint predictive distributions of latitude, longitude, and depth, are
simulated using the conditional predictive simulation scheme developed in Chapter

2 and the randomized tree approach of Chapter 3.

The prior values of the Dirichlet parameters o € A at levels m of the tree are
denoted in Table 4.1. In particular, @ = ¢m? for some ¢ > 0. The scalar factor, ¢,
controls how large the parameters are at the top of the tree; the particular choice of
¢ < 1 allows for the data to more strongly influence the posterior distribution than
would occur for larger scalar values such as ¢ > 1, which can have a significant impact
at low levels of the tree. Also of importance is the effect of the choice of parameters
7 and G, where 7 is as described in the randomized Polya tree formulation (Chapter
3). The choices of G to be examined here include G as the CDF of a Uniform and
GG as an empirical distribution function, based on a training sample of n = 1178 of
the data, leaving n = 1000 observations for analysis; the empirical CDF is computed
via routines dgcdf and dgcin from the IMSL Library (1984). A final concern, ‘edge
effects,” is assessed — does the choice of modeling longitude as going from —180 to
180 degrees or, for instance, from —120 to 240 degrees have an impact on the results
of the analysis? As will be shown below, the choice of longitude range does not affect

the results in any meaningful way.

All figures presented in the following discussion (Figures A.4 — A.21) are based
upon 50000 draws from the posterior predictive randomized tree distributions, via
the Markov chain Monte Carlo sampling scheme described in Chapter 3, Section 3.6.

Table 4.1 summarizes the analyses presented in this Section. The choices for 7,

G, and the range of longitude are varied (Table 4.1). Predictions of location (latitude
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‘Analysis‘ « ‘ T ‘ G ‘ range ‘

1 0.1m? | 0.025 Uniform (-180, 180)
2 0.1m? | 0.05 Uniform (-180, 180)
3 0.1m? | 0.025 | Empirical CDF | (-180, 180)
4 0.1m? | 0.05 | Empirical CDF | (-180, 180)
5 0.1m? | 0.025 Uniform (-120, 240)
6 0.1m? | 0.05 Uniform (-120, 240)

Table 4.1: Summary of parameters for analyses in Section 4.1.2.

and longitude) given a fixed scalar value for magnitude are presented.

Comparison of 7 = 0.025 (Analysis 1) and 7 = 0.05 (Analysis 2)

Figures A.4-A.6 display the results of Analysis 1; prior parameter values for a are as
specified above, while the hyperparameter 7 is set to 0.025. Figures A.7-A.9 display
the results of Analysis 2, for which 7 = 0.05. Analyses 1 and 2 can be compared to
assess the effect of 7. The results are largely the same — as to be expected — though
slight differences exist. Figures A.4 —A.6 and Figures A.7-A.9 show the conditional
predictive distributions for location given magnitude. The same general patterns are
detectable in all of the Figures, though the influence of the choice of 7 is readily
apparent by comparing, for example, Figures A.4 and A.7; the conditional predictive
distribution diffuses mass about a larger area for 7 = 0.05 than for 7 = 0.025.
Note the image plots and scatterplots of simulated subsamples for magnitude = 6.5
(Figures A.6 and A.9); the greater smoothing effect of 7 = 0.05 is clear in the latter
figure, as the for regions of highest predictive probability (particular just above the
equator on the far right-hand side of the graph), box-like patterns are more distinct.
Another interesting feature is the relatively high predictive value in central Asia
apparent in Analysis 1, but not as apparent in Analysis 2; while the data show

earthquake activity in that region for the given magnitude (Figure 4.2), the mass is
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more diffused about the region in Analysis 1 than in Analysis 2.

Analyses 3 and 4

Analyses 3 and 4 shed light on the effect of 7 when G is the empirical CDF. As pre-
viously mentioned, n = 1178 data points are used as a “training set” to compute the
empirical CDF, while 1000 points remain for analysis. Comparison of the conditional
predictive distributions for Analysis 3 (Figures A.10 —A.12) and Analysis 4 (Figures
A.13-A.12) shows that both analyses yield the same results, largely, though there is
a bit more smoothing in the predictive distributions for 7 = 0.05 in Analysis 4 than

for 7 = 0.025 in Analysis 3.

Comparison of Analyses 3 and 4 with Analyses 1 and 2

First, Analyses 1 and 3 (7 = 0.025), and then Analyses 2 and 4 (7 = 0.05), will
be compared to understand the effect of the choice of G in the randomized tree
framework for this analysis.

Comparison of Figures A.4-A.6 of the conditional predictive distributions for
Analysis 1 with those of Analysis 3 (Figures A.10-A.12) reveals that the same general
geographical areas are given high predictive probability in both analyses, though it
seems that the choice of G as the Uniform CDF does better at magnitude = 5.8, for
which there are more observations (Figure 4.2), and the choice of G as the empirical
CDF does better for magnitude = 6.5, for which there are fewer observations (Figure
4.2). Most notably, in Figure A.4, the cluster of earthquakes between 0 and —50
latitude and at about —180 longitude on the far left hand side of the map is detected
quite well, when compared to the actual data concentration (Figure 4.2). Also, in
Figure A.12, the nuclear explosions at Novaya Zemlya are detected, which is the case

but to a much lesser extent in Analysis 1.
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Comparison of Analyses 2 and 4, in which 7 = 0.05, provide an identical story.

Comparison of Longitude € (—180,180) and Longitude € (—120, 240)

In order to explore how much a difference is made by the choice of the range of
longitude on the results of the analysis, Analysis 1 is repeated, with the only difference

being that longitude runs from —120 to 240 degrees here, rather than —180 to 180.

Comparison of Analyses 1 and 2 with 5 and 6

Figures A.4 — A.9, which correspond to Analyses 1 and 2, and Figures A.10-A.12,
which correspond to Analyses 5 and 6 — demonstrate that Analyses 1 and 2, when
compared to Analyses 5 and 6, yield basically identical results, with the minor differ-
ences in the predictive density of the region just to the northeast of New Zealand, on
the far left of the graph, near longitude of -180. This could be due to the fact that
the cells of that region are now neighbor cells with those on the far right of the graph,
near Indonesia and Australia. Other differences include that earthquake activity in
central Asia, near Afghanistan and southern Russia, is more strongly detected under
the choice of G' as the Uniform CDF — this is clear from comparing, for example,

Figures A.4-A.5 and A.10-A.11.

Summary

From the comparison of the Analyses of Sections 4.1.1 and 4.1.2, it is evident that
the randomized trees do indeed smooth the effect of the partition on the conditional
predictive simulations as compared to the Polya tree prior. The analyses in Section
4.1.2 show that the choice of 7 makes a noticeable difference in how the predictive
distributions are smoothed, while in this case, the choices of G do not have much

effect. The ‘edge effects’ do not appear to be very pronounced in these analyses.
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4.1.3 Conditional Predictive Distribution of Location Given
Depth

For the next set of analyses, the conditional predictive distributions of earthquake
location (latitude and longitude) given depth are simulated. Four analyses are com-
pleted; for each analysis 7 = 0.025 (Figures A.22-A.25) or 7 = 0.05 (Figures A.26—
A.29), a = 0.1(level)?, and G is the CDF of the uniform distribution. Location is
predicted for depths of 50,200,400 and 600 km. Simonoff (1996) uses a Gaussian-
based kernel density estimator to compute the conditional density of earthquake
location given depth values of 50,200,400, and 600 km; he uses the approach to il-
lustrate how to explore a three-dimensional density by examining slices (based on
conditioning) of it, which is similar to what is done with the conditional predictive
simulations. Figure 4.4 shows scatterplots of the earthquakes given various ranges of
depth. It is clear from this Figure, as well as from Figure 4.5, that most observations
have a depth of less than 100 km, and that observations of depths greater than 100km

decrease in frequency of occurrence.

Figures A.22-A.29 display the conditional predictive simulations. The overall pat-
tern of location given depth resembles that of location given magnitude of the previous
analyses. The simulated predictive distributions all appear to be quite reasonable
given the data (Figure 4.4). As depth increases, the amount of data/information
available decreases; the resulting increase in uncertainty is clear in comparing Fig-
ures A.22—-A.29 and assessing the spread of the distribution; the conditional predictive
distributions simulated for Figures A.22-A.23 are less diffuse than those for depths
of 400 and 600km (Figures A.24-A.25).

In comparison to the conditional density estimates of Simonoff (1996), the over-
all patterns of the conditional predictive simulations are in agreement. The most

interesting of the differences occurs for depths of 400 and 600 km, where data are
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sparse. The randomized tree conditional predictive simulation and the Gaussian-
based kernel density estimates are picking up slightly different regions of importance;
at 400km, the randomized tree conditional predictive simulation basically detects
little to practically no earthquake activity in South America, while the density esti-
mator of Simonoff (1996) places a kernel over South America, indicating some activity
of interest is occurring there. At 600km, Simonoff (1996)’s method seems to suggest
there is greater activity around Japan than our method does; while there are simu-
lated points in the region of Japan (Figure A.25) would our method does not indicate

as much activity.

Similar results hold for Figures A.26-A.29 as for the above analyses, only this

time 7 = 0.05, which induces more smoothing into the partition.

4.1.4 Convergence of Markov Chain Monte Carlo Simulation

Assessment of the convergence of the Markov chain Monte Carlo output are detailed
in Section 3.7.1 of Chapter 3. A description of the diagnostics used in this Section is
detailed there as well. Examination of MCMC output for a small example was ex-
plored to gain some understanding about aspects of convergence. For the much-larger
data analyses presented in this Chapter, it is unfeasible to analyze all of the trajec-
tories for the collection of {f;}7_, as n is fairly large for these purposes. However,
one [ vector for one observation is examined, corresponding to the first data point
in the data set (which was not sorted in any special order), and an analysis of con-
vergence for one of the analyses (Analysis 1 of Section 4.1.2, in which 7 = 0.025 and
G =Uniform CDF) is presented; its convergence behavior should be representative
of all of the ;. A thinned chain of 5000 of 50000 iterations is analyzed below. The
acceptance rates for the (; which are sampled by an independence Metropolis step

are about 82% for most (over 50%) of the (3; samples. The minimum acceptance rate
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from all analyses is 17% and the maximum acceptance rate is 83%; for the analyses

in which G is the empirical CDF, the minimum acceptance rate is higher, 39%.

Just as in Section 3.7.1, autocorrelations, cross-correlations, visual inspection of
convergence plots, and some diagnostics from the BOA package (Smith, 1999) are

examined.

Table 4.1.4 displays the autocorrelations of the Markov chains for the § param-
eters. The columns in the Table correspond to 3’s for latitude, longitude and mag-
nitude, respectively. As is clear, the autocorrelations are basically zero. Tables
4.1.4-4.1.4 displays the cross-correlations amongst all 30 3 parameters (10 for each
of the three axes of the three-dimensional Euclidean space). Just as for the auto-
correlations, these correlations are effectively zero as well. The lack of auto- and
cross-correlations is an encouraging sign that the Markov chain is searching all in-
teresting areas of the sample space without getting “stuck” in modes due to high
dependence of the MCMC samples.

Figures 4.10-4.12 show the trajectory plots of the (3’s; 2000 of the 5000 saved
iterations are plotted here. None of the trajectory plots exhibit irregular patterns
such as the chain getting “stuck” in any part of the space, and by all appearances
nothing indicates that convergence has yet to be achieved.

Table 4.1.4 shows the results of the Brooks-Gelman-Rubin diagnostic. All es-
timates of the corrected scale reduction factors are basically equal to 1, which is
evidence in support of convergence. The multivariate potential scale reduction factor
is 1.010956.

The Heidelberger-Welch diagnostic is applied to two Markov chains of the same
analysis, each chain was run with different starting values and different seeds. All
chains passed the stationarity test, with the test suggesting that only two chains have

the first 500 or 1000 samples removed. The dependence factors of the Raftery-Lewis
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Figure 4.7: Histograms of MCMC samples for 31, ... , B0 (for the latitude axis) for
the earthquake data analysis. These results are for Analysis 1, Section 4.1.2.
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Figure 4.8: Histograms of MCMC samples for 3, ..., 31y (for the longitude axis)
for the earthquake data analysis. These results are for Analysis 1, Section 4.1.2.
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Figure 4.9: Histograms of MCMC samples for (i, ... , #1o (for the magnitude axis)
for the earthquake data analysis. These results are for Analysis 1, Section 4.1.2.
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Lag 1 Lag 5 Lag 10 Lag 50
B1 | -1.13142e-02  -0.03863469 -0.00975542  0.020467807
B2 | 1.41549e-02  0.02030589  0.00840857  0.012242291
B3 | -3.71350e-03  0.00462421  0.00266140  0.035743244
Ba | -1.79424e-02 -0.00871108  0.01854724  0.001592195
B5 | -1.48199e-02  0.01708816 -0.01751694 -0.021665938
Bs | -4.05211e-03 -0.01777273 -0.00689437 -0.008048644
B7r | 2.52074e-03  0.00760041  0.00617219 -0.004995068
Bs | -7.99948e-03 -0.01800073  0.00617481 -0.010316793
By | 8.30622e-05 -0.00600558  0.00915495  0.010491826
Bio | 3.59739e-03 -0.00158121  0.00606918 -0.006096745
B | 6.92923e-03  0.00695738 -0.01634004 -0.006289048
B2 | -4.92650e-03  0.02203083  0.03408827  0.025952516
Bs | 6.97330e-03  0.01930547 -0.01922509  0.000826308
By | -6.00804e-03 -0.00876716 -0.02560697  0.010038770
Bs | 1.34376e-02 -0.02015076  0.01639961 -0.000584564
Bs | -1.14011e-02 -0.00173774 0.00114775 -0.026821110
B7 | 5.71071le-03  0.01907040 0.01919348  0.002502904
Bs | -1.62931e-02 -0.01476088 -0.00236415 -0.007824883
By | -5.32809e-03 -0.00798255  0.00332071 -0.006349508
B0 | 2.36312e-03  0.00116208  0.00360539  0.028556559
B | 1.74953e-02 -0.00961176  0.01499458 -0.015670234
B2 | -7.43450e-03  0.00912050 0.01500857  0.011408128
B3 | -1.49268e-02 -0.02485460 -0.01111205 0.006888865
Ba | -2.55243e-03 -0.00736635 -0.03866056  0.005524388
Bs | 9.52371e-03  0.00273105 0.01325478  0.004738789
Bs | 2.45128e-02  0.01206142  0.00976642 -0.012927135
B7 | -3.84964e-03  0.00310988 -0.02323175 -0.005247168
Bs | 2.90632e-02 -0.01256916  0.00201675  0.005577800
By | -1.27914e-02 -0.00382356  0.01807854  0.011212721
Bio | 6.47347e-03 -0.02739488 -0.03380559 -0.028972993

Table 4.2: Autocorrelations of the simulated trajectories at various lags. The first
set of 10 (’s corresponds to the latitude axis, the second set corresponds to the

longitude axis, and the third set corresponds to the magnitude axis.
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B B2 B3 B4 Bs Be B

o 1

B2 | -0.0064 1

B5 | -0.0154  0.0107 1

By | -0.0160 -0.0087 -0.0078 1

Bs | 0.0073 -0.0043 -0.0275 0.0128 1

B | 0.0013 -0.0230 0.0042 -0.0117 0.0003 1

Bz | 0.0180 0.0239 -0.0013 0.0106 0.0012 -0.0173 1

Bs | -0.0158 0.0094 0.0199 0.0004 0.0191 0.0036 -0.0285
By | 0.0115 0.0080 -0.0130 0.0026 0.0055 0.0095 -0.0154
B | 0.0067 -0.0120 0.0188 0.0091 0.0081 -0.0116 -0.0025
B | -0.0235  0.0133 -0.0038 -0.0067 0.0039 0.0059 -0.0011
Bz | -0.0194 -0.0160 -0.0013 -0.0097 -0.0103 -0.0056 0.0158
Bis | 0.0292 0.0171 -0.0241 -0.0096 0.0089 0.0011 -0.0060
B4 | -0.0188  0.0048 -0.0150 -0.0233 -0.0040 -0.0063 -0.0066
B15 | -0.0155  0.0056 -0.0009 0.0080 0.0134 0.0092 0.0024
Bie | -0.0111  0.0211  0.0222 0.0014 -0.0158 0.0038 -0.0054
Bz | 0.0037 0.0195 -0.0029 0.0064 0.0038 -0.0207 -0.0218
Bis | 0.0010 -0.0127 -0.0129 0.0047 -0.0223 -0.0029 0.0069
B9 | 0.0230 -0.0084 -0.0042 -0.0186 0.0235 -0.0115 0.0281
Bao | 0.0105 -0.0061 -0.0049 -0.0051 -0.0133 0.0010 0.0078
B91 | 0.0002 0.0103 -1.9e-0 0.0179 -0.0049 0.0261 0.0257
B2 | 0.0151 -0.0114 -0.0025 -0.0114 0.0118 0.0012 -0.0239
B2 | -0.0099 -0.0252 0.0135 -0.0059 0.0075 0.0043 -0.0183
B24 | 0.0058 0.0136 -0.0069 0.0070 0.0127 -0.0057 -0.0218
B25 | 0.0065 0.0030 -0.0088 0.0086 0.0066 0.0087 -0.0071
Be6 | 0.0121 -0.0036 -0.0026 -0.0126 0.0112 -0.0029 -0.0098
Ba7 | -0.0169  0.0049  0.0007 0.0034 0.0024 0.0090 -0.0155
Bag | -0.0152  0.0157 0.0010 0.0097 0.0040 0.0129 0.0062
Ba9 | -0.0129  0.0094  0.0102 -0.0169 -0.0180 -0.0172 0.0162
B30 | -0.0013 -0.0008 -0.0068 0.0108 -0.0101 -0.0133 0.0015

Table 4.3: Table 1 of 3: Cross-correlations of the MCMC samples for 3. (1 — (o
correspond to the latitude axis, 11— (32 correspond to the longitude axis, and B2; — (39
correspond to the magnitude axis.
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58 69 610 511 612 513 614

Bos 1

Bog | -0.0261 1

Bio | -0.0035 -0.0346 1

By | 0.0111 0.0164 0.0210 1

Bip | 0.0295 0.0078  0.0048 -0.0090 1

Bis | -0.0075  0.0234 -0.0208 0.0095 0.0037 1

Bia | 0.0070 0.0075 -0.0131 -0.0080 0.0121  0.0039 1

B15 | 0.0230 0.0003 -0.0371 -0.0067 0.0276 0.0141  0.0053
Bis | -0.0060  0.0097 -0.0004 0.0109 -0.0208 -0.0075 0.0122
Bz | 0.0139 -0.0046 0.0097 0.0005 0.0197 0.0217 -0.0005
Bis | -0.0134 -0.0127  0.0159 0.0093 0.0124 0.0083 -0.0159
B | 0.0162 -0.0014 -0.0281 0.0142 -0.0248 0.0057 -0.0176
Ba0 | -0.0080  0.0370  0.0046 0.0110 0.0115 -0.0097  0.0057
B21 | -0.0010  0.0194 -0.0113 0.0018 -0.0031 0.0217 0.0007
Ba2 | 0.0302 -0.0047 0.0109 -0.0046 -0.0271 -0.0053 0.0143
B23 | 0.0212 -0.0013  0.0160 -0.0068 0.0046 -0.0066 -0.0009
B24 | 0.0050 -0.0150 -0.0186 -0.0157 -0.0032 -0.0060 -0.0173
Ba5 | -0.0029  0.0098 -0.0120 -0.0009 -0.0043 -0.0409 -0.0173
Ba6 | -0.0176 -0.0173  0.0059  0.0060 -0.0158 -0.0068 0.0107
Bo7 | 0.0131 0.0218 0.0169 0.0230 -0.0028 0.0064 0.0270
Bag | 0.0240 -0.0201 -0.0054 -0.0076 0.0154 0.0202 -0.0186
(a9 | -0.0008  0.0042  0.0065 -0.0029 -0.0179 0.0031 0.0141
B30 | 0.0025 0.0018 0.0013 0.0152 -0.0067 -0.0091 0.0387

Table 4.4: Table 2 of 3: Cross-correlations of the MCMC samples for f.
Cross-correlations of the MCMC samples for 3. [y — (19 correspond to the lati-
tude axis, (311 — o9 correspond to the longitude axis, and f3; — (339 correspond to the
magnitude axis.
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615 516 517 518 519 520 621

Bis 1

Bis | -0.0014 1

Bi7 | 0.0033 -0.0025 1

Bis | -0.0076 -0.0430  0.0033 1

Bio | -0.0087 -0.0153  0.0067 0.0558 1

Bao | 0.0377 0.0039 0.0029 0.0169 0.1579 1

Byy | -0.0094  0.0076 0.0105 -0.0211 0.0235 0.0092 1

Ba2 | 0.0290 0.0101 -0.0005 0.0219 -0.0435 0.0105 0.0023
Be3 | 0.0015 -0.0205 -0.0073 -0.0118 -0.0255 -0.0087 -0.0113
B24 | -0.0026  0.0189  0.0011 -0.0009 0.0109 0.0079 0.0128
B25 | -0.0108 0.0111  0.0077 -0.0112 0.0013 -0.0033 -0.0017
Be6 | 0.0034 -0.0141 -0.0127 0.0078 -0.0167 -0.0044 -0.0061
Bo7 | -0.0051 -0.0206 0.0054 -0.0031 -0.0008 -0.0276 0.0169
Bas | 0.0145 -0.0132 0.0018 0.0022 0.0154 0.0222 0.0044
Ba9 | -0.0205 -0.0001 0.0017 0.0146 0.0156 0.0091 -0.0078
B30 | -0.0152 -0.0157 -0.0066 0.0123 0.0185 -0.0189  0.0096

522 523 ﬂ24 525 ﬂ26 527 ﬂ28

Ba2 1

(a3 | -0.0126 1

Bay | -0.0372  -0.0185 1

Bas | -0.0110 -0.0032 -0.0353 1

(s | -0.0065 -0.0041 0.0226  0.0024 1

Boyr | -0.0089  0.0163 -0.0109 -0.0134 -0.0026 1

Bos | 0.0130 0.0101 0.0041 -0.0099 0.0020 -0.0218 1

Ba9 | 0.0232 -0.0112 0.0173 -0.0082 0.0093 -0.0051 -0.0227
B30 | -0.0016 -0.0204 -0.0137 -0.0262 -0.0075 -0.0097 0.0010

629 630
B9 1
B3y | -0.0011 1

Table 4.5: Table 3 of 3: Cross-correlations of the MCMC samples for f.
Cross-correlations of the MCMC samples for 3. [y — (19 correspond to the lati-
tude axis, (11 — o9 correspond to the longitude axis, and f3; — (339 correspond to the
magnitude axis.
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Figure 4.10: MCMC trajectories for f3,. .., fio (corresponding to the axis for lat-
itude) for the earthquake data analysis. These results are for Analysis 1, Section
4.1.2.
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Figure 4.11: MCMC trajectories for /3, ..., f1o (corresponding to the axis for lat-
itude) for the earthquake data analysis. These results are for Analysis 1, Section
4.1.2.
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Figure 4.12: MCMC trajectories for /3, ..., f1o (corresponding to the axis for lat-
itude) for the earthquake data analysis. These results are for Analysis 1, Section
4.1.2.
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Latitude Longitude Magnitude
Parameter Estimate || Parameter Estimate || Parameter Estimate
o3 0.9999 o3 0.9999 o3 1.0000
(o 0.9999 (o 1.0007 (o 1.0019
03 1.0012 03 1.0017 03 1.0000
N 1.0001 N 1.0000 N 1.0004
05 0.9999 05 0.9999 05 0.9999
Os 1.0006 Os 0.9998 Os 0.9998
07 0.9998 07 0.9998 07 1.0000
0 0.9998 0 1.0001 0 1.0005
B 1.0010 B 1.0012 B 1.0000
Bro 0.9998 Bro 1.0001 Bro 0.9998

Table 4.6: BOA Output — Corrected Scale Reduction Factors from the Brooks,
Gelman and Rubin diagnostic. These results are for Analysis 1, Section 4.1.2.

diagnostic ranged from 0.943940 to 1.066471, which again indicate that nothing that
would suggest lack of convergence is being detected. Overall, the analysis of the

MCMC output supports convergence.

4.2 Imputation of Missing Data: 1993-1994 Col-
lege Tuition Data

The purpose of this analysis is to illustrate output from an analysis using randomized
trees in which missing data are imputed. The source for the data set used in this

analysis is StatLib:
http://www.stat.cmu.edu/datasets

The data set consists of data on tuition and faculty compensation for U.S. col-
leges and universities which come from two sources — U.S. News & World Report’s
Guide to Americas Best Colleges and the American Association of University Pro-

fessors (AAUP) 1994 Salary Survey which appeared in the March-April 1994 issue of
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Academe. These data sets were the focus of the 1995 American Statistical Associa-
tion Statistical Graphics Exposition Contest. n = 1283 colleges and universities are
listed in the data set. While the data set contains several variables, just two, tuition
and faculty compensation, are focused on here for ease of exposition. The variable,
faculty compensation, is missing for 162 of these observations. Figure B.1 shows the
marginal histograms of tuition and faculty compensation, and Figure B.2 shows a
scatterplot of the joint distribution of the variables, omitting missing observations.
As is clear from the graph, there is a bimodal distribution for tuition and faculty
compensation, due to a mixture of public and private universities, which are both in

the sample.

50000 simulations were drawn via Gibbs sampling from the joint posterior predic-
tive distribution of a randomized Polya tree updated to 10 levels; the hyperparameter
7 is set to 0.05, while the prior Dirichlet parameters at level m are set to 0.1m?. The
162 missing values for faculty compensation are imputed as described in Section 2.5
of Chapter 2. Figures B.2 show a two-dimensional histogram of the simulated values
for tuition and faculty compensation, as well as a scatterplot of 5000 sub-sampled
simulated values. Figure B.5 shows some replications of the missing data across all
observations. The histograms of the replications pictured there are roughly of the
same shape, and are in agreement with the histogram of the faculty compensation
data in Figure B.1. Figure B.6 displays histograms of a sample of the 162 simulated
posterior distributions for the missing faculty compensation observations; the title
on each histogram gives the observed value of tuition for that observation. As the
two variables are fairly correlated, which is clear from the scatterplot of the data in
Figure B.2, it would be expected that as tuition increased, the posterior distribution
for faculty compensation should be centered at higher values. Examination of the

imputed values for faculty compensation (Figure B.6) supports this expectation.
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4.2.1 Convergence of Markov Chain Monte Carlo Simulation

Figures 4.13-4.14 display the trajectories of 3; from the missing data analysis. From
all appearances, the trajectories appear to be moving about reasonably well through-
out the space, and do not appear to get stuck at local modes nor do the chains
appear to be mixing slowly, which would warrant consideration of the possibility of
non-convergence. The acceptance rates of all of the {;}_; range from 30—83%, with
practically all 3;’s having acceptance rates around 70 —80%. Convergence diagnostics
were applied to the MCMC trajectories from one analysis. On the Heidelberger-Welch
stationarity test, all trajectories passed. The Raftery-Lewis dependence factors are
all close to 1.0, which suggests convergence. The auto- and cross-correlations were
all basically zero, which is a good sign as well. Trajectories were also examined for
the imputed missing data values; trajectories looked normal, and the diagnostics did

not indicate any serious problems.

4.3 Computational Time

Table 4.7 shows the computational time for several example analyses of the earth-
quake data. This Table illustrates how long the posterior predictive simulation and
conditional predictive simulations take for a DEC Personal Workstation (433 MHz).
Results for implementing randomized trees of five different levels — levels 6, 8, 10, 12,
and 15 — are presented, and the number of observations is varied — for some analyses,
n = 2178 and for others, n = 1089.

Because running time is linear with respect to number of iterations, the per sec-
ond CPU time is displayed. It is clear that the bulk of the computational effort is
due to the conditional predictive simulation, and that computational time depends
greatly on how many levels there are in the tree; for the analysis with six levels, the
computational times in both the right hand and left-hand columns are basically the
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Figure 4.13: MCMC trajectories for f;,..., (10 (corresponding to the axis for tu-
ition) for the college and university data analysis.
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Figure 4.14: MCMC trajectories for 3y, ..., f1o (corresponding to the axis for fac-
ulty compensation) for the college and university data analysis.
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Posterior predictive || With three conditional
simulation only predictive simulations
levels | n=2178 | n=1089 | n=2178 n=1089
6 1.33 0.68 1.35 0.66
8 1.80 1.06 2.11 1.14
10 2.27 1.17 5.31 4.19
12 3.02 1.48 51.30 50.20
15 3.66 1.88 3256.00 3230.00

Table 4.7: Per iteration CPU time (seconds) on a DEC Personal Workstation

(433MHz).

same, while for fifteen levels, the computational time for the conditional predictive
simulation increases dramatically. The analyses presented in this Chapter correspond
to the case with a tree of ten levels, and n = 2178 observations. The per iteration
CPU time is 5.31 seconds for these analyses. Clearly, the future work on computa-

tional time will pertain to cutting back the time required of the conditional predictive

simulation scheme.
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Chapter 5

SUMMARY AND EXTENSIONS

5.1 Summary

The goal of this research is to explore nonparametric modeling with Polya trees in
multidimensional Euclidean space. This dissertation achieves this goal by applying
the Polya tree framework to multidimensional Euclidean spaces, and by developing
randomized trees as an alternative to Polya trees. This is the first methodological
and applied work in this area, though the fundamental theory has been in place for
years.

Two key contributions of this dissertation are as follows. First, this dissertation
serves as a first step to fully understanding Polya trees can be used for nonparametric
modeling of distributions via binary perpendicular recursively partitioning a support
of interest. The results of Chapter 4 show that the methods developed in Chap-
ter 2 can accommodate conditional predictive distribution simulation, missing data
imputation, and analysis of categorical data. This research provides a foundation
for further development and implementation of Polya tree priors for prediction and

inference in multidimensional spaces.

Second, the development, implementation and computation of randomized Polya

97



trees (Chapter 3) has been shown to reduce the effect of the partition on posterior
inference. The randomized Polya tree approach is useful in smoothing discontinuities
in predictive distributions and eliminating this critical drawback to using Polya tree

priors.

The Polya tree prior is also very appealing computationally, as direct simula-
tion from the predictive distribution is possible. This benefit is lost, however, for
randomized Polya trees, in which the tree itself becomes a random variable which
must be numerically integrated out of the joint posterior predictive distribution via
Markov chain Monte Carlo. Despite this, computational appeal is still not lost, as
the tree structure itself provides an efficient way to process information on numerous
observations.

Data analyses employing the multivariate randomized tree has yielded promising
results. The effect of the smoothing mechanism of the randomized tree succeeds
in accounting for partition dependence. The analysis of earthquake data presented
in Chapter 4 shows examples of how multivariate randomized Polya trees can be
used for estimation and prediction when data appear in a non-standard form, such
as multimodal or when modes take on non-standard shapes such as data appearing

along fault lines, or in isolated locations.

5.2 Extensions
5.2.1 Hyperparameter Learning for Randomized Trees

As the choice of the hyperparameter 7 in the mixture prior for parameters {/3;;} in the
randomized tree formulation is relatively ad-hoc, it is appealing to consider formally
learning about the values of this hyperparameter. Prior specifications for 7 are under
current investigation. Let M = number of levels in the tree, N = sample size, and

V' = number of variables per observation, the conditional density of the {; } given
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7 takes on the following form:

N M V

p({B, 37 = [TTITIv©s-705+7)

i=1 m=1v=1

— [1/(2T)]M><N><V+1

2

Suppose a prior distribution is specified for the hyperparameter: p(7) c 772 7 €
(a,0.5), where a € (0,0.5) but close to 0; this is necessary as lim,_,op(7) = oo.
This implies that the posterior for 7 is
p(rl{Bi, }) o (1/7" ) {7 € {Tinaa, 0.5} }
where Ty = mazx {|B;,,, — 05[]}, J=NxMxV =37z, a;d F(1) =

{all i,m,w}

[a—(JJrl) _ Tf(J+1)]/[a—(J+1) _ 2J+1]‘

More work is needed on how to effectively model this smoothing parameter. One
consideration should be to realize that smoothing at each level of the tree might be
effectively modeled by specifying a smoothing parameter for each level. As smoothing
at lower levels of the tree might be more interesting than at higher levels, this could
reduce the potential number of hyperparameters in the model. Each observation
could be given its own smoothing parameter; as one imagines observations in different
regions of the space should affect the smoothing mechanism differently, this could be a
sound solution. However, this does introduce N x M new parameters into the model,

which may or may not be prohibitive, depending on memory allocation constraints.

5.2.2 Nonparametric Inference on Dependence Structure

The flexibility of the randomized tree framework should be of interest in problems
of nonparametric learning about dependence structures not specifically addressed in
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this dissertation. Modifications may or may not need to be made to the assumption
that the partition is created based on binary recursive perpendicular splits of the
axes of a hypercube. As pointed out in Chapter 2, under certain conditions marginal
distributions of multivariate Polya tree priors are Polya trees. It would be interesting
to study what would happen if the perspective is reversed, to see whether the product
of two distributions that each follow marginal Polya tree priors could yield a joint
distribution worthy of study. Dependence structure in the time series framework is

worthy of study as well.

Nonparametric Time Series

In the time series framework, Miiller et al. (1997) develop Bayesian mixture models
for nonlinear, non-normal autoregressive time series, in which the set of possible
mixture model components is assumed to follow a distribution that arises from a
Dirichlet process. It would be interesting to explore how a multivariate (randomized)
Polya tree prior would compare to the MDP approach; one question is: could local
structure be modeled better with randomized tree /Polya tree than with DP mixtures
of parametric kernels?

Ruggeri and West (1999) consider an AR(1) process and model dependence be-
tween z; and x;_; via a Polya tree prior on the real line. Positive (or negative),
but close to linear, autocorrelation is explicitly modeled by counting the number of
identical digits from the top of the tree downward between the binary expansion of
x; and x;_q.

The PT framework shows promise for nonparametric exploration of % and could
build upon works by these authors, addressing concerns such as locality /multiresolution

and modeling positive and/or negative autocorrelation in one model.

In this section, a Polya tree nonparametric time series framework for an AR(1)
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process is proposed. This framework should be generalizable for cases with covariates

and process orders greater than 1, via implementation of results found in Chapter 2.

Model

Assume an AR(1) process. Express the joint density of random variables X,(t =

yooo, ) as:

T
F(Xr, Xpoq, ., X0) = f(X5) [ A X).
=2
Model the observation pairs (X;, X; 1) ~ F where F' comes from a Polya tree in
R? a priori, with the partitioning scheme as in Figure 2.1. Let f be the pdf of F', and
fi(y) = [ f(y, z)dz be the univariate margin of the first element. The implied AR(1)
transition density is f(z¢|x; 1) = f(z4, 1)/ fi(211). Then, based on the observed
data, the likelihood function for F' may be written formally as

fi (5U1) HtT:2 f(l"t, $t71) _ H?:Q f(l"t, $t71)

PIX|F) o HtT:2 fi(zi-1) HtT=3 fi(@-r)

(5.1)

Updating Scheme

The numerator in Equation 5.1 is similar to that arising in bivariate random samples,
but the denominator poses a challenge. To update F', the collection Y must be
updated sequentially. As this is done level by level in the tree, the results below
correspond to any Y = (Yp, Y1, Y5, Y3) € Y for any corresponding urn B € II. Let ¢; be
the indicator of which child urn the pair (z;, ;) falls (Figure 2.1), and define §;(e) =
1 if e = j and 0 otherwise. Let e; be the vector with 1 as the value for component
j and 0 otherwise. Define A, = S0, Z?Zl e; X d;(e;) to be the vector of length 4

corresponding to a count of how many observations fall in the cell corresponding to ¢;
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at time ¢ for the bivariate Polya tree; for example, if (21, 25) € By and (x4, 73) € By,
then A; = (1,0,0,0) and Ay = (1,1,0,0). Thus, a = (o, a, e, v3) € A is updated
to a+Ay at time £. Also, a;; and Ay, are the 3" components of a and A,, respectively.

At time t > 3:

p(Y|xi_1,...,m1) ~ Dirichlet(a+ A1)

f(xtaxt71|Y)
fi ($t71 |Y)

a0+A¢y y ,01+AL 02+ ALy ¢ 03+ AL
Yo Yy Yy Yy

()/E] _|_ }/’1)51(615)4»52(615)(1/2 + }/'3)53(61&)‘}’54(6‘,)

p(Yl|zy, o1,y 21) o p(Y|oey,...,21)

Generally,

Dirichlet(Y|a + Ay)

YIX

where ¢; is the number of (z4, z; 1) pairs in By U B; and ¢, the number in By U Bs.

This initial development suggests some potential, though full development of this

framework is pending.

5.2.3 Computation

While tree-based computation algorithms are quite efficient, there is always be room
for improvement. This might be a worthwhile area of research if the Polya or ran-
domized tree will be applied to a very large problem. This will be tricker for the
randomized tree than for the Polya tree, given the partitions are not known before-
hand and must be introduced as parameters.

Application of this methodology to higher-dimensional spaces will inevitably be
hindered by the curse of dimensionality — local neighborhoods are empty and non-
empty neighborhoods are not local. Perhaps an adaptive partitioning scheme would
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remedy the problem in some cases — only partition the interesting regions of a space
and ignore the rest. This would entail formal learning about where the data should
be partitioned. One potential approach could be to update the tree a varying number
of levels throughout various regions of the space, depending on how “interesting” the

space is, or to exploit the multiresolution nature of the tree in some way.
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Appendix A

GRAPHS FROM EARTHQUAKE
ANALYSES OF CHAPTER 4

This Appendix contains the graphs of the conditional predictive distribution simu-
lations, based on the earthquake data, that were described in Chapter 4. Figures
A.1-A.3 show the conditional predictive simulations based on the Polya tree prior.
Figures A.4-A.21 display simulations for location given various values magnitude, as
denoted on each Figure. Figures A.22—-A.29 display the output from simulations of

the conditional predictive distributions of location given various values of depth.
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Location, given magnitude = 5.8
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Figure A.1: Section 4.1.1: Conditional predictive distribution of location given
magnitude = 5.8. o = 0.1m? and G =Uniform. Polya tree prior.
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Location, given magnitude = 6.1
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Figure A.2: Section 4.1.1: Conditional predictive distribution of location given
magnitude = 6.1. a = 0.1m? and G =Uniform. Polya tree prior.
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Location, given magnitude = 6.5
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Figure A.3: Section 4.1.1: Conditional predictive distribution of location given
magnitude = 6.5. o = 0.1m? and G =Uniform. Polya tree prior.
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Location, given magnitude = 5.8
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Figure A.4: Section 4.1.2 — Analysis 1: Conditional predictive distribution of loca-
tion given magnitude = 5.8. o = 0.1m?, 7 = 0.025, and G =Uniform
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Location, given magnitude = 6.1
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Figure A.5: Section 4.1.2 — Analysis 1: Conditional predictive distribution of loca-
tion given magnitude = 6.1. o = 0.1m?, 7 = 0.025, and G =Uniform
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Location, given magnitude = 6.5
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Figure A.6: Section 4.1.2 — Analysis 1: Conditional predictive distribution of loca-
tion given magnitude = 6.5. o = 0.1m?, 7 = 0.025, and G =Uniform
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Location, given magnitude = 5.8
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Figure A.7: Section 4.1.2 — Analysis 2: Conditional predictive distribution of loca-
tion given magnitude = 5.8. o = 0.1m?, 7 = 0.05, and G =Uniform
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Location, given magnitude = 6.1
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Figure A.8: Section 4.1.2 — Analysis 2: Conditional predictive distribution of loca-
tion given magnitude = 6.1. o = 0.1m?, 7 = 0.05, and G =Uniform
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Location, given magnitude = 6.5
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Figure A.9: Section 4.1.2 — Analysis 2: Conditional predictive distribution of loca-
tion given magnitude = 6.5 o = 0.1m?, 7 = 0.05, and G =Uniform
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Location, given magnitude = 5.8
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Figure A.10: Section 4.1.2 — Analysis 3: Conditional predictive distribution of
location given magnitude = 5.8. o = 0.1m?, 7 = 0.025, G=empirical cdf
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Location, given magnitude = 6.1

50

-50
\

-150 -100 -50 0 50 100 150

Figure A.11: Section 4.1.2 — Analysis 3: Conditional predictive distribution of
location given magnitude = 6.1. o = 0.1m?, 7 = 0.025, G=empirical cdf
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Location, given magnitude = 6.5
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Figure A.12: Section 4.1.2 — Analysis 3: Conditional predictive distribution of
location given magnitude = 6.5 av = 0.1m?, 7 = 0.025, G=empirical cdf
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Location, given magnitude = 5.8
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Figure A.13: Section 4.1.2 — Analysis 4: Conditional predictive distribution of
location given magnitude = 5.8. a = 0.1m?, 7 = 0.05, G=empirical cdf
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Location, given magnitude = 6.1
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Figure A.14: Section 4.1.2 — Analysis 4: Conditional predictive distribution of
location given magnitude = 6.1. o = 0.1m?, 7 = 0.05, G=empirical cdf
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Location, given magnitude = 6.5
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Figure A.15: Section 4.1.2 — Analysis 4: Conditional predictive distribution of
location given magnitude = 6.5 o = 0.1m?, 7 = 0.05, G=empirical cdf
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Location, given magnitude = 5.8
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Figure A.16: Section 4.1.2 — Analysis 5: Conditional predictive distribution of
location given magnitude = 5.8. o = 0.1m?, 7 = 0.025, G=Uniform. Longitude in
(-120,240).
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Location, given magnitude = 6.1

50

-150 -100 -50 0 50 100 150

Figure A.17: Section 4.1.2 — Analysis 5: Conditional predictive distribution of
location given magnitude = 6.1. o = 0.1m?, 7 = 0.025, G=Uniform. Longitude in
(-120,240).
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Location, given magnitude = 6.5
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Figure A.18: Section 4.1.2 — Analysis 5: Conditional predictive distribution of
location given magnitude = 6.5 o = 0.1m?, 7 = 0.025, G=Uniform. Longitude in
(-120,240).
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Location, given magnitude = 5.8
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Figure A.19: Section 4.1.2 — Analysis 6: Conditional predictive distribution of
location given magnitude = 5.8. o = 0.1m?, 7 = 0.05, G=Uniform. Longitude in
(-120,240).
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Location, given magnitude = 6.1
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Figure A.20: Section 4.1.2 — Analysis 6: Conditional predictive distribution of
location given magnitude = 6.1. o = 0.1m?, 7 = 0.05, G=Uniform. Longitude in
(-120,240).
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Location, given magnitude = 6.5
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Figure A.21: Section 4.1.2 — Analysis 6: Conditional predictive distribution of
location given magnitude = 6.5 o = 0.1m?, 7 = 0.05, G=Uniform. Longitude in
(-120,240).
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Location, given depth = 50 km
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Figure A.22: Section 4.1.3: Conditional predictive distribution of location given
depth = 50 km. o = 0.1m?, 7 = 0.025 and G =Uniform.
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Location, given depth = 200 km
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Figure A.23: Section 4.1.3: Conditional predictive distribution of location given
dpeth = 200 km. o = 0.1m?, 7 = 0.025, and G =Uniform.
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Location, given depth = 400 km
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Figure A.24: Section 4.1.3: Conditional predictive distribution of location given
depth = 400 km. o = 0.1m?, 7 = 0.025 and G =Uniform.
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Location, given depth = 600 km
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Figure A.25: Section 4.1.3: Conditional predictive distribution of location given
depth = 600 km. o = 0.1m?, 7 = 0.025, and G =Uniform.
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Location, given depth = 50 km
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Figure A.26: Section 4.1.3: Conditional predictive distribution of location given
depth = 50 km. o = 0.1m?, 7 = 0.05 and G =Uniform.
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Location, given depth = 200 km
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Figure A.27: Section 4.1.3: Conditional predictive distribution of location given
dpeth = 200 km. o = 0.1m?, 7 = 0.05, and G =Uniform.
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Location, given depth = 400 km
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Figure A.28: Section 4.1.3: Conditional predictive distribution of location given
depth = 400 km. o = 0.1m?, 7 = 0.05 and G =Uniform.
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Location, given depth = 600 km
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Figure A.29: Section 4.1.3: Conditional predictive distribution of location given
depth = 600 km. o = 0.1m?, 7 = 0.05, and G =Uniform.
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Appendix B

GRAPHS FROM MISSING DATA
IMPUTATION EXAMPLE OF
CHAPTER 4
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Figure B.1: Histograms of data: tuition and faculty compensation.

data: tuition and faculty compensation
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Figure B.2: Scatterplot of data: tuition and faculty compensation.

135



60000 80000 100000
| |

faculty compensation

40000
|

I I I I I
5000 10000 15000 20000 25000

tuition

Figure B.3: Simulation of 50000 draws from the posterior predictive distribution
for tuition and faculty compensation.
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Figure B.4: Subsample of 5000 of 50000 MCMC simulations of the posterior pre-
dictive distribution for tuition and faculty compensation
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faculty compensation

137



3120 4616 5180

o
3
8
o o
8 S g
<
g & g
8
° o
g < g
(=] o
Ll li. Sl li... o ™
B S B
20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000
o
8
g o
8 8
~ (=]
g
8
s o
o
o
g o
g 8
< o
8
b1 o
* 1 ) ||| || : |‘ |||I
° ||| I ° - II_, ° il fue..
B el .
20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

8190 8900 9810

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

800
1000

600

600

400
100 200 300 400

200

0 200

o o

11455 12584 18375

o
3
8
o
(=3
8
o
3
<
o
B
all ... P n_ . __-n Hn_

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000

300 400

200

100
200 400 600 800

o

Figure B.6: Imputed Distributions for Twelve Missing Values of faculty compensa-
tion. Histograms are labeled with values for tuition

138



Appendix C

COMPUTATION

Tree structures are very flexible, and can enable efficient computation and storage
of information. Thorough overviews of tree algorithms are given by (Aho et al.,
1974) and (Cormen et al., 1994). All computations presented in this chapter were

programmed in C. A description of some programming strategies follows.

C.1 Structure of Tree

The structure of a tree is given in Figure C.1. Reference to Figure C.1 will be made as
definitions are set forth below. Nodes are represented by the squares. In the previous
chapters, “urns” or “partition elements” constitute the nodes of a tree. The root
node is the top-most node in the tree, which is labeled By, represents the support, €2,
in the Polya tree and randomized tree framework. The links are the line segments
connecting the nodes. Every node, except the root node, has a parent node. Sibling
nodes have the same parent. Siblings By and B; have the same parent, By, and are
child nodes of By. Nodes without children are external nodes; By, By, Big, B11 are
external nodes; all others are internal nodes. A NULL node is one that does not
exist; Byg, which would appear as a left-hand child of By, is NULL. A subtree rooted
at node B is a tree consisting of node B and its descendants (child nodes, and in
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Figure C.1: Basic structure of a tree

turn child nodes of the child nodes, etc.).

The distance of the node from the root node plus 1 is the level of the tree. The
degree of a node is the number of children it has; By is of degree 1 whereas the other
internal nodes are of degree 2. The tree height is the maximum number of links

between the root and external nodes plus 1; the tree in Figure C.1 is of height 2.

C.2 Employing the Tree Structure in Computa-

tion

It must be decided which information should be encoded into the tree prior to its
creation. In the Polya tree, each node represents a partition element, or an urn.
Parameters describing the tree, namely A and node level, must be stored in the

nodes. To enable tree traversal for parameter updating and information extraction,
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each node must contain pointers to child and parent nodes; pointers are memory
addresses indicating where an object can be found in computer memory. The pointers
serve as signposts that provide a sense of direction in the tree. Each node must contain

the following information:

Pointer to parent node

Pointers to child nodes

A set of a € A parameters for the node

Level in tree of node

The C programming language allows for user-defined structures to be used as
data types. For the implementation of algorithms presented in this thesis, new data
types for trees and nodes were created. The code that was developed for the analyses
presented for this thesis is based on software written by Michael Lavine (Lavine,
1999). For example, the structure URN is created by declaring the following in a
header file:

struct URN {

int level;
double * alpha;
struct URN * parent;
struct URN * child[N];

where * variable represents a pointer to variable. The urn contains an array
of N pointers to N child nodes, a pointer to the parent node, and a pointer to a
parameter vector ce. To access an element (e.g., level) of a variable urn of type

URN, call 1evel by “urn—1level”in the code.
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C.3 Moving About the Tree

Moving about the tree is possible once the parent/child and other node information

is encoded. There are two general reasons to traverse the tree:

e To update information stored in the nodes

Since nodes are created whenever data exist in partition elements repre-
sented by the nodes, creation of the tree coincides with the first aim. Posterior

updates of A also occur in this step.

e To extract information from the nodes

Following creation of a tree and updating of its nodes, simulation of the

joint posterior distribution can occur. Algorithms for both follow.

C.3.1 Simultaneous Creation of Tree and Posterior Updating

of Parameters

An illustration of the computing algorithm follows for a Polya tree. Let N be the
number of observations, M be the maximum depth, or height, of the tree. Let root
be the root node of the tree, and urn.ctr be an index of the nodes. Let ©;(v) =
(0:(1,v),...,60;(m,v)) be the M-length 0/1 vector corresponding to z(i,v) — variable
v of observation i. Let cut.pt be the cut point at which to split the node to create

child nodes.

Algorithm for simultaneous tree creation and posterior updating of pa-

rameters

for iin 1:N{
read in observation x;
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set urn.ctr = root
for j in 1:M{
index = 0
if urn.ctr is NULL
create urn.ctr
for kin 1:V {
compute cut.pt(k) for urn.ctr
if x(i, k) < cut.pt(k)
set 0;(7,k) =0
else
set 6;(7,k) =1
index = index + 257%719,(5, k)
}
increment urn.ctr— «(index + 1) by 1

set urn.ctr = urn.ctr—child(index +1)

}

At each level m of the tree, let ¢, be the cut point of the urn along axis k. For all
k, if xp > cpm, set Ogm = 1; else Oy, = 0. Update the components of o corresponding
to ©,,. Descend to level m+1 to the child urn indexed by 25:1 Orm2 %, and repeat

until the bottom of the tree is reached.
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Nodes are created only when an observation falls in a region of the space corre-
sponding to the partition element; other nodes remain NULL, and the prior distri-
bution is assumed for the partition elements represented by those nodes. Creation of
a node means memory is set aside for the node, and values for «, level, and pointers

to parent and child nodes are entered into the newly-created node object.

C.3.2 Posterior Predictive Simulation

For a given tree structure, a point along its support can be drawn from the joint
posterior predictive distribution the following way:
Algorithm for simulation from joint posterior predictive distribution

Update the tree as previously described. Given the updated tree, simulate a draw
from the predictive distribution by simulating a new observation z,,; by simulating

a new € <> O at each level m, based on the multinomial probability vector:

Yooy
et (C.1)

P?"(El,... ,621() = ?
ZE:O Y:'fmfl6

Then, descend to the next level m + 1 of the tree by selecting the € child urn.

set urn.ctr = root
for jin 1:M {

set index = 0
for k in 1:V {
if urn.ctr is not NULL {

compute predictive probability of 6,,,1(j, k) = 0 via vector urn.ctr— «
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draw 6,.1(j,k) = 0 or 1 based on above step
¥
else if urn.ctr is NULL
draw 6,,11(j, k) = 0 or 1 based on assumed prior values of «
index = index + 2577710, ., (5, k)
¥
if urn.ctr—-child(index + 1) not NULL

set urn.ctr = urn.ctr—child(index + 1)

for k in 1:V, compute z,,1(k) = f(Oni1(:, k))

The last step in the above scheme, computation of x,,1(k), can be evaluated
via Equation 3.2; for the Polya tree prior described in Chapter 2, assume all {5} in

Equation 3.2 are equal to 0.5.

Conditional Predictive Distribution Simulation and Missing Data Impu-

tation

Given the updated tree, simulation from the conditional predictive distribution
of Xq,...,X; given Xj4,..., Xk (or imputation of missing components X, ..., X
given observed components X, i,... , X is similar in spirit to simulation from the

joint posterior distribution, with the following modifications:

a) the multinomial probability vector in Equation C.1 is now of length 27 rather
than 2% (where j is the dimension of X, ..., X;) and it represents only those

urns which are allowed given knowledge of X;,4,... , Xg.
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Figure C.2: Subtrees of tree are rooted at the circle nodes

b) The probability calculation includes an additional term to allow for the “tail”

OfXj+1,... ,XK.

At each level ¢, the factor can be computed by summing the probability of all
possible subtrees induced by {9&21%}{:1. For example, suppose ¢ = 1, corresponding
to the (square) root node in Figure C.2. The probabilities of the two corresponding
subtrees at the circled nodes can be computed via recursive traversal of the tree as

Yoo (Yooo + Yoo1) + Yo1(Yoro + Yo11) and Yip(Yieo + Yior) + Y11 (Yi1o + Yinn).

Simulation Scheme for the Conditional Predictive Distribution and Miss-

ing Data Imputation
At level ¢

loop over i = 1,...,27 possible values for {O®}_ (call the value ({©"}_),)
{
if urn # NULL
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p(i) = probability of the urn corresponding to {©@®}/_,); given {@(l)}fijJr1
else use default prior values to compute p(i)
compute d = probability induced by subtree for (©1,... ,0;); given {OV}

compute p(i) = p(i) x d
Select the child urn from a Multinomial(1; p) and continue to next level }

At the end of the loop, a draw from the conditional predictive distribution or an

imputation of missing data will result.

C.4 Dynamic Memory Allocation

With the Polya tree, the above simulations can be repeated any number of times
with the same tree. For the randomized tree of Chapter 3, the tree itself is a random
variable that is numerically integrated with respect to via Markov Chain Monte
Carlo (Equation 3.12). This means a new tree must be created at each iteration of
the sampling scheme. Each tree can be quite memory consuming (each o parameter
is of length 2% in K-dimensional space), so the memory allocated to the tree must
be freed before a new tree can be created. The tree is freed recursively — starting at
the root node, loop over all i = 1,...,2% child nodes. At each child i, check to see
whether its children need to be freed. A sketch of the freechild recursive function is
below, for which the input is “urn”:

function freechild(urn)

for 7 in 1 to 2K
if(urn—-child(i) # NULL )
freechild (urn—child(i))

freeurn(urn—child(i))
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freeurn(urn)
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