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Abstract

This thesis proposes some inferential methods for use with multiple imputation for

missing data and statistical disclosure limitation, and describes an application of

multiple imputation to protect data confidentiality. A third component concerns

model selection in random effects models.

The use of multiple imputation to generate partially synthetic public release files

for confidential datasets has the potential to limit unauthorized disclosure while allow-

ing valid inferences to be made. When confidential datasets contain missing values,

it is natural to use multiple imputation to handle the missing data simultaneously

with the generation of synthetic data. This is done in a two-stage process so that

the variability may be estimated properly. The combining rules for data multiply

imputed in this fashion differ from those developed for multiple imputation in a sin-

gle stage. Combining rules for scalar estimands have been derived previously; here

hypothesis tests for multivariate components are derived.

Longitudinal business data are widely desired by researchers, but difficult to make

available to the public because of confidentiality constraints. An application of par-

tially synthetic data to the U. S. Census Longitudinal Business Database is described.

This is a large complex economic census for which nearly the entire database must

be imputed in order for it to be considered for public release. The methods used and

analytical results for synthetic data generated for a subgroup are described. Mod-

ifications to the multiple imputation combining rules for population data are also

developed.

Model selection is an area in which few methods have been developed for use

with multiply-imputed data. Careful consideration is given to how Bayesian model

selection can be conducted with multiply-imputed data. The usual assumption of cor-
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respondence between the imputation and analyst models is not amenable to model

selection procedures. Hence, the model selection procedure developed incorporates

the imputation model and assumes that the imputation model is known to the ana-

lyst.

Lastly, a model selection problem outside the multiple imputation context is ad-

dressed. A fully Bayesian approach for selecting fixed and random effects in linear

and logistic models is developed utilizing a parameter expanded stochastic search

Gibbs sampling algorithm to estimate the exact model-averaged posterior distribu-

tion. This approach automatically identifies subsets of predictors having nonzero

fixed coefficients or nonzero random effects variance, while allowing uncertainty in

the model selection process.
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Chapter 1

Introduction

Multiple imputation was first proposed for handling nonresponse in large complex

surveys. The goal was to facilitate valid inferences when the data producer and

the ultimately many end users of the data were distinct entities, potentially having

different knowledge, capabilities, and ideas about the cause of missingness, and likely

conducting different analyses. In this scenario, the burden of modeling the missing

data mechanism lies on the data producer, who may have skills and information

unavailable to the users, while the users are able to focus on their analyses without

learning new or complex missing data methods (Rubin, 1996).

Many agencies find multiple imputation an appealing approach for handling miss-

ing data in public-use files as they would like all users be able to obtain the same

inferences. As the validity of inferences depends to an extent on the models used to

impute the missing values, agencies releasing multiply-imputed data should include

in their imputation models as many relevant variables from the dataset as possible,

including design variables, and completely observed variables. This will increase the

scope of valid analyses that may be of interest to future analysts. Releasing infor-

mation about the imputation model will also aid analysts in assessing the analytic

validity of analyses performed (Schafer, 1997; Meng, 1994; Reiter et al., 2006).

Multiple imputation is now widely used to handle missing data by agencies as well

as individual users. Several software packages, including R, SAS, and SPlus, have

routines that simplify the process for both filling in missing values with multiple

imputations and drawing inferences from completed datasets. In addition to missing

data, multiple imputation is now used in other applications, including statistical
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disclosure limitation (Rubin, 1993; Little, 1993) and measurement error (Clogg et al.,

1991; Cole et al., 2006). These are reviewed in Reiter and Raghunathan (2007).

This thesis will focus on the applications to missing data and statistical disclosure

limitation for large samples and populations. The main contributions of this thesis

are to expand the inferential methods available to users of certain applications of

multiply imputed data, and to undertake the generation of multiply-imputed public-

use files for the U. S. Census Bureau Longitudinal Business Database. The remainder

of this chapter provides background material on the different applications of multiple

imputation for which inferential methods are proposed. Section 1.1 describes multiple

imputation for missing data, Section 1.2 describes multiple imputation for disclosure

limitation, and Section 1.3 describes two-stage multiple imputation. Section 1.4

describes the structure of the remaining chapters.

1.1 Multiple imputation for missing data

There is much literature on multiple imputation for missing data. Rubin (1987), the

standard reference for multiple imputation for nonresponse, derives combining rules

for obtaining inferences from multiply-imputed data for scalar and multivariate esti-

mands. Additional testing procedures for multivariate estimands were developed by

Li et al. (1991a) and Meng and Rubin (1992). Barnard and Rubin (1999) and Reiter

(2007b) adapt the combining rules for small samples. Rubin (1996) discusses several

issues surrounding multiple imputation for missing data and provides an extended

bibliography. Schafer (1997) and Little and Rubin (2002) describe several procedures

for generating imputations for missing data.

Multiple imputations for missing data are generated by replacing missing values

with m draws from their posterior predictive distribution, resulting in m completed

datasets, D
(i)
com, i = 1, . . . ,m. The use of multiple draws enables analysts to estimate
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the additional uncertainty due to the imputation. Typically only a few imputations

are needed and often m = 5 is sufficient (Rubin, 1987). Under regularity conditions

described in Rubin (1987) and reviewed in Section 1.1.3, valid inferences can be

obtained from completed datasets by using standard complete data methods on each

completed dataset and applying the combining rules described in Section 1.1.1.

1.1.1 Inferences for scalar estimands

Let q(i), i = 1, . . . ,m, be estimates of a scalar parameter q obtained from each com-

pleted dataset D
(i)
com, and u(i), i = 1, . . . ,m, the estimates of the variance of q obtained

from each D
(i)
com. Valid inferences for q may be obtained from Dcom = {D(i)

com, i =

1, . . . ,m}, using the following quantities from the completed data:

q̄ =
1

m

m
∑

i=1

q(i) (1.1)

ū =
1

m

m
∑

i=1

u(i) (1.2)

b =
1

m− 1

m
∑

i=1

(q(i) − q̄)2 (1.3)

where q̄ is the average of the point estimates q(i), ū is the mean of the variance

estimates u(i), and b is the sample variance of q(i). The posterior distribution (q|Dcom)

used to make inferences about q is tνm(q̄, Tm) where Tm = ū + (1 + 1/m)b, νm =

(m − 1)(1 + 1/rm)
2, and rm = (1 + 1/m)b/ū. When the sample size s is small, νm

should be replaced with the degrees of freedom derived in Barnard and Rubin (1999).

1.1.2 Inferences for multivariate estimands

The results for scalar estimands can be generalized to multivariate estimands; how-

ever, estimation of the covariance B is poor unless m is large. A procedure for testing
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the hypothesis H0 : Q = Q0, for a k-dimensional estimand Q, was derived in Rubin

(1987) using the following quantities from the completed data:

Q̄ =
1

m

m
∑

i=1

Q(i) (1.4)

Ū =
1

m

m
∑

i=1

U (i) (1.5)

B =
1

m− 1

m
∑

i=1

(Q(i) − Q̄)(Q(i) − Q̄)′, (1.6)

where terms are defined similarly to (1.1)-(1.3). A key assumption in Rubin’s (1987)

multicomponent test is that B∞ ∝ Ū , or equivalently, the fractions of information

missing for the k components of Q are the same. While not necessarily true in

practice, it proves to be a reasonable assumption, and tests based on this assumption

have been shown to be more robust than tests not based on it (Li et al., 1991a).

Applying the proportionality assumption reduces the number of covariance pa-

rameters and allows for a closed-form approximation to a Bayesian p-value. When s is

sufficiently large, the approximate Bayesian p-value is determined by P (Fk,w∗ > Sm),

where

Sm = (Q0 − Q̄)′Ū−1(Q0 − Q̄)/k(1 + rm)

w∗
m = k(m− 1)(1 + 1/rm)

2

rm = (1 + 1/m)tr(BŪ−1)/k.

An alternate degrees of freedom, which has been shown to have improved analytic

validity for higher values of k, was developed by Li et al. (1991a). The degrees of

freedom for this test are

wm = 4 + (t− 4){1 + (1− t/2)/rm}2

4



where t = k(m−1). When t ≥ 4 is undefined, wm is undefined so w∗
m is used instead.

The degrees of freedom derived in Reiter (2007b) should be used when the sample

size s is small.

Another version of the test, not requiring the covariance matrices U (i), was de-

rived by Meng and Rubin (1992). They use the asymptotic equivalence between the

Wald test statistic and the log-likelihood ratio test statistic to derive a test statistic

asymptotically equivalent to Sm, and a term asymptotically equivalent to rm, so that

Sm and the degrees of freedom wm or w∗
m may be computed without access to the

covariance matrices U (i).

1.1.3 Conditions for valid inferences

The inferential methods for multiply-imputed data are justified with Bayesian ar-

guments; however, their analytic validity is usually considered from a frequentist

viewpoint. As described in Raghunathan (2003) and Rubin (1987, Ch. 4), users

of multiply-imputed data should be able to construct unbiased estimates of popu-

lation quantities without access to the imputation models. Furthermore, nominal

100(1− α)% confidence intervals for population quantities should contain the quan-

tity at least 100(1 − α)% of the time. The inferential methods in Sections 1.1.1

and 1.1.2 result in randomization-valid inferences, as described in Rubin (1987) and

Schafer (1997), when the following conditions hold:

• If no missing values were present, inferences about Q would be based on the

posterior distribution (Q − Qinc) ∼ N(0, U), where Qinc is an estimate of a

k-dimensional estimand Q obtained from the complete data Dinc and U is the

covariance of (Q−Qinc).

• The imputation procedure is proper, in the sense of Rubin (1987, p. 118):

5



– Under the posited response mechanism, with (X,Y, I) fixed and R ran-

dom, as m becomes large, (Q̄ − Qinc) is approximately N(0, B) over the

distribution of R, where I is a N -vector such that Il = 1, l = 1, . . . , N

indicates that unit l in the population of size N is selected in the sample

and R is a N × p matrix such that Rlk = 1, l = 1, . . . , N ; k = 1, . . . , p

indicates that unit l is missing its value for item k.

– Under the posited response mechanism, with (X,Y, I) fixed and R random,

as m becomes large, Ū is a consistent estimate of U .

– With infinitely many imputations, the true between-imputation variance is

stable over repeated random samples of the complete data, with variability

of lower order than that of Qinc.

Little and Rubin (2002, Ch. 10) describe several proper and improper procedures

for generating multiple imputations. Drawing from (Ymis|Yobs) will yield proper im-

putations; however, doing so is often difficult. Methods that are easier to implement

can still yield approximately valid inferences (Schafer, 1997; Little and Rubin, 2002;

Raghunathan et al., 2001). For example, sequential regression multivariate impu-

tation (SRMI) is a popular approach for imputing missing values for complex data

structures when the data are missing at random (Raghunathan et al., 2001).

The best-case scenario for analytic validity occurs when the analysis procedure

is congenial to the imputation model. Meng (1994) defines a congenial analysis

procedure as one in which the procedure corresponds to the imputation model.

When the analyst has different information and assumptions about the responses

and nonresponses, an uncongenial procedure may arise. As long as the imputation

model is reasonable and imputations are proper, using combined-data inferences from

multiply-imputed data should limit any serious nonresponse bias (Meng, 1994). The
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major danger of inconsistency, noted by Meng (1994) and Schafer (1997, Ch. 4),

occurs when the imputer makes poorly grounded assumptions but the analyst does

not. Hence it is recommended that the imputer refrain from imposing restrictions on

unknown parameters likely to be the subject of further inquiry.

From a Bayesian perspective, analytic validity is achieved when the posterior

distributions obtained from the multiply-imputed data match approximately what

would be obtained using complete observed data. Schafer (1997) defines Bayesianly

proper imputations as independent realizations of the posterior predictive distribution

p(Ymis|Yobs) under some complete-data model and prior, and assumption of ignora-

bility.

1.2 Multiple imputation for statistical disclosure

control

Many national statistical agencies, survey organizations, and researchers—henceforth

all called agencies—disseminate masked confidential microdata, i.e., data on individu-

als or establishments, in public use files. Agencies typically have the legal and ethical

obligation to protect the confidentiality of the survey respondents, so the microdata

must be modified to prevent confidential information from being disclosed. Simply

removing all obvious identifying information is insufficient to protect the respondent

identities and attributes due to the increasing sophistication of record-linking tech-

nologies and the profileration of databases available to ill-intentioned users intent on

re-identifying survey respondents. Thus agencies additionally alter the data values to

limit the disclosure risks using statistical disclosure control methods. The enormous

amount of confidential data collected by agencies has a great deal of value to fur-

thering scientific research and better informing public policy (Panel on Data Access

for Research Purposes, 2005). Hence, good statistical disclosure control methods are
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crucial to ensuring that agencies are able to share the information they hold with

researchers and others agencies.

A common masking method used by agencies is data swapping, where a percentage

of units have values of certain variables randomly swapped with other units (Dalenius

and Reiss, 1982). This is appealing because of its simplicity; however, it distorts

relationships between swapped and unswapped variables and disclosure risks may

remain high when actual values are released. Several variations on this approach

have been developed, including “data shuffling” (Muralidhar and Sarathy, 2006),

where values are swapped in such as way that linear relationships can be preserved;

however, uncertainty introduced by the shuffling is not accounted for. Examples

of other methods employed by agencies to mask microdata before release include

global recoding of variables, such as releasing ages in five year intervals or top-coding

incomes above 100,000 as “100,000 or more” (Willenborg and de Waal, 2001), or

adding random noise to continuous data values (Fuller, 1993). Another approach is

microaggregation, where small groups of units with similar identifying characteristics

have their confidential values replaced with the average over the group (Defays and

Nanopoulos, 1992). Synthetic data methods, first proposed in Rubin (1993), use

multiple imputation to limit disclosure risks, which allows for valid inferences to be

made. Agencies may sometimes apply more than one of these methods to the same

dataset.

Ideally the statistical disclosure control methods applied to confidential data to

create public use files should allow analysts to obtain the same inferences using the

altered data as they would with the unaltered data, using standard statistical meth-

ods. Many of the methods used to mask the data, however, have the unfortunate

consequence of reducing the utility of the data by complicating analyses, making

some analyses impossible, and severely distorting others. Some masked data may be
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analyzed properly using the likelihood-based methods described by Little (1993) or

the measurement error models described by Fuller (1993). These are difficult to use

for non-standard estimands and may require analysts to learn new statistical meth-

ods and specialized software programs. Balancing the utility of the masked data with

the risk of disclosure is a challenge in developing and applying statistical disclosure

methods.

The utility of the datasets may be broadly thought of as the benefit to society

of the released information, though a more feasible approach is to quantify what can

be learned from the masked data relative to the observed data (Karr et al., 2006).

One approach to comparing the masked and observed data is to conduct several key

analyses on both the observed and synthetic data and compare the results using

metrics such as confidence interval overlap. It is difficult to anticipate and evaluate

every analysis; hence, global measures of utility are desireable. These measures can be

used by imputers to adjust the intensity of masking employed and compare different

disclosure control methods. They can also be combined with risk measures to assess

the tradeoff between risk and utility (Karr et al., 2006). When released to users,

utility measures can provide a sense of confidence in inferences obtained from the

masked data. Karr et al. (2006) construct a framework for defining and comparing

measures of utility and describe two measures for inference-specific comparisons and

a global measure based on Kullback-Leibler divergences. Dobra et al. (2002) and

Gomatam et al. (2005) develop inference-based utility measures for masked tabular

data. Woo et al. (2007) propose several global measures of utility, finding the use

of propensity score matching to compare the joint empirical distributions to be the

most promising for general use. The other methods evaluated use cluster analysis

and Kolmogorov-Smirnov-type statistics to compare the original and masked data.

Agencies typically assess the risk associated with releasing masked datasets prior
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to making them available for public use. This may involve attempts to re-identify

records using record-matching software, estimating the number of population uniques

in the released data, or computing other measures of risk. Duncan and Lambert

(1986) develop a framework for obtaining probabilities of identification for each sam-

pled unit. Fienberg et al. (1997) describe a Bayesian framework for modeling iden-

tifications leading to disclosure. Reiter (2005a) describes shortcomings of using pop-

ulation uniques, further develops the approach of Duncan and Lambert (1986), and

applies it to real data using the data swapping and noise addition masking methods.

Reiter and Mitra (2007) propose a similar framework for assessing the risks associ-

ated with partially synthetic data, accounting for all the information in the released

datasets and what information is released about the synthetic data generation mod-

els. Also of interest is understanding how the number of datasets released relates to

disclosure risk.

Synthetic data methods are gaining increasing popularity among agencies that

release large complex datasets in public-use files for their ability to provide a reason-

able balance between risk and utility. Although fully synthetic data were originally

proposed in Rubin (1993), partially synthetic data (Little, 1993) methods are more

commonly implemented. Fully synthetic datasets are promising in their ability to

protect confidentially as they contain no actual units or values. In this approach,

new units are randomly and independently sampled from the sampling frame, and

then the original survey data are used to impute data values for all variables on all of

the sampled units. This is repeated multiple times and the set of imputed datasets

is then released for public use. With appropriate synthetic data generation and the

inferential methods developed by Raghunathan et al. (2003) and Reiter (2005c), users

can make valid inferences for a variety of estimands using standard, complete-data

statistical methods and software. Other attractive features of fully synthetic data
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are described by Rubin (1993), Little (1993), Fienberg et al. (1998), Raghunathan

et al. (2003), Abowd and Lane (2004), and Reiter (2002, 2005b). A drawback of the

approach is the dependence of inferences on the models used, which can be difficult

to specify well for complex datasets.

The partially synthetic data approach differs from fully synthetic data in that

the original survey units and some actual values are released, and some values are

replaced by multiple imputations. An advantage over fully synthetic data is reduced

dependency on the model specification, and potentially a reduction in the complex-

ity of the imputation models. There is, however, a tradeoff with increased disclosure

risk when actual units and some of their true values are released. Partially synthetic

datasets still are appealing because they maintain the primary benefits of fully syn-

thetic data, specifically, they can protect confidentiality while allowing users to make

valid inferences without learning complicated statistical methods or software.

While no agencies have released fully synthetic datasets as of this writing, several

agencies have released partially synthetic public use data. Several examples are given

in Reiter (2005c), including partially synthetic datasets released by the U.S. Federal

Reserve Board and the U. S. Bureau of the Census. Current projects to release

partially synthetic datasets at the Census Bureau include the Survey of Income and

Program Participation (SIPP), described in Abowd et al. (2006), the “OnTheMap”

public-use microdata released by the Longitudinal Employer-Household Dynamics

(LEHD)program, and the Longitudinal Business Database (LBD), described in Chap-

ter 3 of this thesis. A beta version of the SIPP synthetic data has recently been

released while the LBD is still in the production stage, though a beta version is ex-

pected to completed within the next few months. In the SIPP synthetic beta release,

a process for submitting discloseable analyses conducted on the synthetic data to be

run on the confidential data is in place. Other current projects include the genera-
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tion of partially synthetic public release files for the American Communities Survey

group quarters data, underway at the U. S. Census Bureau, and the generation of

fully synthetic public release datasets for establishment panel data, underway at the

German Institute for Employment Research (Dreschler et al., 2007).

Some methods for generating partially synthetic data include SMIKe, a general

algorithm presented by Liu and Little (2002) and Little et al. (2004) for simulating

multiple values of key identifiers for selected units. Reiter (2005d) describes the use of

CART modeling to generate partially synthetic data. Other illustrations of partially

synthetic data methods include Abowd and Woodcock (2004), Raghunathan (2003),

and Mitra and Reiter (2006). As with multiple imputation for missing data, users

can apply standard statistical methods to each imputed dataset with simple combin-

ing rules to obtain valid inferences. Combining rules for univariate estimands were

developed in Reiter (2003), whose rules for combining point and variance estimates

differ from those of Rubin (1987) and also from those of Raghunathan et al. (2003).

Tests for multivariate components were derived in Reiter (2005c). These inferences

are valid under regularity conditions similar to those of Rubin (1987) for multiple im-

putation for missing data, reviewed in Section 1.1.3, namely, that the observed-data

inferences must be valid and the imputation procedure must be proper.

1.2.1 Inferences for scalar estimands

Reiter (2003) derived the combining rules used to make inferences about scalar es-

timands from partially synthetic data. Under regularity conditions, valid inferences

about a scalar estimand q may be obtained from Dsyn, the set ofm partially synthetic

datasets using the quantities in (1.1)-(1.3). The posterior distribution (q|Dsyn) used

to make inferences about q is tνp(q̄, Tp) where Tp = ū+ b/m, νp = (m− 1)(1+1/rp)
2,

and rp = (1/m)b/ū.
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1.2.2 Inferences for multivariate estimands

Reiter (2005c) extended the methodologies of Li et al. (1991a) and Meng and Rubin

(1992) to derive tests for multivariate estimands using partially synthetic datasets.

These tests are similarly based on the assumption that B∞ ∝ Ū . For partially

synthetic datasets, an approximate Bayesian p-value for a Wald-type test of H0 :

Q = Q0 for a k-variate parameter Q is determined by P (Sp > Fk,wp) where

Sp = (Q0 − Q̄)′Ū−1(Q0 − Q̄)/k(1 + rp)

wp = 4 + (t− 4)(1 + (1− 2/t)/rp)
2

rp = (1/m)tr(BŪ−1)/k

where t = k(m − 1), t ≥ 4. An alternate degrees of freedom, in the form of w∗ as

in Section 1.1.2, for use when t < 4 has not been formally derived, but from similar

work for two-stage imputation (Section 2.6), it can be seen to be w∗
p = t(1 + 1/rp)

2.

This is used in a simulation example with m = 2 in Section 3.6.4.

1.3 Two-stage multiple imputation

Nested or two-stage imputation refers to multiple imputation which is conducted in a

nested fashion. In the first stage, m imputations are generated. In the second stage,

n imputations are generated for each multiply-imputed data set generated in the first

stage, resulting in a total of M = mn multiply-imputed data sets.

Two-stage multiple imputation was originally developed to address computational

efficiency for a missing data problem (Shen, 2000; Rubin, 2003); however, several po-

tential uses have been noted, both within the missing data context and for other

multiple imputation applications where an advantage is gained by partitioning the

data to be imputed into two parts. Typically this occurs when the imputations for
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each partition are generated from different posterior predictive distributions, gen-

erating two sources of variability in addition to the sampling variability. The two-

stage approach to generating imputations allows the analyst to estimate properly

the variability due to both types of imputations, and allows for differing numbers of

imputations of each partition. Inferences for data multiply imputed in two stages

use different combining rules than single-stage imputation as the imputations are not

exchangeable.

Other applications where generating imputations in two stages has been found

useful include synthetic data and measurement error. Reiter and Drechsler (2007)

found that two-stage imputation could be used to reduce computational burden in

the generation of fully or partially synthetic data. They also note that the approach

can be applied to release fewer imputations for variables at high risk of disclosure,

and more imputations for variables at lower risk of disclosure to improve analytic

efficiency. Reiter (2007c) uses two-stage imputation to allow valid inferences to be

made from data multiply-imputed for measurement error when the validation data

are not made available to the analyst. Another way in which the two-stage imputa-

tion approach has been found useful is in using multiple imputation to address two

issues at once, such as disclosure limitation and missing data (Reiter, 2004). Addi-

tional uses of two-stage multiple imputation for missing data as well as additional

extensions are suggested in Harel and Schafer (2003) and Reiter and Raghunathan

(2007). Two applications of two-stage imputation are addressed in this thesis: impu-

tation of missing data in two stages and imputation for nonresponse and disclosure

limitation.
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1.3.1 Imputation of missing data in two stages

It is often the case that missing data are of different types, such as planned and

unplanned nonresponse, which contribute qualitatively different types of variability.

While one-stage imputation may still be used in these cases, the use of two-stage

imputation can result in inferences with higher efficiency. It may also be useful in

cases where imputation of one partition would be substantially easier if the other

were known, and in other cases where different numbers of imputations are desired

for two partitions of missing data. Nested multiple imputation may also be used to

to isolate the effects of different types of missingness, evaluate different sources of

variability, and measure the expected increase in information if one part were known,

factors which could be useful for informing future studies (Harel and Schafer, 2003).

Nested multiple imputation was first proposed in Shen (2000), motivated in part

by the multiple imputation of missing data in the National Medical Expenditure

Survey. In this project, a large number of imputations were generated, with reduced

computational burden, by splitting the missing data into two parts, where one part

was computationally intensive and the other computationally inexpensive. First,

a small number of imputations were generated for the computationally intensive

portion, which included all the data except medical expenditures with missing disease

codes, that initially took ten days per imputation to generate. Then, conditional on

these imputated datasets, several imputations were generated for the inexpensive

portion, comprising the missing disease codes and the associated expenditures, thus

increasing the overall efficiency of analyses (Rubin, 2003; Shen, 2000).

Harel (2003) extends Rubin’s (1976) concepts of ignorability and missing at ran-

dom to nested imputation, examines the asymptotic behavior of rates of missing

information, and applies the approach to longitudinal data with death and dropout.

Shen (2000) develops a combining rule for univariate estimands and derives a test

15



for multicomponent estimands, noting that the analytic validity does not hold when

the dimension of the estimands is high relative to the number of imputations. The

methods of Shen (2000) are reviewed in Chapter 2 and an improved multivariate test

for high-dimensional estimands is presented.

1.3.2 Two-stage imputation for nonresponse and disclosure

limitation

When confidential datasets contain missing values, it is natural to use multiple impu-

tation to address both missing data and disclosure limitation. Reiter (2004) describes

a two-stage approach to handle them simultaneously. First, the agency uses multiple

imputation to fill in the missing data, generating m multiply-imputed datasets. Sec-

ond, the agency replaces the values at risk of disclosure in each imputed dataset with

n multiple imputations, ultimately releasing mn multiply-imputed datasets. This ap-

proach is being used to create synthetic public use files for the U.S. Survey of Income

and Program Participation (Abowd et al., 2006).

Generating the imputations in two stages enables users to estimate properly all

sources of uncertainty – the sampling variability, the variability due to imputing

missing data, and the variability due to replacing sensitive values. The rules of

Rubin (1987) and Reiter (2003) do not apply in this two-stage imputation scheme.

Appropriate rules for scalar estimands, similar in nature to those for nested multiple

imputation for missing data (Shen, 2000; Harel and Schafer, 2003; Rubin, 2003), are

presented in Reiter (2004) and reviewed in Chapter 2. Also in Chapter 2, tests for

multicomponent estimands are derived.
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1.4 Overview

The remainder of this thesis expands upon the issues described above and presents

several new inferential methods for use with multiply-imputed data.

Chapter 2 derives a Bayesian p-value for multivariate estimands using two-stage

imputation where missing data and disclosure limitation are handled simultaneously.

The analytic validity is illustrated by demonstrating the frequentist operating charac-

teristics of the test. An improvement over an existing multivariate test for two-stage

multiple imputation for missing data is presented. Estimates of the rates of imputed

information are also given.

In Chapter 3, the generation of a partially synthetic public release file for eco-

nomic census data from the U.S. Census Longitudinal Business Database is discussed.

This is a large database containing longitudinal payroll and employment data over

a 30-year period. When analyzing census data, parameters computed from the data

are assumed to be the true values, possibly with measurement error, but without

sampling error, as the data represent a population. This affects the generation and

analysis of multiply-imputed census data as the existing rules were derived for survey

samples. Modifications to the existing inferential methods for scalar and multivariate

estimands are proposed for partially synthetic population data and extended to the

missing data case.

Stepping away from multiple imputation, Chapter 4 describes the problem of

selecting which predictors should be included in the fixed and random components

of normal and logistic mixed effects models, accounting for model uncertainty. A

fully Bayesian approach is implemented, utilizing a parameter-expanded stochastic

search Gibbs sampling algorithm to estimate the exact model-averaged posterior

distribution.

Chapter 5 develops a fully Bayesian model selection approach for partially syn-
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thetic data. The assumption of agreement between the imputation and analyst mod-

els, described in Section 1.1.3, is not amenable to inferences about models; hence,

the procedure developed incorporates the imputation model and assumes that the

imputation model is known to the analyst. The development of a Bayes factor ap-

proximation is also discussed.
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Chapter 2

Hypothesis testing when using multiple

imputation for disclosure limitation and

nonresponse

In this chapter, two-stage multiple imputation for handling nonresponse and disclo-

sure limitation simultaneously, described in Section 1.3.2, is revisited. Users of data

multiply imputed in this manner may seek to test multi-component null hypotheses,

for example if several regression coefficients equal zero. Methods for performing such

hypothesis tests exist when multiple imputation is used for missing data only (Rubin,

1987; Li et al., 1991a,b; Meng and Rubin, 1992; Shen, 2000; Reiter, 2007b) and for

synthetic data only (Reiter, 2005c). Here these tests are extended to the case when

multiple imputation is used to handle missing data and disclosure limitation simul-

taneously. First, the two-stage imputation procedure and univariate combining rules

of Reiter (2004) are reviewed, and then a Wald-type test and a log-likelihood ratio

test for multicomponent estimands are proposed. Lastly, a modification to the test

procedure of Shen (2000) for two-stage imputation for nonresponse only is proposed.

Estimation of rates of missing information is addressed for both applications.

2.1 Review and notation

For a finite population of size N , let Il = 1 if unit l is included in the survey, and

Il = 0 otherwise, where l = 1, . . . , N . Let I = (I1, . . . , IN), and let the sample size

s =
∑

Il. Let X be the N × d matrix of sampling design variables, e.g. stratum

or cluster indicators or size measures. The design variables X are assumed to be

known approximately for the entire population, for example from census records or
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the sampling frame(s). Let Y be the N × p matrix of survey data for the population.

Let Yinc = (Yobs, Ymis) be the s×p sub-matrix of Y for all units with Il = 1, where Yobs

is the portion of Yinc that is observed and Ymis is the portion of Yinc that is missing

due to nonresponse. Let R be an N × p matrix of indicators such that Rlk = 1 if the

response for unit l to item k is recorded, and Rlk = 0 otherwise. The observed data

is thus Dobs = (X,Yobs, I, R).

To generate the synthetic data, the agency first fills in values for Ymis with draws

from the conditional distribution of (Ymis | Dobs), or approximations of that dis-

tribution such as those of Raghunathan et al. (2001). These draws are repeated

independently i = 1, . . . ,m times to obtain m completed datasets, Dcom = {D(i)
com =

(Dobs, Y
(i)
mis), i = 1, . . . ,m}. Having dealt with the missing data, the agency limits

disclosure risks by replacing selected values in each D
(i)
com with multiple imputations.

For each D
(i)
com, imputations are made independently j = 1, . . . , n times to yield n

different partially synthetic data sets. Let Zl = 1 if unit l is selected to have any

of its data replaced with synthetic values, and let Zl = 0 for those units with all

data left unchanged. Let Z = (Z1, . . . , Zs). Let Y
(i,j)
rep be all the imputed (replaced)

values in the jth synthetic data set associated with D
(i)
com, and let Y

(i)
nrep be all un-

changed (unreplaced) values of D
(i)
com. The Y

(i,j)
rep are generated from the conditional

distribution of (Y
(i,j)
rep | D(i)

com, Z), or a close approximation of it. Each synthetic data

set, D
(i,j)
syn , then comprises (X,Y

(i,j)
rep , Y

(i)
nrep, I, R, Z). The entire collection of M = mn

datasets, Dsyn = {D(i,j)
syn , i = 1, . . . ,m; j = 1, . . . , n}, with labels indicating the nests,

is released to the public.

2.1.1 Inferences for scalar estimands

Combining rules for scalar estimands were developed by Reiter (2004). For moderate

M , the following quantities are needed to make inferences for scalar parameter q:
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q̄ =
m
∑

i=1

n
∑

j=1

q(i,j)/mn =
m
∑

i=1

q̄(i)/m (2.1)

ū =
m
∑

i=1

n
∑

j=1

u(i,j)/mn (2.2)

w̄ =
m
∑

i=1

n
∑

j=1

(q(i,j) − q̄(i))2/m(n− 1) =
m
∑

i=1

w(i)/m (2.3)

b =
m
∑

i=1

(q̄(i) − q̄)2/(m− 1) (2.4)

where q̄(i) is the average of the point estimates in the nest of datasets indexed by i,

and q̄ is the average of the q̄(i) across nests. The w(i) are the within-group variances

of the point estimates in the nest of datasets indexed by i, and w̄ is the average of

the w(i), while b is the between-group variance of the q̄(i) across nests and ū is the

average of the estimated variances u(i,j) of q(i,j) across all imputed datasets.

Using these quantities, an estimate of the variance of q̄ is given by Ts = (1 +

1/m)b − (1/n)w̄ + ū. Note that in the case that n = ∞, Ts reduces to Tm, the

standard combining rule for missing data of Rubin (1987) given in Section 1.1. When

the sample size s is sufficiently large, inferences for q can be based on t-distributions

with mean q̄, variance Ts and degrees of freedom νs =
{

((1+1/m)b)2

(m−1)T 2
s

+ (w̄/n)2

m(n−1)T 2
s

}−1

.

2.1.2 Inferences for multicomponent estimands

The theory for scalar estimands can be extended directly to multivariate estimands;

however, in practical applications the covariance estimation is poor. To extend the

results of Reiter (2004) to multivariate estimands, let Q be a multivariate estimand,

such as a vector of population means or regression coefficients. Let Q(i,j) be the
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estimate of Q in data set D
(i,j)
syn , and let U (i,j) be the estimate of the covariance

matrix associated with Q(i,j). The following quantities are needed for inferences.

Q̄ =
1

mn

m
∑

i=1

n
∑

j=1

Q(i,j) =
1

m

m
∑

i=1

Q̄(i) (2.5)

Ū =
1

mn

m
∑

i=1

n
∑

j=1

U (i,j) (2.6)

W̄ =
1

m

m
∑

i=1

1

n− 1

n
∑

j=1

(Q(i,j) − Q̄(i))(Q(i,j) − Q̄(i))′ =
1

m

m
∑

i=1

W (i) (2.7)

B =
1

m− 1

m
∑

i=1

(Q̄(i) − Q̄)(Q̄(i) − Q̄)′. (2.8)

Derivation of (Q|Dsyn)

To derive the posterior distribution (Q|Dsyn) as in Reiter (2004) let B∞ = limB as

m → ∞ and n → ∞, and let W
(i)
∞ = limW (i) as n → ∞. Let W̄∞ =

∑m
i=1W

(i)
∞ /m.

Assuming flat prior distributions, the posterior distribution p(Q|Dsyn) can be written

as

p(Q|Dsyn) =

∫∫∫

p(Q|Dsyn, Dcom, B∞, W̄∞)p(Dcom|Dsyn, B∞, W̄∞)

×p(B∞|Dsyn, W̄∞)p(W̄∞|Dsyn)dDcomdB∞dW̄∞. (2.9)

The observed values are fixed and the integration is over the distributions of the

missing values in Dinc and the values that are replaced with imputations in each

D
(i)
com. We proceed to evaluate the integral in (2.9) by first determining the form of

each distribution inside the integral.

The distribution p(Q|Dsyn, Dcom, B∞, W̄∞) = P (Q|Dcom, B∞) since given Dcom,

Dsyn provide no additional information about Q. For the first stage of imputation,
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we assume the conditions are met for valid inferences under multiple imputation for

missing data of (Rubin, 1987), reviewed in Section 1.1. Imputations are assumed to

be drawn such that

(Q(i)
com|Q̄∞, B∞) ∼ N(Q̄∞, B∞). (2.10)

Applying the combining rules for missing data (Rubin, 1987), we have

(Q|Dcom, B∞) ∼ N{Q̄com, Ūcom + (1 + 1/m)B∞} (2.11)

where Q̄com =
∑

Q
(i)
com/m and Ūcom =

∑

U
(i)
com, and Q

(i)
com and U

(i)
com are the estimates

of Q and their variances that would be obtained from their corresponding D
(i)
com prior

to replacement of confidential values. An implicit assumption here is that the U
(i)
com

have sufficiently low variability so that, approximately, Ūcom = Uobs. This is the usual

assumption in multiple imputation, motivated by the fact that posterior variances

generally have lower order variability than posterior means (Rubin, 1987, p. 89).

Determining P (Q̄com, Ūcom|Dsyn, B∞, W̄∞) is sufficient for P (Dcom|Dsyn, B∞, W̄∞),

since under the assumptions list in Section 1.1.3, the posterior of Q follows a normal

distribution, determined by independent mean and variance parameters. For each

D
(i)
com, n partially synthetic datasets are imputed, for which we assume the conditions

are met for valid inferences under multiple imputation for partially synthetic datasets

of Reiter (2003), described in Section 1.2. The imputations are assumed to be drawn

such that:

(Q(i,j)|D(i)
com,W

(i)
∞ ) ∼ N(Q(i)

com,W
(i)
∞ ). (2.12)

It follows directly from (2.12) that

(Q̄(i)|D(i)
com,W

(i)
∞ ) ∼ N(Q(i)

com,W
(i)
∞ /n) (2.13)
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and thus

(Q(i)
com|Dsyn, B∞,W

(i)
∞ ) ∼ N(Q̄(i),W (i)

∞ /n)

(Q̄com|Dsyn, B∞, W̄∞) ∼ N(Q̄, W̄∞/mn). (2.14)

Under the low-variability assumption of the posterior variance, the U (i,j) have

sufficiently low variance so that approximately, Ū = U (i,j) = Ūcom = Uobs, and

(Ūcom|Dsyn, B∞, W̄∞) is taken to be a random variable with an expected value of Ū

and variance substantially less than W̄∞/mn.

To obtain the distributions (B∞|Dsyn, W̄∞) and (W̄∞|Dsyn), first combine (2.10)

and (2.13) to obtain the sampling distribution

(Q̄(i)|Q̄∞, B∞,W
(i)
∞ ) ∼ N(Q̄∞, B∞ +W (i)

∞ /n). (2.15)

Then observe that B and W (i) are the sample covariance matrices for (2.15) and

(2.12), and assume that W
(i)
∞ = W̄∞, i = 1, . . . ,m. This assumption is reasonable

given that the variability of posterior variances tends to be of smaller order than the

variability of posterior means (Reiter, 2004). With diffuse prior distributions and

standard multivariate normal theory we have

{B(B∞ + W̄∞/n)
−1|Dsyn, W̄∞} ∼ Wi(m− 1, I) (2.16)

{W̄ (W̄∞)−1|Dsyn} ∼ Wi(n− 1, I). (2.17)

Having determined the form of each distribution in the integral in (2.9), the

evaluation is completed using iterated expectations and variances. From (2.11) and
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(2.14) we obtain

E(Q|Dsyn, B∞, W̄∞) = E{E(Q|Dcom, Dsyn, B∞, W̄∞)|Dsyn, W̄∞, B∞}

= E(Q̄com|Dsyn, B∞, W̄∞)

= Q̄

V (Q|Dsyn, B∞, W̄∞) = E{V (Q|Dcom, Dsyn, B∞, W̄∞)|Dsyn, B∞, W̄∞}

+V {E(Q|Dcom, Dsyn, B∞, W̄∞)|Dsyn, B∞, W̄∞}

= E{(1 + 1/m)B∞ + Ū |Dsyn, B∞, W̄∞}

+V (Q̄com|Dsyn, B∞, W̄∞)

= Ū + (1 + 1/m)B∞ + W̄∞/mn.

Thus, since the distributions involved are normal,

(Q|Dsyn, B∞, W̄∞) ∼ N(Q̄, T∞) (2.18)

where T∞ = Ū + (1 + 1/m)B∞ + W̄∞/mn. For sufficiently large s, m, and n, we

can replace B∞ and W̄∞ in the expression for T∞ with their approximate expected

values in (2.16) and (2.17), B − W̄/n and W̄ , respectively, resulting in the variance

estimate Ts = (1 + 1/m)B − (1/n)W̄ + Ū ; thus, for sufficiently large s, m, and n,

inferences for Q can be based on (Q− Q̄) ∼ N(0, Ts).

2.1.3 Hypothesis testing

Using the M released datasets, an analyst seeks to test the null hypothesis Q = Q0

for some k-component estimand Q, for example to test if k regression coefficients

equal zero. Given the normal approximation for inferences about Q, it may appear

reasonable to use a Wald test with test statistic (Q0− Q̄)′T−1
s (Q0− Q̄); however, this

test is unreliable when k is large and m and n are moderate, as is frequently the case

in practice, because B and W̄ can have large variability. Estimating B or W̄ in such
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cases is akin to estimating a covariance matrix using few observations compared to

the number of dimensions. This is a problem for small m even when no synthetic

data are generated (Rubin, 1987; Li et al., 1991a,b). The instability in Ts can be

avoided by making m and n large; however, that may be impractical.

In the next section, we propose two approaches to significance testing for mul-

tivariate Q. The first is a test based on the Wald test, and thus requires access to

all elements of the U (i,j) matrices. The second is a test based on likelihood ratio

statistics, which is most useful when the elements of the U (i,j) are not available, or

when the dimension of U (i,j) makes working with Wald statistics too cumbersome.

For both tests, the test statistic and its reference distribution are presented, followed

by the derivation.

2.2 Wald test

The test statistic for the Wald test is

S = (Q0 − Q̄)′Ū−1(Q0 − Q̄)/k(1 + r(b) − r(w))

where

r(b) = (1 + 1/m)tr(BŪ−1)/k (2.19)

r(w) = (1/n)tr(W̄ Ū−1)/k. (2.20)

The reference distribution is approximated by an F -distribution with k degrees of

freedom in the numerator and ws degrees of freedom in the denominator, where

ws = 4 +

{

1 +
r(b)νb
νb − 2

− r(w)νw
νw − 2

}2

/

{

(r(b)νb)
2

(νb − 2)2(νb − 4)
+

(r(w)νw)
2

(νw − 2)2(νw − 4)

}

(2.21)

for νb > 4 and νw > 4, and νb = k(m − 1) and νw = km(n − 1). The approximate

Bayesian p-value for testing Q = Q0 is given by P (Fk,ws > S). When n is large,
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or when W̄ is small, S and ws approximately equal the test statistic and degrees of

freedom wm in Section 1.1.2 from the test developed by Li et al. (1991b) for multiple

imputation for missing data only.

When νb ≤ 4 or νw ≤ 4, ws is not defined. This can occur for small k when m = 2,

a choice for m that is not recommended due to the high probability of Ts < 0 (Reiter,

2007a). In such cases, we suggest an alternate denominator degrees of freedom,

w∗
s =

{

(r(b))2

νb(1 + r(b) − r(w))2
+

(r(w))2

νw(1 + r(b) − r(w))2

}−1

. (2.22)

This expression generalizes the degrees of freedom used in the t-distribution of Reiter

(2004) for inferences for scalar Q, given in Section 1.3.2.

2.2.1 Derivation

The key idea in the derivation of the test statistic S and degrees of freedom ws

is to reduce the number of unknown parameters in B∞ and the W
(i)
∞ by assuming

(i) equal fractions of missing information on each component of Q, and (ii) equal

fractions of replaced information on each component of Q. Equivalently, B∞ and

W̄∞ are proportional to Ū . Similar proportionality assumptions are used in multiple

imputation for missing data only (Rubin, 1987; Li et al., 1991a,b; Shen, 2000) and for

synthetic data only (Reiter, 2005c). The reference F -distribution for the test statistic

is derived following the moment-matching approach proposed by Li et al. (1991b).

Conditional on T∞ and using (2.18), the p-value for testing Q = Q0 is P{χ2
k >

(Q0 − Q̄)′T−1
∞ (Q0 − Q̄)}, where χ2

k is a chi-squared random variable on k degrees of

freedom. Since T∞ is generally not known, we obtain the p-value by averaging over
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the distributions of (B∞|Dsyn, W̄∞) and (W̄∞|Dsyn) in (2.16) and (2.17):

∫∫

P{χ2
k > (Q0 − Q̄)′T−1

∞ (Q0 − Q̄)|Dsyn, B∞, W̄∞} ×

P (B∞|Dsyn, W̄∞)P (W̄∞|Dsyn)dB∞dW̄∞.

This integral can be evaluated using a numerical approach such as a Monte Carlo

Markov Chain method, but it is desirable to have a closed-form approximation. In

order to obtain a closed-form approximation, and to reduce the number of variance

parameters to be estimated, we assume that B∞ = r
(b)
∞ Ū∞ and W

(i)
∞ = r

(w)
∞ Ū∞ for all

i, where r
(w)
∞ and r

(b)
∞ are scalar quantities, not assumed to be equal. Assuming Ū∞ =

Ū , and averaging the W
(i)
∞ across nests, the proportionality assumption becomes

B∞ = r
(b)
∞ Ū and W̄∞ = r

(w)
∞ Ū . The covariance matrix to be estimated is now T∞ =

Ū{1+ (1+ 1/m)r
(b)
∞ + r

(w)
∞ /mn}; hence, in place of k(k+1)/2 covariance parameters

to be estimated for each of B∞ and W̄∞, only one parameter needs to be estimated

for each. The corresponding p-value is

∫∫

P

{

χ2
k >

(Q0 − Q̄)′Ū−1(Q0 − Q̄)

1 + (1 + 1/m)r
(b)
∞ + (1/mn)r

(w)
∞

|Dsyn, r
(b)
∞ , r(w)∞

}

×

P (r(b)∞ |Dsyn, r
(w)
∞ )P (r(w)∞ |Dsyn)dr

(b)
∞ dr(w)∞ (2.23)

=

∫∫

P

{

(χ2
k/k)

1 + (1 + 1/m)r
(b)
∞ + (1/mn)r

(w)
∞

(1 + r(b) − r(w))
> S|Dsyn, r

(b)
∞ , r(w)∞

}

×

P (r(b)∞ |Dsyn, r
(w)
∞ )P (r(w)∞ |Dsyn)dr

(b)
∞ dr(w)∞ .

The posterior distributions (r
(b)
∞ |Dsyn, r

(w)
∞ ) and (r

(w)
∞ |Dsyn) can be obtained from

(2.15) and (2.12). First the proportionality assumption and a linear transformation

defined by Ū−1/2 are applied so that

(Q̄(i)Ū−1/2|Q̄∞, r
(b)
∞ , r(w)∞ ) ∼ N(Q̄∞Ū

−1/2, (r(b)∞ + r(w)∞ /n)I)

(Q(i,j)Ū−1/2|D(i)
com, r

(w)
∞ ) ∼ N(Q(i)

comŪ
−1/2, r(w)∞ I)
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where I is a k×k identity matrix. Applying diffuse priors and standard multivariate

normal theory for sample covariance matrices yields:

(m− 1)

∑m
i=1((Q̄

(i) − Q̄)Ū−1/2)((Q̄(i) − Q̄)Ū−1/2)′

(m− 1)(r
(b)
∞ + r

(w)
∞ /n)

|Dsyn, r
(w)
∞ ∼ Wi(m− 1, I)

(n− 1)

∑n
j=1((Q

(i,j) − Q̄(i))Ū−1/2)((Q(i,j) − Q̄(i))Ū−1/2)′

(n− 1)r
(w)
∞

|Dsyn ∼ Wi(n− 1, I),

for i = 1, . . . ,m. Taking the trace of the left-hand side of each of the above expressions

and rearranging matrices inside the trace results in:

k(m− 1)

r
(b)
∞ + r

(w)
∞ /n

tr(BŪ−1)/k|Dsyn, r
(w)
∞ ∼ χ2

k(m−1)

k(n− 1)

r
(w)
∞

tr(W (i)Ū−1)/k|Dsyn ∼ χ2
k(n−1). (2.24)

Averaging across nests, (2.24) becomes

km(n− 1)

r
(w)
∞

tr(W̄ Ū−1)/k|Dsyn ∼ χ2
km(n−1).

Rearranging terms gives the desired posterior distributions

(r(b)∞ |r(w)∞ , Dsyn) ∼ χ−2
k(m−1)k(m− 1)tr(BŪ−1)/k − r(w)∞ /n (2.25)

(r(w)∞ |Dsyn) ∼ χ−2
km(n−1)km(n− 1)tr(W̄ Ū−1)/k. (2.26)
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Substituting (2.25) and (2.26) into (2.23) and rearranging terms, we obtain

∫∫

P

{

χ2
k

1 + (1 + 1
m
)r

(b)
∞ + 1

mn
r
(w)
∞

k(1 + r(b) − r(w))
> S|Dsyn, r

(b)
∞ , r(w)∞

}

×

P (r(b)∞ |Dsyn, r
(w)
∞ )P (r(w)∞ |Dsyn)dr

(b)
∞ dr(w)∞

=

∫

P







χ2
k

1 + (1 + 1
m
)
[

χ−2
νb
νbtr(BŪ

−1)/k − 1
n
r
(w)
∞

]

+ 1
mn
r
(w)
∞

k(1 + r(b) − r(w))
> S|Dsyn, r

(w)
∞







×

P (r(w)∞ |Dsyn)dr
(w)
∞

= P

{

χ2
k

1 + (1 + 1
m
)χ−2

νb
νbtr(BŪ

−1)/k − 1
n
χ−2
νw νwtr(WŪ−1)/k

k(1 + r(b) − r(w))
> S|Dsyn

}

= P

(

(χ2
k/k)

1 + νbr
(b)/χ2

νb
− νwr

(w)/χ2
νw

1 + r(b) − r(w)
> S|Dsyn

)

. (2.27)

The random variable in (2.27) is approximated as proportional to a F -distributed

random variable, Fk,ws . The approximation is obtained by matching the first two

moments of δFk,ws to those of the left-hand side of the inequality in the final expression

of (2.27), for a proportionality constant δ. Equivalently, we approximate the quantity

(1 + χ−2
νb
νbr

(b) − χ−2
νw νwr

(w)) as ηχ−2
ws , for some proportionality constant η.

Matching the first moment, E(ηχ−2
ws ) = η/(ws−2) and E(1+χ−2

νb
νbr

(b)−χ−2
νw νwr

(w))

= E(E(1+χ−2
νb
νbr

(b)−χ−2
νw νwr

(w))|χ−2
νw ) = 1+νbr

(b)/(νb−2)−νwr(w)/(νw−2). Hence,

ηχ−2
ws ≈ 1 +

νbr
(b)

νb − 2
− νwr

(w)

νw − 2
. (2.28)

Matching the second moment, E((ηχ−2
ws )

2) = η2/(ws − 2)(ws − 4) and χ−2
νb
νbr

(b) −

χ−2
νw νwr

(w))2) = V (1 + χ−2
νb
νbr

(b) − χ−2
νw νwr

(w)) + (E(1 + χ−2
νb
νbr

(b) − χ−2
νw νwr

(w)))2.
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Applying iterated expectations and variances, E((ηχ−2
ws )

2) =

E

(

2(νwr
(w))2

(νw − 2)2(νw − 4)

)

+ V

(

1 +
νbr

(b)

νb − 2
− νwr

(w)

νw − 2

)

+

(

1 +
νbr

(b)

νb − 2
− νwr

(w)

νw − 2

)2

=
2(νwr

(w))2

(νw − 2)2(νw − 4)
+

2(νbr
(b))2

(νb − 2)2(νb − 4)
+

(

1 +
νbr

(b)

νb − 2
− νwr

(w)

νw − 2

)2

and thus, matching moments to ηχ−2
ws ,

η2

(ws − 2)(ws − 4)
≈ 2(νwr

(w))2

(νw − 2)2(νw − 4)
+

2(νbr
(b))2

(νb − 2)2(νb − 4)

+

(

1 +
νbr

(b)

νb − 2
− νwr

(w)

νw − 2

)2

. (2.29)

Solving (2.28) and (2.29) yields the expression in (2.21) for ws and η = (ws −

2)(1+νbr
(b)/(νb−2)−νwr(w)/(νw−2)). Substituting back into (2.27), δ = (η/ws)/(1+

r(b) − r(w)). When νb and νw are sufficiently large, δ ≈ 1, so that the approximate

p-value is P (Fk,ws > S).

The alternate denominator degrees of freedom w∗
s is obtained by approximating

(1+χ−2
νb
νbr

(b)−χ−2
νw νwr

(w))−1 as proportional to a chi-square random variable similar

to Rubin (1987). Equivalently, the quantity A = (1+ r(b)− r(w))/(1+χ−2
k(m−1)r

(b)νb−

χ−2
km(n−1)r

(w)νw is approximated as proportional to a mean-square random variable

with degrees of freedom w∗
s by matching the first two moments of A to an MSw∗

s

random variable. First, let α−1 = χ2
νb
/νb and β−1 = χ2

νw/νw, so α
−1 ∼ MSνb and

β−1 ∼MSνw . Then expand A in α−1 about E(α−1) = 1:

A =
1 + r(b) − r(w)

1 + αr(b) − βr(w)
=

1 + r(b) − r(w)

1 + r(b) − βr(w)
+

1 + r(b) − r(w)

(1 + r(b) − βr(w))2
r(b)(α−1 − 1).

Then E(A|β) = (1 + r(b) − r(w))/(1 + r(b) − βr(w)) and V (A|β) = (2(1 + r(b) −
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r(w))2(r(b))2)/(νb(1 + r(b) − βr(w))4). Note that E(A) = E(E(A|β)) = 1, and

V (A) = E

{

2(1 + r(b) − r(w))2(r(b))2

k(m− 1)(1 + r(b) − βr(w))4

}

+ V

{

1 + r(b) − r(w)

1 + r(b) − βr(w)

}

.

Expanding (1 + r(b) − r(w))/(1 + r(b) − βr(w)) in β−1 about E(β−1) = 1,

1 + r(b) − r(w)

1 + r(b) − βr(w)
= 1 +

r(w)(β−1 − 1)

1 + r(b) + r(w)
.

V (A) = 2

{

(r(b))2

(1 + r(b) − r(w))2νb
+

(r(w))2

(1 + r(b) − r(w))2νw

}

.

Then by setting V (A) = 2w∗
s , where 2w∗

s is the variance of a MSw∗

s
random variable,

we obtain w∗
s as given in (2.22). With the approximation A ∼MSw∗

s
, (2.27) becomes

P{(χ2
k/k)/(χ

2
w∗

s
/w∗

s) > S} = P (Fk,w∗

s
> S).

2.3 Log-likelihood ratio test

Meng and Rubin (1992) developed an alternative test for conventional multiple im-

putation for missing data, based on the set of log-likelihood ratio test statistics from

the completed datasets. This was extended to nested multiple imputation for missing

data only by Shen (2000) and to synthetic data only by Reiter (2005c). In this section,

we extend this test to the case of missing and synthetic data handled simultaneously.

Following the notation in Schafer (1997), let ψ be the vector of parameters in

the analyst’s model. Let ψ̂
(i,j)
0 and ψ̂(i,j) be the maximum likelihood estimates of Q

computed with D
(i,j)
syn under the null and alternative hypotheses, respectively. Let

ψ̄(i) =
∑n

j=1 ψ̂
(i,j)/n; ψ̄

(i)
0 =

∑n
j=1 ψ̂

(i,j)
0 /n; ψ̄ =

∑m
i=1 ψ̄

(i)/m; and, ψ̄0 =
∑m

i=1 ψ̄
(i)
0 /m.

We write the log-likelihood ratio statistic evaluated at any two values a and b for any

data set D
(i,j)
syn as d′(a, b|D(i,j)

syn ) = 2 log f(D
(i,j)
syn |a)− 2 log f(D

(i,j)
syn |b).
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The test statistic is

S̃ = L̄/k(1 + r̃(b) − r̃(w)) (2.30)

where

r̃(b) =
m+ 1

k(m− 1)
(L̄m − L̄)

r̃(w) = (l̄ − L̄m)/k(n− 1)

and

L̄ =
1

mn

m
∑

i=1

n
∑

j=1

d′(ψ̄0, ψ̄|D(i,j)
syn )

L̄m =
1

mn

m
∑

i=1

n
∑

j=1

d′(ψ̄
(i)
0 , ψ̄

(i)|D(i,j)
syn )

l̄ =
1

mn

m
∑

i=1

n
∑

j=1

d′(ψ̂
(i,j)
0 , ψ̂(i,j)|D(i,j)

syn ).

The reference distribution for S̃ is an F -distribution with k degrees of freedom

in the numerator and w̃s degrees of freedom in the denominator, where w̃s is the

expression in (2.21) with the terms r(b) and r(w) replaced by r̃(b) and r̃(w). When

νb ≤ 4 or νw ≤ 4, the alternate denominator degrees of freedom given in (2.22) is

used, substituting in r̃(b) and r̃(w) for r(b) and r(w) as above.

2.3.1 Derivation

The derivation parallels the strategy of Meng and Rubin (1992), namely (i) find a

test statistic asymptotically equivalent to S based only on the Wald statistics from

each synthetic data set; (ii) use the asymptotic equivalence of the Wald and log-

likelihood ratio test statistics for individual datasets to define the log-likelihood ratio

test statistic S̃; and, (iii) find a reference F distribution as in the Wald tests.

33



To begin, let d(Q(i,j), U (i,j)) = (Q(i,j) − Q0)
′U (i,j)−1(Q(i,j) − Q0) for all (i, j). It

follows from the asymptotic equivalence of the Wald and log-likelihood ratio test

statistics that each d(Q(i,j), U (i,j)) is asymptotically equivalent to its correspond-

ing d′(ψ̂
(i,j)
0 , ψ̂(i,j)|D(i,j)

syn ). Furthermore, because of the low-order variability in the

U (i,j), U (i,j) can be interchanged with Ū in any of d(Q(i,j), U (i,j)), d(Q̄(i), U (i,j)), or

d(Q̄, U (i,j)).

Let d̄ =
∑m

i=1

∑n
j=1 d(Q

(i,j), U (i,j))/mn; let d̄(i) =
∑n

j=1 d(Q̄
(i), U (i,j))/n; and, let

d̂ =
∑m

i=1

∑n
j=1 d(Q̄, U

(i,j))/mn. Then S is equivalent to:

S∗ =
d̄
k
− (n− 1)r

(w)
∗ − (m− 1)r

(b)
∗ /(m+ 1)

1 + r
(b)
∗ − r

(w)
∗

(2.31)

where r
(b)
∗ = (m+1)

k(m−1)

(

∑

d̄(i)/m− d̂
)

and r
(w)
∗ = 1

k(n−1)
(d̄−∑ d̄(i)/m).

This is shown by assuming without loss of generality that Q0 = 0 and Ū is a k×k

identity matrix, as in Rubin (1987, p. 100). Then, S = Q̄′Q̄/k(1 + r(b) − r(w)) and,

using a sums-of-squares decomposition,

d̄ =
1

mn

m
∑

i=1

n
∑

j=1

(Q(i,j) − Q̄(i))′(Q(i,j) − Q̄(i))

+
1

mn

m
∑

i=1

n
∑

j=1

(Q̄(i) − Q̄)′(Q̄(i) − Q̄) + Q̄′Q̄ (2.32)

= k(n− 1)r(w) +
k(m− 1)

m+ 1
r(b) + Q̄′Q̄. (2.33)

Computing r(b) and r(w) requires access to Ū , which we do not want these tests

to depend on. Obtaining the expressions r
(b)
∗ and r

(w)
∗ that are equivalent to r(b)

and r(w) but rely only on Wald statistics is accomplished by using sums-of-squares

decompositions. Under the canonical conditions, and without loss of generality, for
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r(b) we have

r(b) =
(m+ 1)

km(m− 1)

m
∑

i=1

(Q̄(i) − Q̄)′(Q̄(i) − Q̄)

=
(m+ 1)

km(m− 1)

{

m
∑

i=1

(Q̄(i)′Q̄(i))−mQ̄′Q̄

}

≈ (m+ 1)

k(m− 1)

(

∑

d̄(i)/m− d̂
)

= r(b)∗

since
∑

d̄(i)/m is asymptotically equivalent to
∑m

i=1(Q̄
(i)′Q̄(i)), and d̂ is asymptoti-

cally equivalent to Q̄′Q̄. For r(w), we have

r(w) =
1

kmn(n− 1)

m
∑

i=1

n
∑

j=1

(Q(i,j) − Q̄(i))′(Q(i,j) − Q̄(i))

=
1

kmn(n− 1)

{

m
∑

i=1

n
∑

j=1

(Q(i,j)′Q(i,j))− n
m
∑

i=1

(Q̄(i)′Q̄(i))

}

≈ 1

k(n− 1)
(d̄−

∑

d̄(i)/m) = r(w)∗ .

Replacing r(b) and r(w) with r
(b)
∗ and r

(w)
∗ in (2.33) and substituting the the expression

for d̄ in (2.33) into (2.31) yields S.

The asymptotic equivalence between S̃ and S∗ is obtained utilizing the asymp-

totic equivalence between the Wald statistic and the log-likelihood ratio statistic to

show that l̄ ≈ d̄, L̄ ≈ d̂, and L̄m ≈ d̄m. The equivalence of l̄ and d̄ follows di-

rectly from the asymptotic equivalence of the d(Q(i,j), U (i,j)) and their corresponding

d′(ψ̂(i,j), ψ̂
(i,j)
0 |D(i,j)

syn ). The equivalence of L̄ and d̂, and of L̄m and d̄m =
∑

d̄(i)/m is

more subtle. Although d(Q(i,j), U (i,j)) ≈ d′(ψ̂(i,j), ψ̂
(i,j)
0 |D(i,j)

syn ), the equivalence does
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not hold if we replace the Q(i,j) and ψ̂(i,j) with averages, i.e.,

d(Q̄(i), U (i,j)) 6≈ d′(ψ̄
(i)
0 , ψ̄

(i)|D(i,j)
syn )

d(Q̄, U (i,j)) 6≈ d′(ψ̄0, ψ̄|D(i,j)
syn ).

Using arguments similar to those of Meng and Rubin (1992) and Shen (2000),

d′(ψ̄0, ψ̄|D(i,j)
syn ) ≈ d(Q(i,j), U (i,j))− d(Q(i,j) − Q̄, U (i,j)) (2.34)

d′(ψ̄
(i)
0 , ψ̄

(i)|D(i,j)
syn ) ≈ d(Q(i,j), U (i,j))− d(Q(i,j) − Q̄(i), U (i,j)). (2.35)

The first equation is obtained by viewing the log-likelihood ratio d′(ψ̄0, ψ̄|D(i,j)
syn ) as the

log ratio of two multivariate normal densities with mean ψ̂(i,j), where the numerator is

evaluated at ψ̄0 and the denominator at ψ̄. Then, decomposing ψ into two orthogonal

components such that ψ̂(i,j) − ψ̂
(i,j)
0 = (Q(i,j), 0)′, and using a quadratic likelihood

function, (2.34) follows (Meng and Rubin, 1992). Similarly, (2.35) follows by viewing

d′(ψ̄
(i)
0 , ψ̄

(i)|D(i,j)
syn ) as the log ratio of two multivariate normal densities where the

numerator is evaluated at ψ̄
(i)
0 and the denominator at ψ̄(i).

Thus, we can show L̄ is asymptotically equivalent to d̂:

L̄ =
1

mn

m
∑

i=1

n
∑

j=1

d′(ψ̄0, ψ̄|D(i,j)
syn )

≈ 1

mn

m
∑

i=1

n
∑

j=1

{d(Q(i,j), U (i,j))− d(Q(i,j) − Q̄, U (i,j))} (2.36)

≈ 1

mn

m
∑

i=1

n
∑

j=1

{d(Q(i,j), Ū)− d(Q(i,j) − Q̄, Ū)} (2.37)

≈ d(Q̄, Ū) ≈ 1

mn

m
∑

i=1

n
∑

j=1

d(Q̄, U (i,j)) = d̂. (2.38)

We can get from (2.36) to (2.37) because we can replace the covariance matrix in

the Wald statistic with any consistent estimator, and under the assumption of low
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variability of U , Ū ≈ U (i,j), for all i, j. To get from (2.37) to (2.38), note that the

quantity
∑m

i=1

∑n
j=1 d(Q

(i,j), Ū) can be considered as a total sum of squares, to be

decomposed into a sum of squares about the mean, Q̄, and a sum of squares for the

mean, hence
∑m

i=1

∑n
j=1 d(Q

(i,j), Ū) =
∑m

i=1

∑n
j=1 d(Q

(i,j) − Q̄) + d(Q̄, Ū).

Similar reasoning shows that
∑

d̄(i)/m is asymptotically equivalent to L̄m:

L̄m =
1

mn

m
∑

i=1

n
∑

j=1

d′(ψ̄
(i)
0 , ψ̄

(i)|D(i,j)
syn )

≈ 1

mn

m
∑

i=1

n
∑

j=1

{d(Q(i,j), U (i,j))− d(Q(i,j) − Q̄(i), U (i,j))}

≈ 1

mn

m
∑

i=1

n
∑

j=1

{d(Q(i,j), Ū)− d(Q(i,j) − Q̄(i), Ū)}

≈ d(Q̄(i), Ū) ≈ 1

mn

m
∑

i=1

n
∑

j=1

d(Q̄(i), U (i,j)) = d̄m.

Thus, we can replace l̄ with d̄, L̄ with d̂, and L̄m with d̄m to obtain the test

statistic S̃ and reference F distribution.

2.4 Rates of information replaced

Estimates of the fraction of missing information aboutQ are useful diagnostic tools for

assessing how missing data contribute to inferential uncertainty about Q (Schafer,

1997, p. 110). Rubin (1987) addressed estimation of rates of missing information

for a scalar estimand q in conventional single-stage multiple imputation for missing

data. Harel (2003) addressed asymptotic rates of information in two-stage imputation

for missing data for scalar estimands. In this section, estimates for single-stage

imputation from Rubin (1987) for a finite or infinite number of imputations are

reviewed and extended to multivariate estimands, and then further extended to two-
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stage imputation for nonresponse and disclosure limitation. Estimates of the rate of

missing information, the rate of information replaced due to disclosure controls, and

the overall rate of information imputed are given.

Let the subscript com denote quantities derived from Dcom as in Rubin (1987),

prior to the replacement of any data for disclosure limitation purposes. The Fisher

information observed for q is defined to be (ū∞ + b∞)−1, and the total information

that would be present if Ymis were also observed is ū−1
∞ ; hence the rate of missing

information, when m =∞, is

γmis = {ū−1
∞ − (ū∞ + b∞)−1}/ū−1

∞ = b∞(ū∞ + b∞)−1 (2.39)

which can be estimated as γ̂mis = bcom/(ūcom+bcom). Using the posterior distribution

(q|Dcom) ∼ tν(q̄com, Tcom = ūcom + (1 + 1/m)bcom), the total information about q is

(ν+1)(ν+3)−1T−1
com, hence an estimate accounting for a finite number of imputations

is given by

γ̂mis = {ū−1
com − (νm + 1)(νm + 3)−1T−1

com}/ū−1
com (2.40)

where νm = (m− 1)(1 + 1/rm)
2 as in Section 1.1 and rm = (1+ 1/m)bcom/ūcom. The

expression in (2.40) can also be written as

γ̂mis =
rm + 2/(νm + 3)

1 + rm
. (2.41)

For multivariate estimands, the posterior of Q generalizes to a multivariate t-

distribution, where component ql of Q has posterior tν(q̄l, Tl), q̄l is the lth component

of Q̄com and Tl is the lth diagonal element of Tcom. The degrees of freedom ν
(l)
m for

the lth component are (m− 1)(1 + 1/r
(l)
m )2, where r

(l)
m = (1 + 1/m)b

(l)
com/ū

(l)
com. As the

degrees of freedom ν
(l)
m are the same for each component, we can obtain an improved
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estimate of νm by averaging the r
(l)
m across components, yielding

rm = (1 + 1/m)/k
k
∑

l=1

b(l)com/ū
(l)
com = (1 + 1/m)tr(BcomŪ

−1
com)/k. (2.42)

Similarly, under the proportionality assumption of Section 2.2.1, γmis is the same

across components, and hence, to estimate γmis for multivariate Q, we average the

information in Q across components and use (2.41) to estimate γmis, with rm as

defined in (2.42). In the case that Q is a scalar quantity, this reduces to the expression

in (2.40).

If we would like to estimate the fraction of missing information, prior to the

replacement of values for disclosure limitation, we cannot compute rm if we have

Dsyn and not Dcom. To estimate γmis for Q, we note that when using Dcom, we have

Bcom, an unbiased estimate of B∞, while when using Dsyn, we have B, an unbiased

estimate of B∞+W̄∞/n, and W̄ , an unbiased estimate of W̄∞. Thus B∞ is estimated

by B − W̄/n and γ̂mis = (B − W̄/n)/(Ū + B − W̄/n). To estimate γmis taking into

account the finite number of imputations from Dsyn, we use (2.41), replacing rm with

(1 + 1/m)tr((B − W̄/n)Ū−1). For scalar q we also use (2.41), and rm reduces to

(1 + 1/m)(b− w̄/n)/ū.

With an infinite number of imputations, the fraction of information replaced in

the second stage goes to zero; thus, the total fraction of information for Q replaced

in both stages is the same as for missing data, i.e., γtot = γmis. Hence, γ̂tot = γ̂mis.

To obtain an estimate that takes into account the finite number of imputations, we

can directly extend the missing data case in (2.40), replacing Tcom with Ts and sub-

stituting the appropriate degrees of freedom, as the posterior distribution (Q|Dsyn)

follows a similar t-distribution to that of (Q|Dcom). This yields an estimated total
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fraction of missing information for Q, in the form of (2.41):

γ̂tot =
r(b) − r(w) + 2/(νs + 3)

1 + r(b) − r(w)
(2.43)

where r(b) and r(w) are as defined in (2.19) and (2.20) and

νs =

{

(r(b))2

(m− 1)(1 + r(b) − r(w))2
+

(r(w))2

m(n− 1)(1 + r(b) − r(w))2

}−1

,

which reduces to the degrees of freedom for the posterior of scalar estimand q from

Reiter (2004) when Q is a scalar quantity.

As the denominators of all the rates of missing information considered here are the

same, and equal to the total information about Q in the posterior distribution had all

the data been observed, Ū−1
∞ or Ū−1, estimation of the fraction of information replaced

in the second stage, γsyn, can be accomplished by subtraction: γsyn = γtot − γmis.

Estimation of fractions of missing information tends to be unstable, except for

large values of m and n. Typically several imputations will be required to obtain

useful estimates. This is because the estimates depend on between-imputation vari-

ance components which are estimated with m− 1 and m(n− 1) degrees of freedom.

When m is small, estimates of fractions of missing information should be used as a

rough guide only (Schafer, 1997, p. 200).

2.5 Simulation Studies

In this section, the performance of the Wald test for multicomponent estimands is

evaluated using simulations. Since the likelihood ratio test is asymptotically equiva-

lent to the Wald test, for large samples it should have similar performance.

For sample size s = 1000, the complete data {Y0, Y1, . . . , Y20} are simulated

from independent normal distributions with E(Yi) = 0 for all i, V ar(Y0) = 1, and
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V ar(Yi) = 2 for i > 0. To simulate missing data, for computational simplicity 30% of

the observations have their values of {Y1, . . . , Y20} missing completely at random and

Y0 is always fully observed. The set of completed datasets, Dcom is obtained by draw-

ing values of the missing data from f(Y1, . . . , Y20|Dobs), using a multivariate normal

distribution with an unrestricted covariance matrix. To simulate partial synthesis

in the second stage, all values of Y0 are replaced. The replacement imputations for

each D
(i,j)
syn are drawn independently from f(Y0|D(i)

com). The number of imputations

is varied with m ∈ (4, 8) and n ∈ (2, 4, 8). By design, this simulation satisfies both

proportionality assumptions.

The hypothesis tested is H0 : Q = 0, where Q is the vector of coefficients for

the regression of Y0 on Y1, . . . , Yk, excluding the intercept, for k ∈ (5, 10, 20). As

this null hypothesis is true, the expected nominal rejection of H0 is 100α%, for a

given significance level α. Table 2.1 summarizes the simulated nominal significance

levels of the Wald test using 10000 runs of the simulation for each combination of

m, n, and k, for α ∈ (.01, .05, .10). The simulated significance levels are close the

desired significance levels. The rates are low when n = 2, suggesting the tests may

be conservative in these cases. The conventional Wald test, conducted by refering

the test statistic (Q̄ − Q0)
′Ts(Q̄ − Q0) to a chi-square distribution on k degrees of

freedom, requires a much larger number of imputations to yield correct levels. As

shown in Table 2.4, this test has dramatically high rejection rates for the realistic

values of m and n used in the simulation.

The test results shown in Table 2.1 were obtained using the denominator degrees

of freedom ws. Simulations run using the alternate degrees of freedom w∗
s produced

similar results. The observed rejection rates are also given for reference purposes

in Table 2.3. Using ws over the alternate degrees of freedom w∗
s is recommended

except when ws is undefined. While this simulation produced satisfactory results
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Table 2.1: Nominal rejection rates for given significance level α using Wald-type
test with denominator degrees of freedom ws

α = .01 α = .05 α = .10
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

m = 4
n = 2 0.1 0.2 0.7 1.9 2.5 3.8 5.5 6.7 9.3
n = 4 1.0 1.0 1.3 5.0 5.5 5.6 10.1 10.2 10.7
n = 8 1.4 1.1 1.3 5.6 5.4 5.6 11.1 10.9 11.1

m = 8
n = 2 0.3 0.5 0.9 3.2 4.2 5.1 7.7 8.9 10.7
n = 4 1.4 1.2 1.2 5.2 5.7 5.8 10.5 10.7 11.4

for both, previous results from Li et al. (1991a) and Shen (2000) indicate that tests

using degrees of freedom analogous to w∗
s , for conventional missing data imputation,

perform poorly in general when k > 5. In the context of two-stage imputation for

missing data and disclosure limitation, further research is needed to better assess the

relative performance of ws and w
∗
s .

Li et al. (1991a) show for multiple imputation for missing data only, that Wald

tests based on the proportionality assumption are robust in cases of practical interest

even when the proportionality assumption fails. To evaluate the robustness of the

test to violations of the proportionality assumptions in the context of imputation

for missing data and disclosure control, a simulation in which the proportionality

assumption is not met for the synthetic replacement data is performed. In this

second simulation, Y0, . . . , Y10 are replaced in entirety and Y11, . . . , Y20 are left intact.

The imputations are generated from Dcom by taking draws from (Y10|Y11, . . . , Y20),

(Y9|Y10, . . . , Y20), . . . , (Y0|Y1, . . . , Y20). The test H0 : Q = 0 is carried out as above,

with k = 20. Table 2.5 gives the nominal rejection rates for this scenario, which are

seen to be similar to those in Table 2.1.

2.6 Two-stage imputation for nonresponse

As described in Section 1.3.1, two-stage imputation was originally developed to ad-

dress computational efficiency for a missing data problem in an unpublished thesis
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Table 2.2: Nominal rejection rates for given significance level α using Wald-type
test with denominator degrees of freedom w∗

s
α = .01 α = .05 α = .10

k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

m = 4
n = 2 0.1 0.2 0.6 1.5 2.8 4.3 4.7 7.3 9.3
n = 4 1.0 1.2 1.3 4.3 5.5 5.6 9.1 10.6 11.1
n = 8 1.2 1.3 1.0 5.1 5.5 5.7 10.0 10.6 10.6

m = 8
n = 2 0.4 0.7 1.1 3.3 4.4 5.6 7.2 9.1 10.5
n = 4 1.0 1.3 1.4 5.2 5.5 6.1 10.5 10.8 11.4

Table 2.3: Nominal rejection rates for given significance level α using standard Wald
test on observed data

α = .01 α = .05 α = .10
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

m = 4
n = 2 1.1 0.9 1.2 5.2 4.9 5.5 10.3 10.0 10.4
n = 4 1.1 0.9 1.2 5.2 4.9 5.5 10.3 10.0 10.4
n = 8 1.0 1.1 1.1 5.0 5.4 5.0 9.7 10.3 9.8

m = 8
n = 2 1.1 0.9 1.2 5.2 4.9 5.5 10.3 10.0 10.4
n = 4 1.1 0.9 1.2 5.2 4.9 5.5 10.3 10.0 10.4

Table 2.4: Nominal rejection rates for given significance level α using standard Wald
test on imputed data using covariance matrix T

α = .01 α = .05 α = .10
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

m = 4
n = 2 9.8 11.6 22.4 15.6 21.5 39.7 20.1 28.5 50.0
n = 4 26.0 32.6 33.5 36.4 41.2 40.4 43.0 45.9 43.8
n = 8 7.9 21.5 54.1 19.2 38.1 71.7 27.9 48.3 79.4

m = 8
n = 2 12.4 11.0 10.2 17.9 15.5 17.0 22.0 19.2 23.5
n = 4 11.7 36.1 40.2 22.3 48.3 46.9 30.2 55.7 50.6

Table 2.5: Nominal rejection rates for k = 20 and given significance level α using
Wald-type test, where proportionality assumption not met

α = .01 α = .05 α = .10

m = 4
n = 2 0.6 4.2 9.2
n = 4 1.2 5.3 10.7
n = 8 1.0 5.4 10.5

m = 8
n = 2 0.9 5.1 10.3
n = 4 1.2 5.6 10.9
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(Shen, 2000). In this section the existing methodology for two-stage multiple imputa-

tion for nonresponse is reviewed, and a modified Wald-type test for multivariate esti-

mands is proposed that demonstrates improved analytic validity for high-dimensional

estimands. The work of Harel and Schafer (2003) on rates of missing information is

also reviewed and extended. Thus this section serves to extend the existing method-

ology for this application to that developed earlier in this chapter for the application

of nonresponse and disclosure limitation. The structure and derivations of the pro-

posed tests are similar to those presented in previous sections, and thus are presented

in less detail.

2.6.1 Imputing missing values in two stages

We use the same notation as in Section 2.1, but we now let R = (R(A), R(B)), where

R(A) is an N × p matrix of indicators such that R
(A)
lk = 1 if the response for unit l

to item k is missing and to be imputed in the first stage and R
(A)
lk = 0 otherwise,

and R(B) be the corresponding N × p matrix of indicators for the second stage of

imputation and partition Ymis into Y
(A)
mis and Y

(B)
mis .

To generate the imputations, first Y
(A)
mis is replaced with m draws from the pos-

terior distribution (Y
(A)
mis |Dobs), resulting in m partially completed datasets, Dpcom =

{D(i)
pcom, i = 1, . . . ,m}, where D(i)

pcom is comprised of Dobs, Y
(B)
mis , and the ith imputa-

tion of Y
(A)
mis . Then for each D

(i)
pcom, Y

(B)
mis is replaced with n draws from the posterior

predictive distribution (Y
(B)
mis |D

(i)
pcom, R(B)), resulting in a total of M = mn imputed

datasets Dcom = {D(i,j)
com , i = 1, . . . ,m; j = 1, . . . , n}, where D(i,j)

com is comprised of Dobs,

the ith imputation of Y
(A)
mis and the jth imputation of Y

(B)
mis .

Shen (2000) describes a second, equivalent method of generating imputations

in two stages. In this procedure, m imputations of Y
(A)
mis and Y

(B)
mis are drawn in

the first stage from the joint posterior distribution (Y
(A)
mis , Y

(B)
mis |Dobs). In the second
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stage, an additional n − 1 conditionally independent imputations are drawn from

(Y
(B)
mis |D

(i)
pcom, R(B)). This approach is advantagous when it is easier to specify or draw

from (Y
(A)
mis , Y

(B)
mis |Dobs) than from (Y

(A)
mis |Dobs).

When nested imputation is used for the purpose of improving computational

efficiency, the computationally intensive portion is naturally chosen to be imputed

first so as to minimize the number of imputations, withm < n. Absent computational

concerns, for randomization validity it makes sense to impute the portion with a

greater proportion of missing values first, with m > n. Harel (2003) suggests setting

n = 2 and then choosing m to obtain the desired precision, unless the rate of missing

information in the first stage is thought to be much smaller than in the second. In

the similar setting of two-stage imputation for missing data and disclosure limitation,

Reiter (2007a) found improved efficiency in inferences when m > n, particularly for

large fractions of missing data in the first stage.

2.6.2 Existing inferential methods

The combining rules for multiply imputed data from Rubin (1987) do not apply to

data imputed in two stages as the imputations are not exchangeable. Appropriate

combining rules were first derived in Shen (2000).

Inferences for scalar parameters

Inferences for a scalar parameter q are made using the quantities given in (2.1)

through (2.4). The estimate of q is given by q̄ and the variance of q̄ by Tn =

(1 + 1/m)b + (1 − 1/n)w̄ + ū. Note that as w̄, the between-imputation variance,

goes to zero, or n becomes large, Tn reduces to Tm, the standard combining rule for

missing data (Rubin, 1987) given in Section 1.1. When the sample size s is sufficiently

large, inferences for q can be based on t-distributions with mean q̄, variance Tn and
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degrees of freedom νn =
{

((1+1/m)b)2

(m−1)T 2
n

+ ((1−1/n)w̄)2

m(n−1)T 2
n

}−1

.

Inferences for multivariate parameters

Generalizing from the univariate case, let Q be a multicomponent estimand, such

as a vector of regression coefficients. The quantities given in (2.5) through (2.8) are

used to make inferences about Q, with the expected value given by Q̄. An unbiased

estimate of the variance of Q̄ is given by Tn = (1 + 1/m)B + (1− 1/n)W + Ū .

When testing H0 : Q = Q0, for multivariate parameter Q, it may seem reasonable

to use a Wald test with test statistic (Q0 − Q̄)T−1
n (Q0 − Q̄) when the sample size

s is sufficiently large; however, Tn is a poor estimate of the variance except when

m and n are excessively large. Hence Wald tests based on this covariance estimate

perform poorly in cases of practical interest and a modification is needed. When the

covariances matrices U (i,j) are available, Wald-type tests test statistics may be used

to test Q = Q0. The test statistic is

Sn = (Q0 − Q̄)′Ū−1(Q0 − Q̄)/k(1 + r(b)n + r(w)n ) (2.44)

where

r(b)n = (1 + 1/m)tr(BŪ−1)/k (2.45)

r(w)n = (1− 1/n)tr(W̄ Ū−1)/k. (2.46)

Shen (2000) proposes an approximate Bayesian p-value extending the approach

of Rubin (1987). This is obtained by referring Sn to an Fk,w∗

n
distribution, where

w∗
n =

{

(r
(b)
n )2

νb(1 + r
(b)
n + r

(w)
n )2

+
(r

(w)
n )2

νw(1 + r
(b)
n + r

(w)
n )2

}−1

(2.47)

and νb = k(m− 1) and νw = km(n− 1).
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Shen (2000) also derived a log-likelihood ratio test similar to that of Section 2.3.

In this test an approximate Bayesian p-value is found by referring S̃n to an Fk,w̃∗

n
-

distribution, where

S̃n = L̄/(k(1 + r̃(b) + r̃(w)))

r̃(b)n =
m+ 1

k(m− 1)
(L̄m − L̄)

r̃(w)n = (l̄ − L̄m)/k(n− 1)

and

L̄ =
1

mn

m
∑

i=1

n
∑

j=1

(2 log f(D(i,j)
com |ψ̄)− 2 log f(D(i,j)

com |ψ̄0))

L̄m =
1

m

n
∑

j=1

(2 log f(D(i,j)
com |ψ̄(i))− 2 log f(D(i,j)

com |ψ̄
(i)
0 ))

l̄ =
1

mn

m
∑

i=1

n
∑

j=1

2 log f(D(i,j)
com |ψ̂(i,j))− 2 log f(D(i,j)

com |ψ̂
(i,j)
0 )

where ψ̂
(i,j)
0 and ψ̂(i,j) are the maximum likelihood estimates of Q under the null

and alternative hypotheses, respectively; ψ̄(i) =
∑n

j=1 ψ̂
(i,j)/n, ψ̄

(i)
0 =

∑n
j=1 ψ̂

(i,j)
0 /n,

ψ̄ =
∑m

i=1 ψ̄
(i)/m, and ψ̄0 =

∑m
i=1 ψ̄

(i)
0 /m. The denominator degrees of freedom w̃∗

n is

defined as w∗
n in (2.47) with the terms r

(b)
n and r

(w)
n replaced by r̃

(b)
n and r̃

(w)
n .

2.6.3 Proposed method

Shen (2000) found that the Wald-type test above exhibited poor frequentist prop-

erties when k was large relative to m, and the corresponding test for single-stage

multiple imputation is known to have the same problem. Li et al. (1991a) proposed
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an alternate denominator degrees of freedom to that of Rubin (1987) for conventional

missing data which has been shown to provide better analytic validity, in the sense of

Chapter 1, and has entered into wide use for testing multicomponent estimands. We

extend this approach to two-stage multiple imputation and use a new denominator

degrees of freedom given by:

wn = 4 +

{

1 +
r
(b)
n νb
νb − 2

+
r
(w)
n νw
νw − 2

}2

/

{

(r
(b)
n νb)

2

(νb − 2)2(νb − 4)
+

(r
(w)
n νw)

2

(νw − 2)2(νw − 4)

}

.(2.48)

Note that when n is large or W̄ is small then Sn and wn approximately equal the

test statistic Sm and degrees of freedom wm for missing data imputed in one stage

(Li et al., 1991a) that are given in Section 1.1.2.

When νb ≤ 4 or νw ≤ 4 then wn is not defined; however, this only occurs for a

few cases with m = 2 and k small. If a user is faced with a situation where wn is

undefined, then w∗
n can still be used.

Similarly, when νb and νw are defined, the likelihood ratio test of Shen (2000),

described in Section 2.6.2, can be modified by replacing w̃∗
n with w̃n, defined as wn

in (2.48) with the terms r
(b)
n and r

(w)
n replaced by r̃(b) and r̃(w).

Derivation

The derivation given here for the test statistic Sn is similar to that presented in

Shen (2000); however, the derivation of the reference distribution is substantially

different. Most notably we do not ignore the lack of independence between the

variance parameters corresponding the between- and within-nest variances. Details

that are the same as those in Section 2.2.1 are omitted.

Let B∞ = limB as m → ∞ and n → ∞ and let W̄∞ =
∑

W
(i)
∞ /m where

W
(i)
∞ = limW (i) as n → ∞. Assuming the conditions for valid inferences un-
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der multiple imputation (Rubin, 1987; Harel, 2003), the posterior distribution of

(Q|Dcom, B∞, W̄∞) is N(Q̄, T∞), where T∞ = Ū∞ + (1 + 1/m)B∞ + (1 + 1/mn)W̄∞.

If T∞ were known, then the Bayesian p-value(Q0|Dcom, T∞) for testing H0 : Q =

Q0 would be P (χ2
k > (Q0 − Q̄)′T−1

∞ (Q0 − Q̄)). Since T∞ is generally not known, the

p-value is obtained by integrating over the conditional distributions of the variance

parameters (B∞|Dsyn, W̄∞) and (W̄∞|Dsyn):

∫∫

P{χ2
k > (Q0 − Q̄)′T−1

∞ (Q0 − Q̄)|Dcom, B∞, W̄∞} ×

P (B∞|Dcom, W̄∞)P (W̄∞|Dcom)dB∞dW̄∞. (2.49)

In order to obtain a closed-form approximation, and reduce the number of variance

parameters to be estimated, we assume equal fractions of missing information in each

stage contribute to each component of Q, i.e., we assume the between-nest variance

B∞ and within-nest variance W̄∞ are both proportional to the total variance and

hence to Ū∞:

B∞ = r(b)∞ Ū∞, W̄∞ = r(w)∞ Ū∞ (2.50)

for scalar quantities r
(w)
∞ and r

(b)
∞ , not assumed to be equal. Under (2.50), (2.49)

reduces to

∫∫

P

{

χ2
k >

(Q0 − Q̄)′U−1
∞ (Q0 − Q̄)

1 + (1 + 1
m
)r

(b)
∞ + (1 + 1

mn
)r

(w)
∞

|Dcom

}

P (r(b)∞ |Dcom, r
(w)
∞ )P (r(w)∞ |Dcom)dr

(b)
∞ dr(w)∞ . (2.51)

Under asymptotic theory for the sampling distribution of the posterior variance,

which tends to have lower-order posterior variance than the mean, Ū∞ can be replaced

with Ū (Rubin, 1987, p.89). Generalizing from the theory for univariate estimands,

assuming (2.50), and standard multivariate normal theory, and averaging across nests,
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the conditional distributions of r
(b)
∞ and r

(w)
∞ are:

(r(b)∞ |r(w)∞ , Dcom) ∼ χ−2
νb
νb(tr(BŪ

−1)/k)− r(w)∞ /n

(r(w)∞ |Dcom) ∼ χ−2
νw νw(tr(W̄ Ū−1)/k)

Using the above and (2.51), and substituting in (2.44), (2.45) and (2.46) gives

P

{

(χ2
k/k)

(1 + χ−2
νb
νbr

(b)
n + χ−2

νw νwr
(w)
n )

(1 + r
(b)
n + r

(w)
n )

> Sn

}

. (2.52)

The left-hand side of the inequality in (2.52) can be approximated as proportional

to an Fk,wn distribution by matching the first two moments of each, so that the ap-

proximate p-value is P (δFk,wn > Sn), for a proportionality constant δ. Equivalently,

the quantity (1 + χ−2
νb
νbr

(b)
n + χ−2

νw νwr
(w)
n ) is approximately proportional to an inverse

chi-square distributed random variable with degrees of freedom wn by matching the

first two moments of ηχ−2
w , for proportionality constant η:

E(ηχ−2
w ) = η/(wn − 2)

≈ 1 + νbr
(b)
n /(νb − 2) + νwr

(w)
n /(νw − 2)

E{(ηχ−2
w )2} = η2/(wn − 2)(wn − 4)

≈ 2(νwr
(w)
n )2

(νb − 2)2(νw − 4)
+

2(νbr
(b)
n )2

(νb − 2)2(νw − 4)
+

(

1 +
νbr

(b)
n

νb − 2
+
νwr

(w)
n

νw − 2

)2

Solving these expressions gives the expression for wn in (2.48) and η = (wn − 2)(1 +

νbr
(b)
n /(νb−2)+νwr

(w)
n /(νw−2)). Substituting into (2.52), δ = (η/wn)/(1+r

(b)
n +r

(w)
n ).

For sufficiently large νb and νw, δ ≈ 1 Sn is referred to the Fk,wn distribution.

When νb ≤ 4 or νw ≤ 4 and wn is undefined, the denominator degrees of freedom

w∗
n of (2.47) can be used. The derivation of w∗

n in Shen (2000) uses Satterthwaite’s

approximation, assuming independence between r
(b)
∞ and r

(w)
∞ , or rather, ignoring the
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lack of independence. The degrees of freedom w∗
n can also be obtained following a

procedure similar to the derivation of w∗
s in Section 2.2.1, without making any as-

sumptions about independence. Following that derivation procedure, w∗
n is obtained

by approximating (1+χ−2
νb
νbr

(b)
n +χ−2

νw νwr
(w)
n )−1 as proportional to a chi-square random

variable as in Rubin (1987).

2.6.4 Rates of missing information

Harel (2003) considers the population rates of missing information for scalar esti-

mands, but not multivariate estimands or estimates of the rates accounting for the

finite number of imputations. These rates for both scalar and multivariate estimands

can be easily derived in a manner similar to that of Section 2.4. In this section, the

rates of missing information for multivariate estimands are derived, which give the

rates for scalar estimands when the dimension k = 1.

The estimate of the fraction of missing information due to Y
(A)
mis is same as γmis

in Section 2.4 since in both applications missing data is imputed in the first stage,

and in both cases B∞ is estimated by B − W̄/n. Thus, γ
(A)
mis = B∞(Ū∞ +B∞)−1 and

γ̂
(A)
mis = (B− W̄/n)(Ū +B− W̄/n)−1. The finite-imputation estimate is given by 2.41

with rm = (1 + 1/m)tr((B − W̄/n)Ū−1).

The total fraction of missing information for Q due to both Y
(A)
mis and Y

(B)
mis is

determined similar to (2.40) as γtot = (B∞ + W̄∞)(Ū∞ + B∞ + W̄∞)−1. Since B∞

is estimated by B − W̄/n, an estimate of this fraction is given by γ̂tot = (B + (1 −

1/n)W̄ )/(Ū +B + (1− 1/n)W̄ ).

The assumption of equal fractions of missing information across components in

each stage of imputation, also leads to equal fractions of total missing information.

To estimate γtot accounting for the finite number of imputations, Tcom in (2.40) is

replaced with Tn = Ū + (1 + 1/m)B + (1 − 1/n)W̄ and the appropriate degrees of
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freedom,

νn =

{

(r
(b)
n )2

(1 + r
(b)
n + r

(w)
n )2

+
(r

(w)
n )2

(1 + r
(b)
n + r

(w)
n )2

}

.

yielding the estimate

γ̂tot =
2/(νn + 3) + r

(b)
n + r

(w)
n

1 + r
(b)
n + r

(w)
n

where r
(b)
n and r

(w)
n are as defined in (2.45) and (2.46), and νn reduces to the degrees

of freedom for univariate q as in Shen (2000) when Q is a scalar quantity.

In this application, missing data is imputed in the second stage, so unlike the

partially synthetic data case, the fraction of missing information does not go to zero

as n goes to infinity. An estimate of the fraction of missing information due to

Y
(B)
mis if Y

(A)
mis were known, assuming an infinite number of imputations, is given by

γ
(B)
mis = W̄∞/(Ū∞ + W̄∞). Since W̄∞ is estimated by W̄ , an estimate of this fraction

is given by γ̂
(B)
mis = W̄/(Ū + W̄ ). As in Section 2.4, a finite-imputation estimate of

the fraction of missing information due to Y
(B)
mis if Y

(A)
mis were to be observed can be

obtained by subtraction: γ̂
(B)
mis = γ̂tot − γ̂

(A)
mis.

2.6.5 Simulation Studies

In this section the improvement in the frequentist performance of the Wald test when

using wn instead of w∗
n is demonstrated with a few simulations. Extensive simulations

in Shen (2000) demonstrate the performance of Wald tests using w∗
n for k ≤ 5, for

varying values of m, n, and rates of missing information. Additionally, the ability

of two-stage imputation to improve upon single-stage imputation is demonstrated

and the power of the test is evaluated. The robustness of tests to violations of

the proportionality assumptions used here has been demonstrated for single-stage
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multiple imputation for missing data in one stage by Li et al. (1991a) and for two-

stage multiple imputation by Shen (2000). Similar robustness is expected for the

alternate reference distribution proposed.

For a sample size s = 1000, the complete data {Y0, . . . , Y20} are simulated from

independent normal distributions with E(Yi) = 0 for all i, V (Y0) = 1 and V (Yi) = 2

for i > 0. For computational simplicity missingness is simulated by letting Y
(A)
mis be

the first 20% of Y0 and Y
(B)
mis be the last 30% of Y1, . . . , Y20. The partially completed

datasets D
(i)
pcom, i = 1, . . . ,m, are generated by drawing values from f(Y0|Dobs) using

a multivariate normal distribution with an unrestricted covariance matrix. The com-

pleted datasets D
(i,j)
com , i = 1, . . . ,m; j = 1, . . . , n are then generated by drawing from

f(Y1, . . . , Y20|D(i)
pcom), again from a multivariate normal distribution. The number of

imputations is varied, with m ∈ (2, 5, 10, 20) and n ∈ (2, 5, 10, 20).

The hypothesis tested is H0 : Q = 0, where Q is the vector of coefficients for the

regression of Y0 on Y1, . . . , Yk, excluding the intercept, for k ∈ (5, 10, 20). As this null

hypothesis is true in the simulated data, the nominal rejection rate is expected to be

close to 100α%, for a given significance level α. Table 2.6 compares the simulated

nominal significance levels for 1000 iterations using each combination of m, n, and

k, for α ∈ (.01, .05, .10) using denominator degrees of freedom wn and w∗
n. The

simulated significance levels using wn are seen to be generally closer to the expected

significance levels than when w∗
n is used.

2.7 Concluding Remarks

Popular software packages contain routines for obtaining confidence intervals for

scalar quantities and p-values for multi-component tests from conventional multiply-

imputed datasets. These routines can be easily modified to perform the tests proposed

here. Analysts should use the Wald-type test when possible, because the likelihood
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Table 2.6: Comparison of rejection rates for tests using wn and w∗
n for 2-stage

multiple imputation for missing data only

wn w∗
n

k = 5 k = 10 k = 20 k = 5 k = 10 k = 20
α = .01

m = 2
n = 2 0.4 1.0 0.9 0.4 0.0 0.0
n = 5 0.2 0.9 0.6 0.3 0.3 0.0
n = 10 0.2 1.2 1.0 0.4 0.3 0.0
n = 20 0.3 1.1 1.0 0.6 0.3 0.0

m = 5
n = 2 1.0 1.2 1.5 0.4 0.1 0.0
n = 5 1.0 1.1 1.4 0.3 0.1 0.0
n = 10 0.9 1.2 1.3 0.2 0.1 0.0
n = 20 0.9 1.1 1.5 0.5 0.1 0.0

m = 10
n = 2 0.7 1.0 1.4 0.5 0.4 0.1
n = 5 0.7 1.0 1.4 0.5 0.6 0.1
n = 10 0.6 1.1 1.3 0.3 0.6 0.1

α = .05

m = 2
n = 2 1.4 4.1 4.9 1.9 0.5 0.0
n = 5 1.9 5.1 5.7 2.4 1.0 0.1
n = 10 1.9 4.6 6.5 2.8 1.3 0.1
n = 20 2.0 4.6 6.2 2.5 1.4 0.1

m = 5
n = 2 5.3 6.0 6.3 2.3 1.4 0.4
n = 5 4.9 5.6 7.2 2.6 2.0 1.0
n = 10 5.0 5.9 7.0 2.9 2.1 1.3
n = 20 5.2 5.6 6.4 3.0 2.2 1.3

m = 10
n = 2 6.0 4.9 6.9 4.2 2.8 2.3
n = 5 5.7 4.9 7.4 4.0 3.5 3.0
n = 10 5.6 5.3 7.3 4.3 3.7 3.2

α = .10

m = 2
n = 2 5.7 9.1 11.1 5.1 1.4 0.1
n = 5 5.5 10.3 11.6 5.1 2.6 0.2
n = 10 5.1 11.0 11.4 4.6 2.6 0.4
n = 20 4.8 11.0 11.4 4.6 2.7 0.3

m = 5
n = 2 10.6 12.7 13.1 7.0 5.3 2.7
n = 5 10.7 12.3 13.8 7.6 5.9 3.6
n = 10 10.9 12.7 14.3 7.7 5.7 3.7
n = 20 10.6 12.8 13.6 7.9 6.2 3.9

m = 10
n = 2 9.9 12.3 12.6 9.1 7.7 6.5
n = 5 11.0 12.4 13.0 9.2 8.3 8.0
n = 10 10.7 11.8 12.8 9.5 8.8 8.1
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ratio test involves further approximations. Software distributed with partially syn-

thetic datasets can make the Wald-type test the default option.

The simulations suggest that the Wald-type tests have appropriate rejection rates

when the null hypothesis is true. To get a sense of the power properties of these

tests, we can turn to the results of Li et al. (1991b) and Shen (2000). These tests

are derived from similar assumptions and approximations as the Wald-type tests

proposed here. Based on extensive simulation studies, Li et al. (1991b) report that

power curves for their tests are similar to the power curves for Wald-type tests based

on the observed data. The greatest losses in power occur when the data deviate

substantially from the proportionality assumption. The losses are largest when m is

small, and mostly disappear for large m. Shen (2000) reported similar findings for

nested imputation, with greatest power loss for smallm and n and for large deviations

from proportionality. The tests proposed here are expected to have similar properties.
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Chapter 3

Generating partially synthetic public

release files for the Longitudinal Business

Database

This chapter describes the generation of partially synthetic public release files for

the U. S. Census Longitudinal Business Database (LBD). The synthesis approach is

described and a preliminary assessment given of the utility and risk for a synthetic

dataset generated for two industry subgroups, and plans for extending the imputation

strategies to the entire LBD are discussed. The combining rules for partially synthetic

data of Reiter (2003) and Reiter (2005b) were developed for random samples and thus

are modified here for population data.

The LBD contains longitudinal payroll and employment data for U. S. establish-

ments with employees, covering nearly all non-farm private economy and some public

sector activities. It was generated by creating longitudinal linkages for all employer

establishments contained in the Census Bureau’s Standard Statistical Establishment

List (Business Register), which serves as the data frame, and it draws information

from various administrative records, economic censuses and surveys. The LBD is

a unique and valuable source of information on the structure of the U.S. economy,

in particular for examining gross job flows and entry and exit of establishments by

industry (Jarmin and Miranda, 2002). Currently, controlled access to this data is

granted to researchers by special agreement with the U.S. Census Bureau at one of

nine Census Research Data Centers. No public use files are available.

The goal in generating public release files for the LBD is to allow researchers to

gain access to the information it contains without having to spend time and money
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gaining access to the confidential data. It is not expected that synthetic data in-

ferences for individual establishments or highly refined subgroups will be valid, but

that broad analyses on employment and payroll levels and trends will be valid for

moderately sized industrial and geographic groups. Users desiring detailed analyses

will need to apply for access to the data at a Census Research Data Center; however,

the public data will still be of benefit to them. As the structure of the public-use

files will be the same as the observed data, users in the process of obtaining access,

considering applying for access, or that have access but are not located near a Re-

search Data Center, will be able to write and refine their analyses using the public

data. The analyses can then be repeated on the confidential data prior to publishing

research results.

The remainder of this chapter is organized as follows. In Section 3.1, some of the

methods for generating synthetic data that were used or explored in the generation

of the synthetic LBD are described. The details of the LBD synthesis are given

in Section 3.2. The utility of the synthetic data is illustrated with some economic

analyses using confidential and synthetic data for a portion of the LBD in Section 3.3

and a preliminary risk assessment is discussed in Section 3.4. Section 3.5 describes

future plans for completing the synthesis of the LBD. Lastly, Section 3.6 describes

modifications to the combining rules of Rubin (1987) for missing data and of Reiter

(2003) for partially synthetic data for use with population data.

3.1 Data generating methods

Partially synthetic datasets are constructed by replacing selected values in the ob-

served data with m independent draws from their posterior predictive distribution.

Let Zj = 1, j = 1, . . . , N indicate that unit j has been selected to have any observed

values replaced with imputations. Imputations should only be made from the pos-
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terior predictive distribution of those units with Zj = 1. For the LBD, all units

have their values of confidential variables replaced, i.e., Zj = 1 for all units. Let

Y = (y1, . . . , yd) be the matrix of confidential variables that will be replaced with

imputations and X the matrix of variables that will not be replaced, and assume

that all the units are fully observed, i.e., no missing values are present. Let Y
(i)
rep be

the imputed values of Y in the ith synthetic dataset, i = 1, . . . ,m, assumed to be

drawn from the posterior predictive distribution of Y . Each of m synthetic datasets,

D
(i)
syn, is comprised of (X,Y

(i)
rep). The set Dsyn = {D(i)

syn, i = 1, . . . ,m} is what will be

released to the public.

As several variables are considered confidential, i.e., Y has dimension N×d, spec-

ification of the joint posterior density Y |X is difficult. Writing the joint distribution

as a product of conditional densities simplifies the specification. For Y = (y1, . . . , yd),

sampling from Y |X is thus achieved by sampling from a series of conditional distribu-

tions, f(y1|X), f(y2|y1, X), . . . , f(yd|y1, . . . , yd−1, X). This allows complex relation-

ships to be modeled in a computationally feasible fashion.

Ideally, imputation models should be as general and saturated as possible in order

for analysts to be able to make a broad range of valid inferences (Meng, 1994). Some

simplifications may be needed to make modelling the data tractable; however, they

should be applied sparingly in order to maximize the utility of the partially synthetic

data. In the LBD synthesis, some predictors are omitted from the imputation model

where an independence relationship is reasonable. For example, for the longitudinal

variables, values in year t are assumed to be dependent on values in year t−1, but not

on values in previous years. Similar practical considerations in choosing imputation

models, encountered in the imputation of missing data for the National Health and

Nutritional Examination Survey (NHANES), are described in Schafer et al. (1993).

The remainder of this section describes several approaches for modeling different
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types of data that are used in the imputation of the LBD. The choice of methods used

depends on the form of the data, computational concerns, and the order in which the

variables are imputed.

3.1.1 Normal Method

A common approach for generating imputations for continuous variables is to model

the posterior distribution using a normal linear regression model, possibly on trans-

formed data. Given the highly skewed nature of payroll and employment data in

the LBD, the kernel density estimation procedure of Abowd and Woodcock (2004)

is used to transform the response variables so that marginally they approximately

follow standard normal distributions, and a normal model can be used.

Using the normal approach with a KDE transform, a synthetic variable ỹ
(i)
k is

generated from (X, y1, . . . , yk−1, ỹ1, . . . , ỹk−1) by drawing from the posterior predictive

distribution of yk as follows:

1. Apply the KDE transform to the response variable and any needed tranfor-

mation functions to the predictors to satisfy approximately linear regression

assumptions. For simplicity, the tranformations performed on the predictors

are not notated here, though the models used are given in Section 3.2. When

the KDE transforms were applied to the linear predictors, the observed-data

correlations were not preserved in the synthetic data.

For each observed value yk,l, l = 1, . . . , n, of response variable yk, the trans-

formed values y∗k,l are computed as Φ−1(K̂(yk,l)), where Φ denotes the standard

normal cumulative distribution function and K̂(yk,l) is a kernel density estimate

of yk,l.
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2. Fit a linear model, f(y∗k|Z, β, σ2) = N(Zβ, σ2) to the observed data, where

Z = (X, y1, . . . , yk−1), and obtain estimates of β and σ2.

3. For each imputation, draw new values σ̃2(i) and β̃(i) from the posterior distri-

butions f(σ2|X,Y ) and f(β|σ2, Y,X).

4. Draw ỹ
(i)∗
k from N(Z̃(i)β̃(i), σ̃2(i)), where Z̃(i) = (X, ỹ1, . . . , ỹk−1).

5. Apply the inverse KDE transform, ỹ
(i)
k,l = K̂−1(Φ(ỹ

(i)∗
k,l )), to return to the original

scale of yk.

Step 3 can be considered optional for census data as the parameters are considered

to be known and can be computed from the data. In Section 3.6, modifications

to the partially synthetic data combining rules for population data are given and

a simple simulation study suggests that these can still yield valid inferences when

Step 3 is skipped. Including this step can potentially reduce disclosure risks by

increasing between-imputation variance. For speed and simplicity, this step is omitted

in the imputation of the LBD. Similarly, the transformation function applied depends

on the data, and thus contains uncertainty when imputing random samples; hence,

Abowd and Woodcock (2004) draw a Bayesian bootstrap sample to estimate the

transformation in each implicate to account for this additional uncertainty. This

step is also skipped in the synthesis of the LBD.

More flexible approaches utilizing a Generalized Additive Model (GAM) were

considered for the LBD but ultimately the preservation of the correlation structure

as well as the computational intensity proved unsatisfactory, while the normal method

with the KDE transformation proved to be fast and effective. Computational speed is

an important consideration in the LBD synthesis as there are over 21 million records.
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3.1.2 Nonnormal Models

The normal approach can be modified for nonlinear models by replacing the nor-

mal model with a nonlinear one. For binary and categorical responses without very

many categories, one can sample from binomial and multinomial distributions, using

appropriate generalized linear models to obtain the sampling probabilities.

The synthetic variable ỹk for binary response yk is generated by approximating

draws from f(yk|X, y1, . . . , yk−1, ỹ1, . . . , ỹk−1) as follows:

1. Use the observed data to fit a logistic model, logit(p(yk = 1)) = Zβ, where

Z = (X, y1, . . . , yk−1), to obtain p̂l(Zl), l = 1, . . . , N .

2. Update model parameters by taking draws from their posterior distributions.

As before, this step is considered optional and omitted in the LBD synthesis.

3. Use the observed data model to obtain p̂l(Z
(i)
l ), where Z

(i)
l = (Xl, ỹ

(i)
1,l , . . . , ỹ

(i)
k−1,l).

4. Obtain ỹ
(i)
k by sampling from Bin(1, p̂l(Z̃

(i)
l )), l = 1, . . . , N .

For categorical responses, the same approach can be used, with a generalized logit

model used in place of the logistic model to obtain the posterior probabilities,

p̂lj(xl, y1,l, . . . , yk−1,l), l = 1, . . . , n; j = 1, . . . , c, where c is the number of categories

in the response. A multinomial distribution is used in place of the binomial.

3.1.3 Dirichlet-multinomial method

When there are many categories in the response, and many categorical predictors,

the generalized logit model can become computationally infeasible. The simpler and

faster Dirichlet-multinomial approach provides a convenient framework for sampling
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from the posterior predictive distribution for a categorical yk when the predictors in

X, y1, . . . , yk−1 are categorical.

Let c be the number of categories in the response yk. Let l be the number of

unique categories determined by the predictors in X, y1, . . . , yk−1. Assuming a flat

prior on the cell probabilities, ỹk is generated as follows:

1. Use the observed data to determine the cell counts nj = (n1j , . . . , n
c
j), j =

1, . . . , l.

2. Draw new values of the cell probabilities pj = (p1j , . . . , p
c
j) from a Dirichlet(nj).

3. For each unit in the synthetic data, look up the appropriate cell probabilities

pj based on the values of X and ỹ1, . . . , ỹk.

4. Sample from a multinomial distribution with cell probabilities pj.

As in the previous methods, we skip Step 2. In Step 3, if an exact cell match

is not found in the observed data, a possibility depending on the disclosure control

applied to y1, . . . , yk−1, then the cell is collapsed untill a match is found. Hence, in

Step 1, cell counts must be determined for one or more sets of broader categories as

well.

This approach is very fast computationally and appears to yield good predictions

with sufficient disclosure control when used in the LBD synthesis. With sufficient

variability in the observed data, disclosure control is provided by sampling from

the multinomial distribution and by the disclosure control methods applied to any

predictors. In some cases, this method fails to provide sufficient disclosure protection.

When there are a large number of categories and categorical variables, numerous
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units are uniquely determined by their values of the categorical predictors, yielding

predictions that are “too good.” For example, let C be a unique category determined

by categorical predictors in X and let yC be the observed values of a categorical

response variable corresponding to the nC units in C. If nC = 1, or yCi, i = 1, . . . , nC

all have the same value, then a categorical model will impute synthetic values ỹC for

yC such that ỹC = yC in each implicate. This creates a high risk of re-identification

of yC .

Disclosure control in this case is improved by using an informative prior distri-

bution to add a positive probability that, for a given category C, the ỹC generated

may contain values not present in yC . The prior is estimated by replacing one of the

categorical predictors with a coarsened version and using this to determine the prior

cell counts. For example, if County is a predictor, the prior could be obtained from

state-level cell counts. The prior counts are normalized to represent a small number

of units to reduce the sensitivity to the prior. This serves to add noise in a controlled

fashion, meeting the goal of reducing disclosure risks with minimal loss of utility.

Let c be the number of categories in the response y1. Let l be the number of

unique categories determined by the predictors in X and let p be the number of

unique categories in a coarsened version of X, Xp, i.e., with one or more of the

predictors dropped or coarsened, so that l > p and Xp has fewer categories than X

and larger cell counts. Generate draws from f(y1|X) as follows:

1. Using the observed data, determine the cell counts nk = (n1k, . . . , n
c
k), k =

1, . . . , p. Normalize these cell counts so that
∑p

i=1 n
i
k = a, where a is a small

number. Larger values will give more weight to the prior.

2. Using the observed data, determine the cell counts nj = (n1j , . . . , n
c
j), j =

1, . . . , l. Add each nj to its corresponding normalized nk to obtain the posterior
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counts mj, j = 1, . . . , l.

3. Draw new values of the cell probabilities pj = (p1j , . . . , p
c
j) from a Dirichlet(mj =

(m1
j , . . . ,m

c
j)).

4. For each unit in the synthetic data, look up the appropriate cell probabilities

pj based on the values of X.

5. Sample from a multinomial distribution with cell probabilities pj.

As before, for the LBD, we omit drawing parameters in Step 3, and sample from

a multinomial distribution with cell probabilities given by mj/
∑c

i=1m
i
j.

3.2 Imputation of the LBD

This section describes in detail how the methods of Section 3.1 are used to generate

public use files for longitudinal establishment data from the LBD. The version of

the LBD being synthesized is based on the most recent release, made available to

authorized users by the Center for Economic Studies (CES) in May 2007. The vari-

ables intended for inclusion in an eventual public-release file are described in Table

3.1. The existence of industries by type and county is already public information,

so county and industry codes are not synthesized but all other variables must be

synthesized for the data to be considered for public release. While a number of

establishments exist that can be uniquely determined by their county and industry

type, all of their attributes will be synthesized. Special attention may need to paid to

these establishments when a thorough risk assessment is conducted. The final form

of the public release files will be determined during the risk assessment and disclosure

review stages.
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Table 3.1: LBD Variable Descriptions
Variable Name Type Description

x1 County categorical Geographic Location
x2 SIC categorical Industry Code
y1 Firstyear categorical First Year Establishment is Observed
y2 Lastyear categorical Last Year Establishment is Observed
y3 Multiunit categorical Multiunit Status
y4 Employment continuous March 12 Employment (26 years)
y5 Payroll continuous Annual Payroll (26 years)

Establishments started after 2001 will not be included in the initial synthetic

public release files due to changes in the industry coding systems. The system for

coding industry types in the LBD changed from the Standard Industrial Classification

(SIC) system to the North American Industry Classification System (NAICS) in 2001.

The mapping between NAICS and SIC is neither one-to-one or onto and thus the

initial synthetic public release file includes only the establishments started in 2001 or

prior, for which SIC codes are available. Future releases may be generated based on

NAICS once a method for linking NAICS and SIC has been established.

When imputing the LBD, we assume that there are no missing values, and thus

impute the synthetic data in a single stage. In actuality, a small percentage of

missing values are present. If a large proportion of values were missing, it would be

appropriate to use two-stage multiple imputation, as in Reiter (2004) and Chapter

2, for handling both missing values and disclosure limitation. As the percentage of

missing values is very small, only a few percent compared to replacement of nearly

all the data for disclosure control, the improvement to be gained from imputing in

two stages is neglible, while the effort would be substantial. The missing values are

thus imputed during the synthetic data imputation. Units that are missing values

for industry code or geography are discarded, as those values are required for a unit

to be included in the data frame.

Some additional data cleaning is also performed on the observed data prior to gen-
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erating the synthetic data using code provided by CES (Jarmin and Miranda, 2007).

This includes applying a smoothing filter so that values for large establishments with

unrealistic growth are smoothed to an average of the previous year’s value and the

following year’s value. In a given year, establishments with employment greater than

500 and growth rate higher than 1.67 have their employment smoothed to the av-

erage of the previous and following year values. The growth rate is defined as the

magnitude of the change in number of jobs from the previous year over the average

of the total jobs over the current and previous year (Davis et al., 1996). A similar

step is used to smooth values of payroll for units that exhibit high growth when the

payroll value is greater than 2,500. Remaining values that are still unrealistically

high are deleted. This includes payroll values greater than 5,000,000, payroll values

greater then 500,000 corresponding to a payroll-employment ratio greater than 4,500,

and payroll values greater than 10,000 with a payroll-employment ratio greater than

80,000.

The SIC codes, and the NAICS codes, are six-digit codes with a nested structure.

The first two digits designate the highest-level division, the third digit a sub-division,

the fourth digit a smaller industry group. As the LBD is very large, the variable SIC

is used to define subgroups of the LBD that are imputed separately. At present,

synthesis of the entire LBD has not been completed, so as the imputation of each

variable is described below, results comparing marginal distributions are presented for

a subgroup of approximately 130,000 retail establishments in one 3-digit SIC group

(Group 1). This subgroup was used for most of the model development. Results for

a subgroup of approximately 25,000 manufacturers in one 3-digit group (Group 2)

are given for comparison and to evaluate how well the models perform on a group

with completely different characteristics. Additional evaluation of risk and utility is

conducted in Sections 3.3 and 3.4. For the purpose of providing a better comparison
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of sums, the observed data have had their missing values imputed using the synthetic

data model prior to the synthetic data generation. This step will not be conducted

in the actual synthesis.

The imputation strategy is to build up the joint distribution for each by-group as

follows:

1. Impute Firstyear using the Dirichlet-multinomial approach to approximate draws

from f(y1|x1, x2).

2. Impute Lastyear using the simple multinomial approach to approximate draws

from f(y2|y1, x1, x2).

3. Impute a categorical Multiunit status using the simple multinomial approach

to draw from f(y3|y2, y1, x1, x2).

4. Impute Employment and Payroll using normal linear regression masking, with

a kernel density estimator transformation applied to the response to draw from

f(y
(t)
4 |y

(t−1)
4 , y3, y2, y1, x1, x2) and f(y

(t)
5 |y

(t)
4 , y

(t−1)
5 , y3, y2, y1, x1, x2), where t in-

dicates a year between 1976 and 2001.

A constraining factor in the generation of synthetic data for the LBD is the population

size. With over 21 million records in the dataset to be synthesized, there are limited

software programs and algorithms that can be used to generate the data in a timely

manner. Modeling approaches such as Monte Carlo Markov Chain algorithms which

can take hours or days on much smaller datasets are infeasible for imputing the

entire LBD, even with the supercomputer available to this project. With the bulk

of the system dedicated to the effort, it is estimated that with the current methods

implemented, the entire LBD synthesis will still take days or weeks to run. Due

to the Census Bureau preference for software development, the methods used were

programmed using SAS.
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Figure 3.1: Observed and Synthetic Distributions of First Year, Groups 1 and 2

3.2.1 Firstyear

The variable Firstyear contains 27 categories, namely the years 1975 through 2001,

representing the first year an establishment is observed. This is predicted conditional

on 4-digit SIC and County. There are over 3000 counties in the United States and

numerous SIC groups. This results a large number of unique county-SIC groups, that

with 27 categories in the response, it is not always possible to use a generalized logit

or similar model to predict the response. Furthermore, there are many county-SIC

groups for which all the observed units have the same observed value of Firstyear.

Using standard categorical models could result in imputed values that were all idential

to the observed value, a serious disclosure risk. Hence the Dirichlet-multinomial

approach with an informative prior, described in Section 3.1.3, is used to handle this

case.

The marginal distribution is well-preserved for both Group 1 and Group 2 using

this approach as seen in Figure 3.1. The synthetic data distributions shown are based

on the mean percent of units born in each year, across five implicates, with 95-percent

standard error bars indicating a small between-implicate variability. The large spikes

in 1975 are due to censoring.
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Figure 3.2: Observed and Synthetic Distributions of Last Year, Groups 1 and 2

3.2.2 Lastyear

The variable Lastyear contains 30 categories, the years 1976 through 2005, repre-

senting the last year an establishment is observed. Imputations are generated for

Lastyear using the Dirichlet-multinomial approach with a flat prior. Frequencies of

Lastyear values are determined for each category determined by a combination of

Firstyear and 4-digit SIC using the observed data. Dependencies on geographic vari-

ables are not accounted for. For logical consistency, the probability that the value

of Lastyear for a given unit can be less than the imputed value of Firstyear is set

to zero and the remaining cell probabilities are normalized. Figure 3.2 shows the

close correspondence between the observed frequencies of the variable Lastyear and

the synthetic frequencies. Additionally, the marginal distribution of Lifetime, where

Lifetime = Lastyear − Firstyear, is preserved, as shown in Figure 3.3. Figure 3.4

gives a sample comparison of a conditional distribution. As before, the synthetic

data distributions are averaged over five implicates, with 95 percent standard error

bars indicating a small between-implicate variability. The spikes at 2005 in Figure

3.2, 30 in Figure 3.3 and 15 in Figure 3.4 are due to censoring.
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Figure 3.3: Observed and Synthetic Distributions of Lifetime, Groups 1 and 2
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Figure 3.4: Observed and Synthetic Distributions of Lifetime given Firstyear=1990,
Groups 1 and 2
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3.2.3 Multiunit

The variable Multiunit indicates whether or not an establishment was ever part of a

multi-unit firm, i.e., whether an establishment was ever part of a parent enterprise

conducting business at multiple locations. In the observed data, multiunit status is

given by a series of longitudinal binary indicators of multiunit status for each year. To

facilitate synthesis, a categorical variable was defined such that a value of 1 indicates

an establishment was never part of a multi-unit firm; values of 2-4 indicate a change

in multi-unit status at some point in the lifetime of the establishment; and a value

of 5 indicates the establishment was always part of a multi-unit firm.

The synthesis of this categorical variable using the Dirichlet-multinomial approach

with a flat prior was straightforward and proved to be much faster and just as effective

as the nonnormal method using a generalized logit model. The predictors used include

Firstyear, Life (Lastyear − Firstyear), 4-digit SIC, and State. Some combinations of

these variables using the synthetic Firstyear and Life variables did not correspond

to categories in the observed data. For these cases, predictors were dropped until a

match could be found.

For units that are predicted to change their multiunit status over the course of

their lifetime, the year when the change occurs is also of interest and is planned

for synthesis. Firm structure and linkages between establishments in the same firm

are not planned for synthesis. Table 3.2 shows the close correspondence between the

observed frequency of Multiunit compared to 95-percent confidence intervals obtained

from five synthetic implicates.

3.2.4 Payroll and Employment

Payroll and employment data are imputed for each active establishment in every year

between 1976 and 2001. If the synthetic values of Firstyear and Lastyear indicate an
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Table 3.2: Observed and Synthetic Distributions of Multiunit, Groups 1 and 2
Group 1 Group 2

Value Obs Pct Synth Pct Obs Pct Synth Pct
1 0.696 (0.696,0.698) 0.924 (0.924, 0.930)
2 0.011 (0.011,0.012) 0.016 (0.016, 0.017)
3 0.002 (0.002,0.002) 0.001 (0.001, 0.001)
4 0.001 (0.001,0.001) 0.003 (0.002, 0.003)
5 0.289 (0.287,0.290) 0.056 (0.050, 0.056)

establishment was inactive in a given year, then no payroll or employment value is

generated. The employment variables are imputed first, in ascending order by year,

followed by the payroll variables. Separate regressions are estimated for different

subgroups of data. For example, employment for births and continuers in a given

year are predicted separately as employment in the previous year is a predictor for

continuers but obviously not for births. Single-unit and multi-unit establishments

are treated separately since they have substantially different characteristics, and are

typically analyzed separately in economic analyses. Initially, establishments that

change their multiunit status over time are treated as multiunit establishments in the

imputation of payroll and employment. When the year of status change is imputed

then the longitudinal binary indicators can be reconstructed and the status in the

current year used to predict payroll and employment for a given year.

While general, saturated models are desired for generating imputations yielding

a broad range of valid inferences, models with good predictive properties are needed

for any inferences to be valid. Different models provided better predictions in dif-

ferent years, so to keep the modelling procedure as flexible as possible, a variable

selection procedure based on the Bayesian Information Criterion (BIC) is employed.

Thus parsimonious models yielding good predictions are used to impute payroll and

employment.
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Births

For establishments in their first year, first-year employment and payroll are predicted

from observed data corresponding to units in their first year. The predictors in

the saturated model for employment births currently include 4-digit SIC, years till

death, and indicators for whether or not the firstyear or lastyear are censored, and an

indicator for the penultimate year. The predictors in the saturated model for payroll

are the same, with the addition of the log of current year’s employment.

As the employment variables are defined as the number of employees as of March

12th in a given year, a large percentage of establishments start their first year af-

ter March 12 and hence have zero employment recorded for the first year. In order

to reflect this in the synthetic data and prevent the zeros from influencing the im-

putations for establishments with nonzero employment in their first year, the birth

model is imputed in two stages. First, a logistic regression is used, following the

Nonnormal method, to predict whether or not units in their first year had zero em-

ployment, conditional on 4-digit SIC and years to death. Then, the observed data for

units with nonzero employment are used to impute employment for units predicted

to have nonzero employment using the Normal method, with a KDE transform on

the response variable.

Continuers

The predictors in the saturated employment model for continuers are currently 4-

digit SIC, age, years to death, log of previous year’s employment, indicator variables

indicating the first year is censored or the last year is censored, as well as indicators

for the second year, the penultimate year, and the last year, and interactions of these

three indicators with the log of previous year’s employment. The predictors in the

saturated model for payroll include all 4-digit SIC, age, years to death, log of current
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year’s employment, log of previous year’s payroll, indicator variables indicating the

first year is censored, the last year is censored, if the current year is the second year,

the penultimate year, or the last year, and interactions of payroll and employment

with the last year and penultimate year indicators.

Imputations are generated using normal models with KDE transformations ap-

plied to the response variables to satisfy approximately the normal linear model

assumptions. When establishments have zero employment in their first year, it is

assumed that this is due to the recording of the number of employees on March 12,

and not due to any other establishment characteristic. Hence, establishments in their

second year that had zero employment in their first year are imputed separately using

the employment model for births.

Imputing all of the continuers in a given year together adequately preserved the

marginal distributions and correlations for most of the variables; however, for some

variables the means were different enough to throw off analyses of job creation and

destruction, which depend on sums of employment values for units in their first and

last year, and sums of expansions and contractions. The root cause of this was

the presence of extreme outliers, which can affect the mean and sum if either too

many outliers are imputed or too few. Hence continuers were imputed in two stages,

for both payroll and employment. This is improves the quality of predictions for

many continuer subgroups, though outliers still present a problem. Imputation of

continuers proceeds as follows:

1. The observed data are divided into high and low groups based on a 95th-

percentile threshold of the response variable.

2. Using all of the observed continuers to build a model, the Nonnormal method

with a logistic model, and the predictors from the employment and payroll
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continuer models, was used to impute whether or not a synthetic continuer

should be in the high group or the low group.

3. Using the observed high group, employment was imputed for units imputed to

be in the high group using the normal method with a KDE transform.

4. Using the observed low group, employment was imputed for units imputed to

be in the low group using the normal method with a KDE transform.

Small subgroups

As just described, the LBD is broken down in many subsets to facilitate the modelling

process. To summarize, for each year of employment and payroll, establishments in

operation that year are broken down by multi-unit status, which is then separated

into births and continuers. For births, zero births and nonzero births are separately

imputed. For continuers, second-year establishments that had zero employment in the

first year are separated for the imputation of employment. When sufficient continuers

remain in the observed data for the saturated model to be full rank, the remaining

units are split into the highest 5% and the lowest 95% of employment level. While

over 21 million units are being imputed, when broken down into so many subgroups,

many are quite small, as small as a single unit.

Small subgroups are addressed by incorporating an informative prior for the vector

of regression coefficients β into the Normal method. For a given 3-digit SIC group, a

comparable subgroup is found in the corresponding 2-digit SIC group, which is used

to estimate the prior, and 4-digit SIC is dropped from the imputation model. For

example, if there are too few single-unit nonzero births in a given year in the 3-digit

SIC group being imputed, the prior is estimated from all single-unit nonzero births

in the same year from the corresponding 2-digit SIC group. This is similar to the
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common practice of using information from previous experiments, external surveys,

and censuses to determine prior values.

Using a unit information prior allows for all of the available data to be used to

estimate a prior mean and variance for the regression coefficient without overwhelm-

ing the data. The unit information prior has the same amount of information about

β as contained in a single observation. In this case the information is in the sample

used to estimate the prior, which has the form

p(β|σ2) = N(β0, σ
2Σ0)

p(σ2) = χ−2(n0 − k, s20)

where β0 = (X ′
0X0)

−1X ′
0Y0, Σ0 = n0(X

′
0X0)

−1, X0 and Y0 are the prior data for X

and Y , s20 is the sample variance (Y0 − X0β0)
′(Y0 − X0β0)/(n0 − k), and n0 is the

prior data sample size.

The resulting posterior (β, σ2|Y,X), used to draw from the posterior predictive

distribution, is given by

p(β|σ2, Y,X) = N(β̂, Σ̂)

p(σ2|Y,X) = χ−2(n+ n0 − k, s2)

where β̂ = Σ̂(Σ−1
0 β0 + X ′Y ), Σ̂ = (Σ−1

0 + X ′X)−1, and s2 = {(n0 − k)s20 + (y −

Xβ̂)′(y −Xβ̂) + (β̂ − β0)Σ
−1
0 (β̂ − β0)}/(n+ n0 − k).

When n0 ≥ k, this gives a full-rank model for drawing from the posterior pre-

dictive distribution under an informative prior. In addition to providing a full-rank

model for small subgroups where n < k, this provides a degree of disclosure protec-

tion by using information from external data to build the model. If additional noise

is desired, more weight can be given to the prior by replacing n0 in the prior spec-

ification with np < n0. If n0 < k, predictors may be dropped to obtain a full-rank

model, or the group used to estimate the prior may be expanded.
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Results

Figures 3.5 and 3.6 illustrate the preservation of the marginal distributions of payroll

and Figures 3.7 and 3.8 compare the marginal distributions of employment for one

year of of the LBD. The examples shown for Group 1 in Figures 3.5 and 3.7 show that

the marginal distributions are well preserved. The employment distribution shown

for Group 2 in Figure 3.8 also does a reasonable job of preserving the overall shape of

the distribution; however, the payroll distributions shown in Figure 3.6 differ in the

lower range of the data. While other synthetic payroll variables do better match the

observed data, this gives an example of the type of problem that arises due to extreme

outliers. The outliers are not visible in these graphs as the tails of the distributions

are compressed for disclosure purposes. In general, analyses excluding the outliers are

comparable to analyses on the observed data that also exclude outliers. In analyses

involving sums, such as the economic analyses in Section 3.3, the outliers are not

excluded. Table 3.3 compares a sample of correlations computed using the observed

data and the synthetic data. The correlations in Group 1 match very closely, with

some attenuation. Greater attenuation and between-implicate variability is seen in

the synthetic data correlations for Group 2. This is due to the presence of extreme

outliers in the observed data that are imputed in different frequencies in different

implicates.

3.3 Economic analyses

This section describes some economic analyses that are viewed by economists at the

Center for Economic Studies as key analyses that should be approximately preserved

in the synthetic data (Jarmin and Miranda, 2007) and compares these analyses per-

formed on the confidential and synthetic data. All of the imputed variables must be

well-modeled in order for the synthetic data results to match the confidential data

77



0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

m
or

e

Observed Annual Payroll

Pe
rc

en
t

0.0

0.1

0.2

0.3

0.4

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

m
or

e

Synthetic Annual Payroll

Pe
rc

en
t

0.0

0.1

0.2

0.3

0.4

Figure 3.5: Observed and Synthetic Distributions of Annual Payroll (in $1000), One
Year, Group 1
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Figure 3.6: Observed and Synthetic Distributions of Annual Payroll (in $1000), One
Year, Group 2
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Figure 3.7: Observed and Synthetic Distributions of March 12 Employment, One
Year, Group 1
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Figure 3.8: Observed and Synthetic Distributions of March 12 Employment, One
Year, Group 2

79



Table 3.3: Sample Correlations on Observed and Synthetic Data, Groups 1 and 2
Group 1 Group 2

Variables Obs. Syn. Mean & CI Obs. Syn. Mean & CI
1978 Emp., 1979 Emp. 0.76 0.66 (0.59, 0.73) 0.96 0.93 (0.82,0.97)
1978 Emp., 1978 Payroll -0.04 0.00 (-0.03,0.04) 0.54 0.38 (0.02,0.66)
1978 Emp., 1979 Payroll 0.61 0.57 (0.46,0.67) 0.91 0.71 (0.33,0.90)
1979 Emp., 1978 Payroll -0.06 -0.02 (-0.04,0.01) 0.55 0.39 (0.02,0.67)
1979 Emp., 1979 Payroll 0.70 0.71 (0.58,0.81) 0.94 0.74 (0.42,0.91)
1978 Payroll, 1979 Payroll -0.04 0.06 (0.01,0.12) 0.60 0.55 (0.17,0.80)
1997 Emp., 1999 Emp. 0.84 0.80 (0.77,0.82) 0.95 0.79 (0.67,0.87)
1997 Emp., 1997 Payroll 0.76 0.74 (0.66,0.81) 0.90 0.62 (-0.11,0.93)
1997 Emp., 1999 Payroll 0.63 0.74 (0.70,0.77) 0.87 0.67 (0.18,0.91)
1999 Emp., 1997 Payroll 0.76 0.63 (0.58,0.67) 0.90 0.55 (-0.15,0.90)
1999 Emp., 1999 Payroll 0.75 0.71 (0.69,0.73) 0.90 0.67 (0.19,0.90)
1997 Payroll, 1979 Payroll 0.76 0.70 (0.66,0.74) 0.98 0.70 (0.18,0.92)

results. The analyses are briefly described and then the results for each shown below.

3.3.1 Job creation and destruction

Job creation and destruction series are used to analyze job flows by economic sector.

Using the growth rate definitions of Davis et al. (1996), job creation in year t for a

given sector is the sum of employment over all establishments started in year t and

employment gains for establishments that expanded between year t − 1 and year t.

The job creation rate is the job creation divided by the gross employment level, which

is the sum of the average of the total jobs in year t − 1 and year t. Similarly, job

destruction in year t is the sum of employment over all establishments that are last

observed in year t and employment losses for establishments that contracted between

year t−1 and year t. The job destruction rate equals job destructions divided by the

gross employment level. Net job flow is computed as the job creation rate minus the

job destruction rate.

Figure 3.9 shows the job creation rate by year for Group 1 and Group 2. The rates
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Figure 3.9: Job creation rate by year, Groups 1 and 2
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Figure 3.10: Job destruction rate by year, Groups 1 and 2

are seen to be consistently higher in the synthetic data, although the general trends

are preserved. Similar results are seen for the job destruction series in Figure 3.10.

Further investigation is needed to determine if this is occurs uniformly througout the

LBD, and if it can be adjusted for. The discrepancy is largely due to establishment

contractions and expansions; job creations and destructions due to births and deaths

are generally well preserved. The synthetic net jobs flows, or the difference between

the job creation and job destruction rates, are seen to match the observed data closely

in Figure 3.11, as do the gross employment levels, shown in Figure 3.12.
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Figure 3.11: Net job flow by year, Groups 1 and 2
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Figure 3.12: Gross employment level by year, Groups 1 and 2
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Figure 3.13: Employment volatility, Groups 1 and 2

3.3.2 Employment volatility

Employment volatility provides a measure of how much establishments expand and

contract over time in terms of number of employees. The volatility measure used

here is a measure of deviance from a ten-year moving average. Given the results seen

for the job creation and job destruction series, it is not surprising that the volatility

levels seen in Figure 3.13 also are consistently higher in the synthetic data than in

the observed data. While the gross employment levels in the synthetic data tend

to match the observed employment levels (Figure 3.12), the year-to-year changes at

the establishment level tend to be greater in the synthetic data. The observed data

contains many units with little or no change over time, a feature not captured in the

synthetic data.

For estimates of means, the combining rules of Reiter (2003) give an estimate of

the added variability due to the synthetic data imputations. Accounting for uncer-

tainty in the estimation of variances is an area for future work. Information provided

to users of the synthetic data should include information about what types of analyses

are likely to be valid.
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3.4 Risk assessment

While utility of the data is of primary interest to researchers, it is equally impor-

tant that the disclosure risk be adequately addressed. This section discusses issues

relevant to risk assessment but does not formally evaluate the risks associated with

releasing synthetic data for the LBD. Quantitative measures such as re-identification

probabilities are not provided. During the model development stage, the key concern

has been that sufficient variability is generated and that the implicates do not look

too much like the observed data, so that accurate re-identification will be difficult. A

few simple illustrations of the difference between observed and synthetic that can be

given without disclosing confidential values are shown. A thorough risk assessment

will be conducted prior to releasing data for public use.

The imputation of entry and exit information is an important step in reducing

attribute disclosure. A unit may have imputed lifetimes that are completely different

across implicates and from the observed lifetime. For example, a unit with an actual

lifetime of 1982 to 1987 could have imputed lifetimes of 1975 to 1990, 1983 to 1989,

and 1996 to 2001. Similarly, in each implicate, the payroll and employment levels

will vary, so that the probability of re-identification should be small. Figure 3.14

shows the distribution of one implicate of synthetic Firstyear for all units in the test

sample having true Firstyear of 1995. It can be seen that a wide range of values are

imputed, with only a small percent actually imputed to be 1995 in a given implicate.

With repeated imputations, a potential re-identification method for categorical

variables is to look across imputations and take the mode. This is a consideration

that should be taken into account when conducting a risk assessment and determining

the number of implicates to release. Computing the percent of identifications using

the mode that are successful is one way to obtain a measure of risk. An additional

step that will confound re-identification using the mode is that unit identifiers will be
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stripped from the data prior to release and replaced with random identifiers that are

similar in structure to the actual identifiers, for use by persons planning to eventually

run their analyses on the confidential data. The identifiers will be different across

imputations and establishments listed in random order. It is not intended that the

analytic validity extend to unit-level analyses, and this will deter users from attempt-

ing to average values for units across imputations. Averaging across imputations, or

taking the mode for categorical variables, is a potential intrusion method which is

likely to result in only a small percentage of true matches, though the number of

perceived matches may be higher.

Figures 3.15 and 3.16 show the distribution of observed Firstyear for units that

have synthetic Firstyear values of 1995 on one implicate and two implicates, respec-

tively. These figures show that if a user is able to match units across implicates and

attempts to re-identify values based on the mode, the repetition of values across im-

plicates will have only a small probability of corresponding to a true value. Matching

across three implicates yields a similarly dispersed distribution. These results do

not necessarily extend to the rest of the LBD; however, they suggest that matching

probabilities should be acceptably low.

3.5 Current status and future plans

At present, the first stage of model development is complete and efforts are underway

to extend the imputation to the entire LBD. This task primarily involves identifying

and addressing various conditions in the data which have not been accounted for in

the program and thus will result in computer errors. In addition, I and other project

members are working on parallelization of the code, and considering additional risk

assessment that must be done prior to requesting the release of the synthetic data

from the disclosure review boards of the U. S. Bureau of the Census and Internal
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Figure 3.14: Distribution of synthetic Firstyear, one implicate, for units with ob-
served Firstyear = 1995, Group 1
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Figure 3.15: Distribution of observed Firstyear for units with synthetic
Firstyear=1995 on one implicate, Group 1
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Figure 3.16: Distribution of observed Firstyear for units with synthetic
Firstyear=1995 on two implicates, Group 1

Revenue Service.

The data utility will also be evaluated further, both before and after the initial

data release. Past synthetic data projects have required several iterations to improve

the utility of the data. A “beta” release stage, similar to the current beta release

of synthetic data for the Survey of Income and Program Participation, would be

helpful in flushing out where further modeling efforts should be focused. This would

allow users to gain access to valuable, discloseable information without having to

gain access to the confidential data, and allow the project team to gain feedback on

the utility of the synthetic data.

3.6 Inferential methods for multiply-imputed pop-

ulation data

This chapter has described ongoing work to develop synthetic data for longitudinal

establishment data from the U. S. Census Bureau’s Longitudinal Business Database
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for public release. Preliminary results illustrate the feasibility of using synthetic data

for releasing microdata for public use while protecting confidentiality and allowing

valid inferences to be made. The methodology is flexible and can be adapted for

other datasets.

The remainder of the chapter discusses modifications to the combining rules for

synthetic data of Reiter (2003) and Reiter (2005c), reviewed in Section 1.2. These

were developed for random samples from populations. As the LBD is a census and

is considered to be population data, there are no sampling errors, and so modified

rules are needed. If a population is reasonably believed to be a random sample from

a super-population, and the true parameter values are assumed to be determined by

the super-population and not the observed population, then the standard combining

rules are appropriate.

3.6.1 Inferences for scalar estimands

For a given scalar population parameter q, if Dinc is a population dataset then the

value of q is given by qinc, the value of the parameter computed from Dinc. For

partially synthetic data we assume no missing values; hence, Dinc = Dobs and qinc =

qobs, where qobs is computed from the observed data Dobs, prior to the replacement of

any values for disclosure control. The variance u of (q|Dobs) is thus zero resulting in

the posterior distribution (q|Dsyn) ∼ tm−1(q̄, b/m), where q̄ and b are defined in (1.1)

and (1.3).

Derivation

To derive the combining rule for a scalar estimand q, we return to the derivation

of the combining rules for partially synthetic survey data in Reiter (2003) to deter-

mine where the derivation differs for population data. The key difference is that
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V (q|Dobs, Dsyn, b∞) = 0, and not ū. Let b∞ = V (q̂(i)) as m → ∞ and observe that

since V (q|Dobs, Dsyn, b∞) = 0, and not ū, it follows that

V (q|Dsyn, b∞) = E(V (q|Dsyn, Dobs, b∞)|Dsyn, b∞) + V (E(q|Dobs, Dsyn, b∞)|Dsyn, b∞)

= 0 + V (qobs|Dsyn, b∞)

= b∞/m

and

E(q|Dsyn, b∞) = E(E(q|Dsyn, Dobs, b∞)|Dsyn, b∞)

= q̄.

From standard multivariate normal theory we have that {(m−1)bb−1
∞ |Dsyn} ∼ χ2

m−1,

and thus it follows that (q|Dsyn) ∼ tm−1(q̄, b/m). The simplification resulting from

setting ū = 0 means that the approximations needed to obtain the degrees of freedom

for the posterior distribution in Reiter (2003) are not needed for population data and

the degrees of freedom is exact.

3.6.2 Inferences for multivariate estimands

The significance test of Reiter (2005c) for multivariate estimands Q for partially

synthetic data, reviewed in Section 1.2, can also be extended to partially synthetic

population data. Simply setting setting Ū = 0 yields a test statistic of zero, so an

additional modification is needed. The proposed test for the hypothesis H0 : Q = Q0

is conducted by referring the test statistic

Sc =
(Q0 − Q̄)′(Q0 − Q̄)

krc

to an Fk,k(m−1) distribution, where rc = 1
m
tr(B)/k, k is the dimension of Q and Q̄

and B are defined in (1.4) and (1.6).
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Derivation

A key assumption in the hypothesis test for multicomponent estimands proposed by

Reiter (2005c), and in similar tests for other applications of multiple imputation,

is that B∞ is proportional to Ū∞, i.e., the proportion of information replaced with

imputations is the same across components of Q. When imputing population data,

Ū∞ = 0, so an alternate assumption is needed. A comparable assumption is to assume

that B∞ = r∞I, for some scalar quantity r∞ and k-dimensional identity matrix I.

In other words, the between-imputation variance is constant across components of

Q. This is slightly stronger than the assumption that B∞ = r∞Ū as the covariance

matrix is forced to be diagonal. Simulations in Section 3.6.4 suggest that valid

inferences can still result when this is not true. Under this assumption the Bayesian

p-value is given by

∫

P (χ2
k > (Q0 − Q̄)′T−1

∞ (Q0 − Q̄)|Dsyn, B∞)P (B∞|Dsyn)dB∞ (3.1)

=

∫

P

(

χ2
k >

(Q0 − Q̄)′I(Q0 − Q̄)

r∞/m
|Dsyn, r∞

)

P (r∞|Dsyn)dr∞

=

∫

P

(

χ2
k

k
· r∞
mrc

> Sc|Dsyn, r∞

)

P (r∞|Dsyn)dr∞. (3.2)

Thus the proportionality assumption reduces the number of variance parameters

to be estimated from k(k − 1)/2 to 1 and allows for the closed-form approxima-

tion of the integral in (3.1). To complete the integration, we need the distribution

of (r∞|Dsyn). Extending the scalar case in Reiter (2003), the sampling distribu-

tion of Q̂(i), the estimate of Q obtained from D
(i)
syn, is given by (Q̂(i)|Qobs, B∞) ∼

N(Qobs, B∞). Under the proportionality assumption, this becomes (Q̂(i)|Qobs, r∞) ∼

N(Qobs, r∞I). With diffuse priors and standard multivariate normal theory for sam-
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ple covariance matrices, we obtain

(m− 1)

∑m
i=1(Q̂

(i) − Q̄)(Q̂(i) − Q̄)′

(m− 1)r∞
|Dsyn ∼ Wish(m− 1, I).

Taking the trace of each side yields

k(m− 1)

r∞

tr(B)

k
|Dsyn ∼ χ2

k(m−1).

Hence

(r∞|Dsyn) ∼ χ−2
k(m−1)km(m− 1)rc

Integrating over r∞ in (3.2) yields a Bayesian p-value of

P

(

χ2
k

k

k(m− 1)

χ2
k(m−1)

> Sc|Dsyn

)

= P (Fk,k(m−1) > Sc|Dsyn)

3.6.3 Extension to missing data

While imputation for missing values is not done for the LBD, it is worth noting that

multiple imputation of missing values in population data requires similar modifica-

tions to the combining rules. As we only need to account for the uncertainty due

to imputation, and not random sampling, the modification and justification for the

scalar combining rules is the same, namely, set ū = 0 in the combining rules for

missing data of Rubin (1987). To obtain the test for multicomponent estimands, we

apply the same proportionality assumption and set B∞ = r∞I.

The posterior for scalar estimand q is given by (q|Dcom) ∼ N(q̄, (1 + 1/m)b),

where Dcom is the set of completed datasets. The corresponding test for multivariate

estimands Q is given by P (Fk,k(m−1) > Sq|Dcom) where

Sq =
(Q0 − Q̄)′(Q0 − Q̄)

krq
,
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and rq = (1+ 1/m)tr(B)/k. The next section describes results for simulated data in

order to illustrate the validity of these formulas, for both missing value imputation

and partially synthetic data.

3.6.4 Simulation study

In this section, simple simulation examples illustrate the analytic validity of the pro-

posed combining rules. In addition, the effect on the analytic validity of drawing from

the posterior predictive distribution P (Y |X) =
∫

P (Y |X, θ)p(θ)dθ versus P (Y |X, θ̂)

when generating imputations is evaluated. Both cases are evaluated for both partially

synthetic data and the missing data cases. Although the missing data case is not

needed for the LBD, the results are of interest both on their own and in comparison

with the partially synthetic data results.

For a population of size N = 50, 000, five predictors X = {X1, . . . , X5} are

generated from a standard normal distribution and a response variable Y is generated

from N(Xβ, 1), β = (1, 1, 2, 2,−1). For the missing data case, the vector R, where

Ri = 1 if unit i has missing values, i = 1, . . . , N , is generated from Bin(1, p), where

p = exp(Xa)/(1 + exp(Xa)), a = (−2,−2, 1, 1, 2), so that missingness occurs at

random (MAR).

While inferential methods for multiple imputation are derived from a Bayesian

perspective, their analytic validity is usually considered from a frequentist one. If

we consider (X,Y ) to be population data, then the frequentist properties of interest

are the repeated sampling properties under repeated sampling of imputations. Using

m = 5, in each of 5000 iterations, m imputations are drawn and the combining rules

applied to the estimands of interest. For the missing data simulations, the response

indicator R is also redrawn in each iteration.

The scalar estimands evaluated are E(Y ), βl, l = 1, . . . , 5, P (Y > 1), and E(Y |X >
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1). For each scalar estimand, the confidence intervals computed in each iteration are

expected to contain the true value 100(1 − α)% of the time, where the significance

level α = .05. Since (X,Y ) represents a population, the true values are computed

from (X,Y ).

Random sampling scenarios are also simulated for comparison purposes. When

(X,Y ) are considered to be a random sample of size n = 50, 000, at each iteration,

(X,Y ) are generated from the distributions described above, prior to drawing R and

generating the m imputations. The true values used to assess the coverage rates are

determined from the known population parameters used to generate (X,Y ).

The hypothesis test for multiple components is evaluated in a similar simulation

scenario. For a population of N = 50000, X = (X1, . . . , Xk) and Y are drawn from

standard normal distributions. Missingness is simulated to be completely at random,

with P (Rl = 1) = .3, l = 1, . . . , s. For each of 5000 iterations, m imputations are

drawn for m ∈ (2, 5, 10) and a hypothesis test conducted for H0 : Q = 0, where Q

is the vector of regression coefficients, excluding the intercept, of the regression of Y

on X and has dimension k, k ∈ (2, 5, 20). By design, H0 is true, so H0 should be

rejected 100α% of the time, for significance level α = .05.

Partially synthetic data

Let Y be a confidential response variable and X be unreplaced predictors. Then

Ysyn is generated by drawing independently from the posterior predictive distribution

f(Y |X) assuming a normal linear model. Two cases are evaluated, one in which

the model parameters β and σ2 are drawn from their posterior distribution in each

imputation and one in which they are fixed at their maximum likelihood estimates.

For comparison, the simulations are repeated in a random sampling scenario, using

the combining rules for random samples of Reiter (2003) and Reiter (2005c). For the
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case m = 2, the degrees of freedom in Reiter (2005c) is undefined so the degrees of

freedom w∗
p given in Section 1.2.2 is used for conducting the multicomponent test.

Such a distinction is not necessary for population data.

Table 3.4 gives the nominal 95% coverage rates for confidence intervals computed

for population data using the proposed combining rules, and compares them to the

the coverage rates using the combining rules for random samples. Table 3.5 gives

the nominal 5% rejection rate for the proposed hypothesis test for multicomponent

estimands, which are seen to be close to the significance level 0.05. From these

results it appears that the proposed combining rules for population data perform

well in terms of providing valid inferences. Not shown are the coverage rates when

the rules from random samples are applied to populations, which were observed to

be quite high, typically 1, in the simulations conducted.

From both sets of results, it is seen that using the MLE in place of drawing from

the posterior of the regression parameters does not affect analytic validity. Thus it is

expected that the decision not to draw parameters in the generation of the LBD will

not affect analytic validity. It may seem surprising that drawing imputations from

p(Y |X, θ̂) versus p(Y |X) appears to provide valid inferences in the random sam-

pling scenario since population parameters are not assumed to be known; however,

Little and Rubin (2002) note for missing data imputation that using the distribu-

tion p(Ymis|Yobs, θ̂) can provide a reasonable approximation for p(Ymis|Yobs) when the

fraction of missing information is small. Extending that principle to the synthetic

data case with no missing values, drawing imputations from p(Y |X, θ̂) can still result

in approximately proper imputations. For small samples, or other cases where the

sampling error is large, improper imputations could result. Since drawing parameters

does not appear to have a negative effect on the analytic validity and can improve dis-

closure control by increasing between-imputation variance, a suggested rule of thumb
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is to draw them whenever feasible.

Table 3.4: Comparison of nominal 95% coverage rates for estimands computed
from partially synthetic data for population data and random samples, impute with
parameters drawn and without

E(Y ) β1 β2 β3 β4 β5 P (Y > 1) E(Y |X > 1)

Population data

Draws 0.9488 0.9504 0.9394 0.9528 0.9508 0.9508 0.9480 0.9500
No draws 0.9532 0.9476 0.9502 0.9508 0.9474 0.9510 0.9492 0.9496

Random sampling

Draws 0.9842 0.9526 0.9488 0.9486 0.9486 0.9426 0.9756 0.9842
No draws 0.9866 0.9522 0.9488 0.9488 0.9488 0.9472 0.9884 0.9866

Table 3.5: Comparison of nominal 5% rejection rates for tests using partially syn-
thetic data for population data, imputed with parameters drawn and without

k = 2 k = 5 k = 20

Population data

Draws
m = 2 0.0468 0.0562 0.0524
m = 5 0.0494 0.0574 0.0544
m = 10 0.0456 0.0512 0.0470

No draws
m = 2 0.0606 0.0522 0.0550
m = 5 0.0456 0.0502 0.0520
m = 10 0.0522 0.0534 0.0522

Random sampling

Draws
m = 2 0.0668 0.0616 0.0598
m = 5 0.0540 0.0522 0.0498
m = 10 0.0470 0.0494 0.0488

No draws
m = 2 0.0548 0.0570 0.0528
m = 5 0.0534 0.0520 0.0524
m = 10 0.0468 0.0492 0.0518

Missing data

The missing values of Y are imputed from the posterior predictive distribution

f(Yobs|X) assuming a normal linear model. As in the partially synthetic data case,

two cases are evaluated, one in which the model parameters β and σ2 are drawn
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from their posterior distribution in each step and one in which they are fixed at their

maximum likelihood estimates. For comparison, the simulations are repeated in a

random sampling scenario, using the combining rules for random samples of Rubin

(1987) and Li et al. (1991a). For the case m = 2, the degrees of freedom used for the

multivariate test comes from Rubin (1987); otherwise, the degrees of freedom from

Li et al. (1991a) is used. No distinction is necessary in the population data case.

Table 3.6 gives the nominal 95% coverage rates for confidence intervals computed

for the population data using the proposed combining rules, and compares them

to the the coverage rates using the combining rules of Rubin (1987) for random

samples. Table 3.7 gives the nominal 5% rejection rate for the proposed hypothesis

test for multicomponent estimands, which are seen to be close to 0.05. From these

results it appears that the proposed combining rules for population data provide valid

inferences.

Unlike the partially synthetic simulation results, these results indicate that draw-

ing imputations from f(Ymis|Yobs) instead of f(Ymis|Yobs, θ̂) is necessary for analytic

validity when the fraction of information missing is substantial. When population

data contain missing values, βobs 6= βinc and the additional uncertainty in the esti-

mation of the maximum likelihood estimate is unaccounted for when the parameters

are not drawn, resulting in improper imputations. This result is well known for im-

putation of random samples (Rubin, 1987; Little and Rubin, 2002), and these results

confirm the same holds true for population data.

Robustness

The combining rules proposed for use with multiply-imputed population data were

derived based on a simple extension from the existing combining rules for random

samples. Given the success of similar tests, it is expected that the analytic validity of
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Table 3.6: Comparison of nominal 95% coverage rates for estimands computed from
completed population data and random samples, impute with parameters drawn and
without, for the missing data case

E(Y ) β1 β2 β3 β4 β5 P (Y > 1) E(Y |X > 1)

Population data

Draws 0.9334 0.9584 0.9432 0.9736 0.9758 0.8416 0.9492 0.9240
No draws 0.6134 0.8410 0.7820 0.9056 0.9356 0.5082 0.8738 0.8778

Random sampling

Draws 0.9480 0.9498 0.9510 0.9486 0.9498 0.9470 0.9554 0.9572
No draws 0.9458 1 1 1 1 1 0.8726 0.9554

the combining rules will hold when the imputations are proper in the sense of Rubin

(1987) and that the multicomponent test will be robust to moderate violations of the

assumption of proportionality used. Further work is warranted to make a definitive

assessment.

The robustness of the multicomponent test to the assumption of independence

between components of a multivariate estimand Q, not assumed in the corresponding

test for random samples, is evaluated in a simulation test. Using the same simulation

scenarios for Tables 3.5 and 3.7, X is drawn from N(0, .5I), so that the assumption

of independence between components of Q is no longer satisfied. The nominal 5%

rejection rates for the test H0 : Q = Q0 where Q0 is true are computed for both

the missing data and synthetic data cases, where m = 5 and parameters have been

drawn from their posterior distributions. The results, shown in Table 3.8 show the

rejection rates to be quite close to .05 for k ∈ {2, 5, 20}.

The tests are proposed for the case where sampling error is not present; however,

other sources of error may be present and should be addressed if necessary. Another

area of future work is to extend the combining rules to imputation of population data

in other applications, such as two-stage multiple imputation.
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Table 3.7: Comparison of nominal 5% rejection rates for tests using completed
population data, impute with parameters drawn and without

k = 2 k = 5 k = 20

Population data

Draws
m = 2 0.0490 0.0430 0.0538
m = 5 0.0460 0.0486 0.0522
m = 10 0.0524 0.0522 0.0488

No draws
m = 2 0.0642 0.0776 0.1288
m = 5 0.0898 0.1214 0.2362
m = 10 0.1022 0.1378 0.2874

Random sampling

Draws
m = 2 0.0608 0.0560 0.0530
m = 5 0.0556 0.0520 0.0524
m = 10 0.0480 0.0496 0.0508

No draws
m = 2 0.0666 0.0782 0.0910
m = 5 0.0652 0.0696 0.0992
m = 10 0.0636 0.0716 0.0990

Table 3.8: Nominal 5% rejection rates for tests with correlated data
k = 2 k = 5 k = 20

Missing data 0.0646 0.0494 0.0538
Synthetic data 0.0644 0.0508 0.0554
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Chapter 4

Bayesian model uncertainty in mixed

effects models

Often in linear and nonlinear mixed effects models, random effects are chosen to

control for specific factors which are expected to cause random variation in the coef-

ficients, such as batch effects and within-subject variation in repeated measurements.

Choosing a subset of predictors from a larger set of potential predictors is often de-

sired to succinctly express the relationship between the response and predictors and

identify the important predictors (Mitchell and Beauchamp, 1988). It is a more

difficult question how to decide which predictors have coefficients that vary among

subjects. Standard model selection criteria and test procedures are not appropriate

for comparing models with different numbers of random effects due to constraints on

the parameter space of the variance components. For example, in the model selec-

tion context one typically is interested in testing the hypothesis that the variance

component is zero, a boundary condition.

A challenge in using likelihood approaches for the estimation of mixed effect mod-

els, and hence in model selection, is that the likelihood cannot be computed analyt-

ically. Several approximation methods have been developed. Sinharay and Stern

(2001) summarize the major approaches, including marginal maximum likelihood,

restricted maximum likelihood, and quasilikelihood. The marginal maximum likeli-

hood approach evaluates the likelihood using quadrature or a Laplace approximation

and computes maximum likelihood estimates of model parameters using traditional

numeric optimization approaches. This approach tends to underestimate variance

parameters; hence, Stiratelli et al. (1984) suggest an approximate E-M algorithm for
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computing the restricted maximum likelihood estimate of the variance matrix. An-

other alternative from Breslow and Clayton (1993) is the quasilikelihood method, in

which a Laplace approximation is used to integrate out the random effects.

Using these approaches for approximating the likelihood, likelihood ratio test

statistics can be computed; however, the problem with testing of variance parame-

ters on the boundary of their support remains. Potentially one could get around this

problem by using a parametric bootstrap to simulate values from the null distribution

of the likelihood ratio statistics (Sinharay and Stern, 2001). Several other frequentist

tests for homegeneity of variance components have been proposed. In the setting of

linear mixed models with one variance component, Crainiceanu and Ruppert (2004)

derived finite and asymptotic distributions of likelihood ratio test statistics. Such

results are not yet available for logistic mixed models. Lin (1997) proposed a score

test for whether all variance components in generalized linear mixed model (GLMM)

are zero (See also Verbeke and Molenberghs (2003) and Hall and Praestgaard (2001));

however, such methods cannot be used for general comparisons of models with differ-

ent numbers of random effects. Jiang et al. (2006) recently proposed an innovative

“fence” method to select predictors with random effects in linear mixed models; how-

ever, this approach does not allow inferences on whether a given predictor has a

random component, and uncertainty in the model selection process is not accounted

for.

Given the practical difficulties that arise in implementing a frequentist approach

to this problem, we focus on Bayesian methods. An advantage of Bayesian model

selection is that one can account for the uncertainty in the selection process, hence

the term, “model uncertainty.” In the Bayesian approach one bases inferences on

estimates of the exact posterior distribution obtained using an MCMC algorithm,

with the estimation accuracy improving with the number of MCMC iterations. An-
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other advantage is the greater flexibility in comparing models with differing numbers

of variance components. Potential disadvantages include computational burden and

sensitivity to the prior.

This chapter discusses the selection of fixed and random effects in mixed effects

models. Bayesian model uncertainty is reviewed in Section 1, and in the context of

mixed models in Section 2. Section 3 describes a Bayesian approach for linear mixed

models and discusses prior specification. A modification for binary logistic models

in Section 4. Section 5 provides a simulation example and Section 6 a data example.

Additional extensions are discussed in Section 7 and concluding remarks are given in

Section 8.

4.1 Bayesian Model Uncertainty

Let us first consider a normal linear model y =Xβ+ε, ε ∼ N(0, σ2), with no random

effects. From the Bayesian perspective, the model parameters are considered random

variables with probability distributions; hence, uncertainty is expressed in terms of

probability. When fitting the model, prior distributions are assigned to each param-

eter and then the posterior distributions induced are used to make inferences about

the parameters of interest. Often the posterior distributions are obtained numeri-

cally using MCMC methods and then inferences are made by computing summaries

of these distributions, such as posterior means and probability intervals.

In the Bayesian framework model uncertainty can be addressed simultaneously

with parameter uncertainty by placing priors p(Mk) on each possible modelM1, . . . ,MK

in addition to the model parameters p(β|Mk, σ
2) and p(σ2). The posterior model

probabilities are determined by

p(Mk|y) =
p(y|Mk)p(Mk)

∑

k p(y|Mk)p(Mk)
,
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where

p(y|M) =

∫

p(y|β, σ2,M)p(β|σ2,M)p(σ2)dβ, dσ2

is the marginal likelihood of Mk. This marginal likelihood is available analytically

for normal linear regression models when conjugate normal inverse-gamma priors are

chosen for (β, σ2); however, in generalized linear models and in normal linear models

with random effects, the marginal likelihood will not be available analytically. In

such cases, it is common to rely on the Laplace approximation, or to use simulation-

based approaches to approximate the marginal likelihood and/or posterior model

probabilities. The model posteriors p(M1|y), . . . , p(MK |y) can be used to select one

or more models having high posterior probability and provide a measure of the model

uncertainty.

A challenge in model selection is that the number of models 2p increases rapidly

with p. Efficient MCMC algorithms such as Gibbs sampling (Gelfand and Smith,

1990) are used to rapidly search for models with high posterior probability, so that

every model need not be visited. George and McCulloch (1997) propose a promis-

ing Bayesian approach for subset selection called stochastic search variable selection

(SSVS). This method uses a Gibbs sampler to search for models having high posterior

probability by (i) starting with the full model containing all p candidate predictors;

(ii) choosing mixture priors that allow predictors to drop out by zeroing their coeffi-

cients; and (iii) running a Gibbs sampler relying on conditional conjugacy to sample

from the posterior distribution. The resulting draws will differ in the subset of pre-

dictors having non-zero coefficients and, after discarding initial burn-in draws, one

can estimate the posterior model probabilities using the proportion of MCMC draws

spent in each model. In general, all 2p models will not be visited; hence, many or

most of the candidate models will be estimated to have zero posterior probability.

Although there is no guarantee that the model with highest posterior probability will
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be visited when p is large, SSVS tends to quickly locate good models. Model-averaged

estimates may also be obtained for model coefficients by averaging the parameter es-

timates over all MCMC draws, and marginal inclusion probabilities for each predictor

estimated by the proportion of draws spent in models containing that predictor.

4.1.1 Bayes factors

When proper priors are used, posterior model probabilities can be used to compare

two models by computing the posterior odds, or Bayes factor

p(M1|y)
p(M0|y)

=
p(y|M1)

p(y|M0)
× p(M1)

p(M0)
.

Often the prior odds ratio is taken to be 1, representing no preference for either

model, and hence the Bayes factor is the ratio p(y|M1)/p(y|M0). Bayes factors are

commonly used to summarize the relative evidence provided by the data in support

of one model against another. Their interpretation as posterior odds tends to be

more intuitive than that of the p-value. They can also be used to quantify evidence

for a null hypothesis, an important distinction from failing to find evidence against it.

Bayes factors also have the advantage over p-values of allowing multiple hypotheses

to be simultaneously compared and can be used to compare non-nested models with

differing numbers of terms.

Approximations to the Bayes factor such as the Bayesian Information Criterion

(BIC) are popular for model comparisons given their relative ease of computation.

They are also appealing in that they provide a default approach for approximating

posterior model probabilities that does not require the specification of the prior dis-

tribution. While the BIC provides a good approximation in a wide range of problems

(Raftery, 1995), it is not appropriate for some common models, including hierarchical
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models (Pauler et al., 1999), and models where the number of parameters increases

with sample size or other irregular asymptotics occur (Berger et al., 2003).

Bayes factors are sometimes criticized for their sensitivity to the prior specification

and inability to handle improper priors. It is important to either choose an infor-

mative prior based on subject matter knowledge or to choose a proper default prior,

chosen to yield good Bayesian and/or frequentist properties. In subset selection for

normal linear regression models, the Zellner-Siow prio (Zellner and Siow, 1980) is a

commonly-used default, with recent work proposing alternative mixtures of g-priors

(Liang et al., 2005). Several alternative approaches for obtaining default approxi-

mations have been developed to address this including local Bayes factors (Smith

and Spiegelhalter, 1980), expected posterior prior (Perez and Berger, 2000), intrinsic

Bayes factors (Berger and Pericchi, 1996), and fractional Bayes factors (O’Hagan,

1995). Berger and Pericchi (2001) compare several of these approaches with the BIC

for conventional linear models. These approaches have wide applicability, particu-

larly in non-nested models or where conventional prior distributions are unavailable

(Clyde and George, 2004).

4.2 Approaches for mixed effects models

While a great body of work exists on Bayesian model selection for fixed effects, there

is very little work on selection of random effects. Pauler et al. (1999) compare vari-

ance component models using Bayes factors and Sinharay and Stern (2001) consider

the problem of comparing two GLMMs using the Bayes factor. Motivated by sen-

sitivity to the choice of prior, Chung and Dey (2002) develop an intrinsic Bayes

factor approach for balanced variance component models. Chen and Dunson (2003)

developed a more general stochastic search variable selection (SSVS) (George and

McCulloch, 1993; Geweke, 1996) approach to the linear mixed effects model. Rely-
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ing on Taylor series approximators to intractable integrals, Cai and Dunson (2006)

recently extended this approach to all GLMMs.

4.2.1 Bayes factor approximations

The BIC is not appropriate for comparing models with differing numbers of random

effects as the required regularity conditions are not met when the parameter lies on

the boundary (Pauler et al., 1999). Several Bayes factor approximations for testing

variance components are reviewed in Sinharay and Stern (2001). Most of these involve

estimation of p(y|M1) and p(y|M0) to obtain the Bayes factor. A modification to the

Laplace approximation used to obtain the BIC (Raftery, 1995) which accomodates

the boundary case is proposed by Pauler et al. (1999). As p(y|M) is an integral,

numerical approaches for integral evaluation are available, such as quadrature and

importance sampling.

A practical issue with importance sampling is the selection of the target distri-

bution. Meng and Wong (1996) extend the importance sampler idea and suggest a

bridge sampling approach for approximating p(y|M). An MCMC algorithm using

Gibbs sampling was developed by Chib (1995). A harmonic estimator, consistent for

simulations though otherwise unstable, is proposed by Newton and Raftery (1994).

Lastly, an approach suggested by Green (1995) is described which computes the

Bayes factors directly using a reversible-jump MCMC algorithm which can move

between models with parameter spaces of differing dimension. This is likely to be

computationally intensive, and in Sinharay and Stern (2001) indeed it was the slowest

approach, whereas the Laplace approximation was the fastest.
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4.2.2 Stochastic search variable selection

In extending Bayesian model selection procedures for linear models to linear mixed

effects models the two primary considerations are the prior specification and posterior

computation. The structure of the random effects covariance matrix needs to be

considered, and the model parameterizations and prior structure carefully chosen

so that the MCMC algorithm may move between models with both differing fixed

effects and random effects. The efficiency of the posterior computation also needs to

be considered; algorithms that explore the model space efficiently and quickly locate

areas of high posterior probability are needed.

As described in Section 4.1, stochastic search variable selection (SSVS) is a promis-

ing approach for Bayesian model uncertainty using Gibbs sampling. The SSVS ap-

proach has been applied successfully in a wide variety of regression applications,

including challenging gene selection problems. One challenge in developing SSVS

approaches for random effects models is the constraint that the random effects co-

variance matrix Ω be positive semi-definite. Chen and Dunson (2003) addressed this

problem by using a modified Cholesky decomposition of Ω:

Ω = ΛΓΓ′Λ, (4.1)

where Λ is a positive diagonal matrix with diagonal elements λ = (λ1, . . . , λq)
′ pro-

portional to the random effects standard deviations, so that setting λl = 0 is equiva-

lent to dropping the lth random effect from the model. Γ is a lower triangular matrix

with diagonal elements equal to 1 and free elements that describe the random effects

correlations. In the case of independent random effects, Γ is simply the identity

matrix I and the diagonal elements λl, l = 1, . . . , q of Λ equal the random effects

standard deviations.
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In the next section, we revisit the SSVS approach of Chen and Dunson (2003) for

linear mixed models, with additional consideration given to the prior structure and

posterior computation. We will then discuss an extension to logistic models.

4.3 Linear mixed models

If we have n subjects under study, each with ni observations, i = 1, . . . , n, let yij

denote the jth response for subject i, X ij a p×1 vector of predictors, and Z ij a q×1

vector of predictors. Then the linear mixed effects (LME) model is denoted as

yij =X
′
ijβ +Z ′

ijai + εij, εij ∼ N(0, σ2) (4.2)

where ai ∼ N(0,Ω). Here β = (β1, . . . , βp)
′ are the fixed effects and ai = (ai1, . . . , aiq)

′

are the random effects. In practice Z ij is typically chosen to be a subset of the pre-

dictors inX ij believed to have random effects, often only the intercept for simplicity.

If we let X ij and Zij include all candidate predictors, then the problem of interest

is to locate a subset of these predictors to be included in the model.

Using the covariance decomposition in (4.1) so we can use SSVS, we write (4.2)

as

yij =X
′
ijβ +Z ′

ijΛΓbi + εij, εij ∼ N(0, σ2) (4.3)

where bi ∼ N(0, I). Chen and Dunson (2003) show that by rearranging terms,

the diagonal elements, λl, l = 1, . . . , q, of Λ can be expressed as linear regression

coefficients, conditional on Γ and bi. Similarly, the free elements γk, k = 1, . . . , q(q−

1)/2, of Γ can be expressed as linear regression coefficients, conditional on Λ and

bi. Hence the variance parameters λ and γ have desirable conditional conjugacy
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properties for constructing a Gibbs sampling algorithm for sampling the posterior

distribution and we are able to use the SSVS approach.

4.3.1 Priors

Prior selection is a key step in any Bayesian analysis; however, in this context it is

particularly important as problems can arise when default priors are applied without

caution. In particular, flat or excessively diffuse priors are not recommended for

hierarchical models given the potential for an improper posterior and the difficulty of

verifying propriety due to the intractable nature of the density, even when the output

from a Gibbs chain seems reasonable (Hobert and Casella, 1996). Proper distributions

are also desired for Bayes factors to be well-defined (Pauler et al., 1999). The arbitrary

multiplicative constants from improper priors carry over to the marginal likelihood

p(y|M) resulting in indeterminate model probabilities and Bayes factors (Berger and

Pericchi, 2001).

A mixture of a point mass at zero and a normal or heavier-tailed distribution is

a common choice of prior for fixed effects coefficients, βl, l = 1, . . . , p, in Bayesian

model selection problems. Smith and Kohn (1996) introduce a vector J of indicator

variables, where Jl = 1, indicates that the lth variable is in the model, l = 1, . . . , p,

and assign a Zellner g prior (Zellner and Siow, 1980) to βJ , the vector of coefficients

in the current model. As a notational convention, we let β denote the p × 1 vector

({βl : Jl = 1} = βJ , {βl : Jl = 0} = 0). Hence, conditional on the model index J ,

the prior for β is induced through the prior for βJ .

Consistency issues can arise when comparing models based on these priors; how-

ever, for linear models, placing a conjugate gamma prior on g induces a t prior on the

coefficients. In the special case where the t distribution has degrees of freedom equal

1, the Cauchy distribution is induced, which has been recommended for Bayesian

108



robustness (Clyde and George, 2004). This can be considered a special case of mix-

tures of g-priors, proposed by Liang et al. (2005) as an attractive computational

solution to the consistency and robustness issues with g-priors, and an alternative

to the Cauchy prior, which does not yield a closed-form expression for the marginal

likelihood. As choosing g can affect model selection, with large values concentrating

the prior on small models with a few large coefficients and small values of g concen-

trating the prior on saturated models with small coefficients, several approaches for

handling g have been proposed (Liang et al., 2005). Recommendations include the

unit information prior (Kass and Wasserman, 1995), which in the normal regression

case corresponds to choosing g = n, leading to Bayes factors that behave like the BIC

and the hyper-g prior of Liang et al. (2005). Foster and George (1994) recommend

calibrating the prior based on the risk inflation criterion (RIC) and Fernandez et al.

(2001) recommend a combination of the unit information prior and RIC approach.

Another alternative is a local empirical Bayes approach, which can be viewed as es-

timating a separate g for each model, or global empirical Bayes, which assumes a

common g but borrows strength from all models (Liang et al., 2005).

For standard deviation parameters in hierarchical models, Gelman (2005) rec-

ommends a family of folded-t prior distributions over the commonly used inverse

gamma family, due to their flexibility and behavior when random effects are very

small. These priors are induced using a parameter-expansion approach which has the

added benefit of improving computational efficiency by reducing dependence among

the parameters (Liu et al., 1998; Liu and Wu, 1999). This yields a Gibbs sampler

less prone to slow mixing when the standard deviations are near zero. The Chen and

Dunson (2003) approach had the disadvantages of (i) relying on subjective priors

that are difficult to elicit, and (ii) computational inefficiency due to slow mixing of

the Gibbs sampler; hence a parameter-expanded model is used to address these two
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problems.

Extending the parameter expansion approach proposed by Gelman (2005) for

simple variance component models to the LME model, (4.3) is replaced with:

yij =X
′
ijβ +Z ′

ijAΓξi + εij, εij ∼ N(0, σ2), (4.4)

where ξi ∼ N(0,D) and A = diag(α1, . . . , αq)
′ and D = diag(d1, . . . , dq)

′ are diago-

nal matrices, αl ∼ N(0, 1), l = 1, . . . , q, and dl ∼ IG(1
2
, N
2
), l = 1, . . . , q, IG denoting

the inverse gamma distribution. Note that the latent random effects have been mul-

tiplied by a redundant multiplicative parameter. In this case the implied covariance

decomposition is Ω = AΓDΓ′A.

The parameters αl, l = 1, . . . , q, are proportional to λl and thus to the random

effects standard deviations, so setting αl = 0 effectively drops out the random effects

for the lth predictor. When random effects are assumed to be uncorrelated, i.e., Γ = I

and λl, l = 1, . . . , q equal the random effects standard deviations, a folded t prior on

λl = |αl|
√
dl, l = 1, . . . , q is induced, as described in Gelman (2005). Generalizing

to the case of correlated random effects, a folded-t prior is not induced; however,

improved computational efficiency is still achieved, as illustrated in Section 4.5.

In the proposed prior structure a Zellner-type prior is used for the fixed effects

components. Specifically, βJ ∼ N
(

0, σ2(XJ′XJ)−1/g
)

, g ∼ G(1
2
, N
2
), σ2 ∝ 1

σ2 , and

Jl ∼ Be(p0), l = 1, . . . , p, with Be denoting the Bernoulli distribution and G(a, b)

denoting the Gamma distribution with mean a/b and variance a/b2. Let αl, l =

1, . . . , q, have a zero-inflated half-normal prior, ZI − N+(0, 1, pl0), where pl0 is the

prior probability that αl = 0. Lastly, the free elements of Γ are treated as a q(q−1)/2-

vector with prior p(γ|α) = N(γ0,V γ) · 1(γ ∈ Rα) where Rα constrains elements

of γ to be zero when the corresponding random effects are zero. For simplicity,

uncertainty in which random effects are correlated is not allowed.
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4.3.2 Posterior computation

The joint posterior distribution for θ = (α,β,γ, σ2) is given by:

p(θ|y) ∝
n
∏

i=1

Np(ξi;0,D)

ni
∏

j=1

{

N(yij;X
′
ijβ +Z ′

ijAΓξi, σ
2)
}

×p(σ2)p(β,J , g)p(α,γ)p(D) (4.5)

This distribution has a complex form which we cannot sample from directly; instead

we employ a parameter-expanded Gibbs sampler (Liu et al., 1998; Liu and Wu, 1999).

The Gibbs sampler proceeds by iteratively sampling from the full conditional distri-

butions of all parameters α,γ,β, σ2, hyperparameters g and J , and the diagonal

elements dl, l = 1, . . . , q of D.

The full conditional posterior distributions are given in Appendix A and follow

from (4.5) using straightforward algebraic routes. After discarding draws from the

burn-in period, posterior summaries of model parameters can be estimated the usual

way from the Gibbs sampler output. Models with high posterior probability can be

identified as those appearing most often in the output and considered for further eval-

uation. Marginal inclusion probabilities for a given coefficient may also be calculated

using the proportion of draws in which the coefficient is nonzero.

4.4 Binary Logistic Mixed Models

Logistic mixed models are widely used, flexible models for unbalanced repeated mea-

sures data. The proposed approach for logistic mixed models is to formulate the

model in such a way that its coefficients are conditionally linear and the SSVS ap-

proach can again be applied. This entails the use of a data augmentation strategy and

approximation of the logistic density, with approximation error corrected for using
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importance weights. The covariance decomposition in (4.1) and parameter expansion

approach described in Section 4.3.1 are again used.

Defining terms as in (4.3), the logistic mixed model for a binary response variable

y is written as:

logit(P (yij = 1|X ij,Zij,β,ai)) =X
′
ijβ +Z ′

ijai, ai ∼ N(0,Ω) (4.6)

We would like to be able to apply the SSVS approach as in the normal case. If

we apply the covariance decomposition in (4.1) to the logistic mixed model, we have:

logit(P (yij = 1|X ij,Zij,β,λ,γ, bi)) =X
′
ijβ +Z ′

ijΛΓbi, bi ∼ N(0, I) (4.7)

In this case the model is nonlinear and we do not immediately have conditional

linearity for the variance parameters λ and γ as in the normal case. In order to

obtain conditional linearity for the model coefficients, we take advantage of the fact

that the logistic distribution can be closely approximated by the t distribution (Albert

and Chib, 1993; Holmes and Knorr-Held, 2003; O’Brien and Dunson, 2004), and that

the t distribution can be expressed as a scale mixture of normals (West, 1987).

First, note that (4.7) is equivalent to the specification:

yij =

{

1 wij > 0
0 wij ≤ 0

,

where wij is a logistically distributed random variable with location parameterX ′
ijβ+

Z ′
ijΛΓbi and density function

L(wij|X ij,Zij,β,λ,γ) =
exp{−(wij −X ′

ijβ −Z ′
ijΛΓbi)}

{1 + exp[−(wij −X ′
ijβ −Z ′

ijΛΓbi)]}2
.

Then, as wij is approximately distributed as a non-central tν with location pa-

rameterX ′
ijβ+Z

′
ijΛΓbi and scale parameter σ̃2, we can express it as a scale mixture
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of normals and write:

wij =X
′
ijβ +Z ′

ijΛΓbi + εij, εij ∼ N(0, σ̃2/φij) (4.8)

where φij ∼ G(ν
2
, ν
2
). Setting ν = 7.3 and σ̃2 = π2(ν−2)/3ν makes the approximation

nearly exact. The approximation error, though negligible except in the extreme tails,

may be corrected for by importance weighting when making inferences. Under this

model formulation, we have a model in which all coefficients are conditionally normal,

and we are able to apply SSVS to the problem. We also are able to take advantage

of the improved computational efficiency of a parameter expanded model as in (4.4).

Applying the parameter expansion to (4.8) we have:

wij =X
′
ijβ +ZijAΓξi + εij, εij ∼ N(0, σ̃2/φij)

where terms are defined as in (4.4) and (4.8). We will use this model formulation to

propose a prior structure and compute posterior distributions.

4.4.1 Priors and posterior computation

We use the same priors for the random effects parameters as in the normal case, and

similar priors for the fixed effects parameters. We specify βJ ∼ N
(

0, (XJ′XJ)−1/g
)

,

g ∼ G(1
2
, N
2
), and Jl ∼ Be(p0), l = 1, . . . , p. Using the t-distribution to approx-

imate the likelihood as previously described, the joint posterior distribution for

θ = (α,β,γ,φ) is given by:

p(θ|y) ∝ p(β,J , g)p(γ,α)p(D)

(

n
∏

i=1

Nq(ξi;0,D)

×
ni
∏

j=1

[

N

(

wij;X ijβ +ZijAΓξi,
σ̃2

φij

)

{1(wij > 0)yij + 1(wij ≤ 0)(1− yij)}p(φij)
]

)

.

(4.9)
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Again we have a complex posterior from which we cannot directly sample and we

employ a Gibbs sampler. In introducing a latent variable wij we have applied a data

augmentation strategy related to Albert and Chib (1993) and used for multivariate

logistic models by O’Brien and Dunson (2004). This auxiliary variable is updated in

the Gibbs sampler and its full conditional posterior follows immediately from (4.9)

as a normal distribution truncated above or below by 0 depending on yij:

p(wij|θ, yij)

=
N
(

wij;X ijβ +Z ′
ijAΓξi,

σ̃2

φij

)

· 1 ((−1)yijwij < 0)

Φ
(

0;X ′
ijβ +Z ′

ijAΓξi,
σ̃2

φij

)1−yij {

1− Φ
(

0;X ′
ijβ +Z ′

ijAΓξi,
σ̃2

φij

)}yij
(4.10)

where Φ(·) indicates the normal cumulative distribution function. The Gibbs sampler

proceeds by iteratively sampling from the full conditional distributions of all parame-

ters α,γ,β,φ, hyperparameters g and J , as well as the latent variable ξi, i = 1, . . . , n

and the diagonal elements dl, l = 1, . . . , q of D. The full conditional posterior distri-

butions follow from (4.9). They are similar in form to the normal case and are given

in Appendix A.

This Gibbs sampler generates samples from an approximate posterior as we have

approximated the logistic likelihood in (4.8). To correct for this, importance weights

(Hastings, 1970) may be applied when computing posterior summaries to obtain

exact inferences. If we haveM iterations of the Gibbs sampler, excluding the burn-in

interval, then the importance weights r(t), t = 1, . . . ,M can be computed as:

r(t) =
n
∏

i=1

ni
∏

j=1

L(wij;X
′
ijβ +Z ′

ijAΓξi)

Tν(wij;X
′
ijβ +Z ′

ijAΓξi, σ̃
2)

where L(·) is the logistic density function and Tν(·) is the t density function with

degrees of freedom ν.
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Posterior means, probabilities, and other summaries of the model parameters can

be estimated from the Gibbs sampler output using an importance-weighted sample

average. For example, the posterior probability for a given model m is the sum of the

weights corresponding to each occurence of model m in the posterior sample, divided

by the sum of all M weights. The approximation is very close and hence the weights

are close to one. In the simulation and data examples I found very little difference

between weighted and unweighted results.

In lieu of approximating the logistic distribution with the t distribution, the slice

sampler for sampling from the exact posterior distribution as applied by Gerlach et al.

(2002) to variable selection for logistic models was also considered. In this approach,

the model is considered linear with response variable vij = logit(p(yij = 1)), the

vector of log odds, and vij = logit(p(yij = 1)) =X ′
ijβ+Z ′

ijΛΓbi+ εij, εij ∼ N(0, σ2).

The vector vijis updated in a data-augmented Gibbs sampler where an auxiliary

variable uij ∼ U
(

0, 1
1+exp(vij)

)

is introduced so that the full conditional posterior

distribution for vij is simplified to a truncated normal distribution as follows:

p(vij|yij,X ij,Zij,β,α,γ, σ
2) ∝ p(yij|vij) · p(vij|X ij,Zij,β,α,γ, σ

2)

∝
(

evijyij

1 + evij

)

·N(X ′
ijβ +Z ′

ijAΓξi, σ
2)

p(vij|uij,X ij,Zij,β,α,γ, σ
2) ∝ p(uij|vij)p(vij|X ij,Zij,β,α,γ, σ

2)

∝ N(X ′
ijβ +Z ′

ijAΓξi + σ2yij, σ
2)

×1
(

vij < log

(

1− uij
uij

))

While slice sampling in general has been noted to have appealing theoretical

properties (Neal, 2000; Mira and Tierney, 2002), it demonstrated unsatisfactory con-

vergence properties due to asymmetries induced by the likelihood (Green, 1997). In

simulations using the slice sampler approach, the correct models were quickly lo-
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cated; however, the Gibbs chains for nonzero model coefficients were extremely slow

to converge.

4.5 Simulation Examples

This section evaluates the proposed approach using a simulation example for a bi-

nary response logistic model. Three covariates are generated from U(−2, 2) for 30

observations on each of 200 subjects, so X ij = (1, Xij1, Xij2, Xij3)
′. Let Z ij = X ij,

β = (1, 0, 1, 1)′ and αi ∼ N(0,Ω), with a range of realistic values chosen for the

random effects variances:

Ω =









.90 .48 .06 0

.48 .40 .10 0

.06 .10 .10 0
0 0 0 0









The response logit(P (yij = 1)) is generated according to model (4.6) and then yij

is drawn from Be(p(yij)). Following the prior specification outlined in Section 4.1,

heavy-tailed priors are induced on the fixed effects coefficients and random effects

variances. These default priors do not require subjective choice of hyperparameter

values, with the exception of the prior inclusion probabilities, which can be chosen as

p = 0.5 to give equal probability to inclusion and exclusion, and the prior mean and

variance of γ. This prior specification does include an informative normal prior for γ;

however, γ is scaled in the parameter-expanded model and hence an informative prior

can reasonably be chosen. A prior that modestly shrinks the correlations towards

zero is desirable for stable estimation while still allowing the data to inform the

relationships between the random effects. As a reasonable choice, the prior mean

and variance for γ are chosen to be 0 and 0.5I, which can be used as a default in

other applications.
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The Gibbs sampler is run for 20,000 iterations, after a burnin period of 5000 iter-

ations. Three chains with dispersed starting values were run and found to converge

after a few thousand iterations. The resulting MCMC chains for the random effects

variances are shown in Figure 4.1 and the posterior means for the fixed effects co-

efficients and random effects variances are given in Table 4.1, along with the PQL

estimates computed by glmmPQL in R.

The simulation results are compared to the penalized quasi-likelihood (PQL) ap-

proach (Breslow and Clayton, 1993), as this approach is widely used for estimating

GLMMs. Although the focus of this chapter is on selection and inferences in the vari-

ance components allowing for model uncertainty, which is not addressed by current

frequentist methods, model-averaged coefficient estimates are also obtained. Based

on the limited number of simulations run, these estimates tend to be less biased, or

closer to the true values than the PQL estimates, which are also known to be biased

(Breslow, 2003; Jang and Lim, 2005). The MCMC algorithm is too computation-

ally intense to run a large enough simulation to definitively assess the frequentist

operating characteristics of the proposed approach.

Credible intervals for the random effects variances can also be computed. To my

knowledge, methods for estimating valid frequentist confidence intervals for variance

components remain to be developed. In addition, the proposed method allows simul-

taneous computation of the marginal posterior inclusion probabilities for both the

fixed effects and random effects and correctly locates the true model as the one with

highest posterior probability.

To evaluate sensitivity to the prior inclusion probability, the simulation is repeated

with prior probabilities set to 0.2 and 0.8, with very little effect on the posterior

means shown in Table 4.1. Posterior model probabilities were slightly different when

the prior inclusion probabilities were changed; however there was no difference in
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Table 4.1: Simulation results
Parameter True PQL 95% CI Post. Mean 95% CI Pr(inc.)

β0 1.0 0.901 (0.753,1.048) 0.892 (0.759, 1.027) 1.000
β1 0.0 0.031 (-0.062,0.125) 0.001 (0.000, 0.006) 0.044
β2 1.0 0.900 (0.820,0.980) 0.929 (0.845, 1.016) 1.000
β3 1.0 0.961 (0.896,1.025) 0.990 (0.920, 1.061) 1.000
ω1 0.9 0.899 0.958 (0.721, 1.252) 1.000
ω2 0.4 0.298 0.315 (0.221, 0.427) 1.000
ω3 0.1 0.143 0.136 (0.072, 0.215) 1.000
ω4 0.0 0.026 0.000 (0.000, 0.000) 0.008

parameter estimates, inferences or model ranking. In each case the true model had

the highest posterior probability.

To evaluate the effect of using the priors induced by the parameter expanded

model, simulation results are compared between two Gibbs samplers, one includ-

ing and one excluding the redundant multiplicative parameter in the random effects

component. As expected, there is no real difference in the point estimates; how-

ever, as seen in Figure 4.2, the parameter expansion approach resulted in improved

computational efficiency and MCMC chains for the random effects variances. Ta-

ble 4.2 shows the reduction in autocorrelation in the Gibbs chains. Note we have

not directly drawn from the posterior distribution of the variances, rather we have

computed them from the MCMC draws for α,γ,λ and d. The overparameterization

causes the Gibbs chains for these parameters to mix poorly, but in combination they

produce well-behaved chains for the random effects variances.

4.6 Epidemiology Application

As a motivating example, we consider data from the Collaborative Perinatal Project

(CPP) conducted between 1959 and 1966. The desired inference is the effect of DDE,

a metabolite of DDT, as measured in maternal serum, on pregnancy loss, a binary
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Table 4.2: Autocorrelations in Gibbs chains, with and without parameter expansion

Lag: 1 2 3 4 5 6 7 8 9

ω1

w/o par exp 0.902 0.810 0.726 0.645 0.574 0.511 0.451 0.392 0.342
w/par exp 0.422 0.350 0.288 0.252 0.208 0.177 0.154 0.142 0.132

ω2

w/o par exp 0.783 0.653 0.558 0.484 0.422 0.369 0.324 0.286 0.251
w/par exp 0.563 0.461 0.375 0.326 0.290 0.251 0.222 0.184 0.160

ω3

w/o par exp 0.853 0.756 0.682 0.618 0.572 0.529 0.487 0.450 0.422
w/par exp 0.811 0.711 0.639 0.574 0.520 0.477 0.441 0.417 0.388

ω4

w/o par exp 0.808 0.629 0.439 0.335 0.228 0.162 0.087 0.038 0.008
w/par exp 0.595 0.399 0.358 0.295 0.198 -0.001 -0.001 -0.001 -0.001
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Figure 4.1: Gibbs chains for random effects variances
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Figure 4.2: Illustration of parameter expansion effect on mixing of the Gibbs sam-
pler
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response variable. Potential confounding variables include mother’s age, body mass

index, smoking status, and serum levels of cholesterol and triglycerides. Data were

collected across twelve different study centers and there is potential for heterogeneity

across centers. The problem of interest is to select a logistic mixed effects model

relating DDE levels and pregnancy loss, accounting for heterogeneity among study

centers in those factors that vary in their effects across centers. In addition, inferences

on whether predictors such as DDE vary in their effect is of substantial interest.

Let yij = 1 be a binary response variable indicate pregnancy loss for participant

j in study center i, i = 1, . . . , 12; j = 1, . . . , ni, for 5389 total participants. The

covariate vector is X ij = (1, Xij1, . . . , Xij5)
′ where Xij1 is the level of DDE, and

Xij2, . . . , Xij5 are the potential confounding variables. All covariates are continuous

and centered at their means, and we let Z ij = X ij, thus considering all coefficients,

including the intercept, for possible heterogeneity among centers.

Priors were chosen as in the simulation example and the Gibbs sampler run for

30,000 iterations after a burnin period of 5,000. The Gibbs sampling results indicate

that there is no heterogeneity present among study centers and that a fixed effects

model is appropriate. The preferred model, as shown in Table 4.3, includes only

the intercept, body mass index, and age, as predictors. The posterior means for

all variances are close to zero. A few models with nonzero posterior probability do

contain a random effect. The posterior means for the fixed effect are similar to the

PQL results returned by glmmPQL in R for the full model, shown in Table 4.4. These

results also show that DDE did not have an appreciable effect on pregancy loss in the

CPP study. The PQL results indicate that DDE had a very small but statistically

significant effect; however, this may be due to bias in the PQL approach. Applying the

BIC criteria to select the best fixed effects model yields the high posterior probability

model shown in Table 4.3.
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Table 4.3: Models with highest posterior probability
Prob Model
.58 X0, Xbmi, Xage

.16 X0, Xage

.09 X0, Xbmi, Xage, Xdde

.05 X0, Xchol, Xbmi, Xage

.03 X0, Xage, Xdde

.02 X0, Xtg, Xbmi, Xage

.01 X0, Xbmi, Xage, Zchol

.01 X0, Xchol, Xage

.01 X0, Xchol, Xbmi, Xage, Xdde

.01 X0, Xage, Zbmi

Table 4.4: Posterior summary of fixed effects in CPP example
PQL 95% CI Mean 95% CI p(βl = 0)

β0 -1.813 (-1.943, -1.700) -1.793 (-1.871 ,-1.716) 0.000
βtg 0.014 (-0.087, 0.101) 0.000 ( 0.000 , 0.000) 0.968
βchol -0.081 (-0.219, -0.001) -0.002 (-0.034, 0.000) 0.932
βbmi -0.138 (-0.229, -0.055) -0.096 (-0.210 , 0.000) 0.239
βage 0.295 (0.211, 0.372) 0.279 (0.205 , 0.352) 0.000
βdde 0.088 (0.009, 0.189) 0.005 (0.000 , 0.067) 0.876
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4.7 Other models

4.7.1 Logistic models for ordinal data

This framework can also be adapted to accommodate logistic mixed models with

ordinal response variables yij ∈ {1, . . . , C}:

logit(P (yij ≤ c|X ij,Zij,β,ai, τ )) = τc −X ′
ijβ −Z ′

ijai, c ∈ {1, . . . , C} (4.11)

where terms in the linear predictor are as defined in (4.3) and τ = (τ1, . . . , τC−1)
′

where τ1 = 0 for identifiability and −∞ = τ0 < τ1 < · · · < τC = ∞ are thresh-

old parameters for the ordered categories. The data augmentation stochastic search

Gibbs sampler can be applied to (4.11) with modifications to truncate wij to [τc−1, τc]

for yij = c and to update the threshold parameters τ . Although updating of τ

can potentially proceed after augmentation as described in Albert and Chib (1993),

such an approach has a tendency to mix very slowly (Johnson and Albert, 1999). A

modification in which the latent variables {wij} are integrated out and a Metropolis-

Hastings step is used yields better results. An alternative, which allows the base-

line parameters τ to be updated jointly from a multivariate normal posterior af-

ter augmentation, is to consider a continuation-ratio logit formulation of the form

logit(P (yij = c|yij ≥ c,X ij,Zij,β,ai)) = X ′
ijβ + Z ′

ijai, instead of (4.11) (Agresti,

1990). Such formulations characterize the ordinal distribution in terms of the discrete

hazard so are natural in time to event applications (Albert and Chib, 2001).

4.7.2 Probit models

Logistic models are often preferred over probit models due to the more intuitive inter-

pretation of their regression coefficients in terms of odds ratios; however, it is worth

noting that the approach for normal models is easily modified to accomplish model se-

lection for probit mixed models by applying the well-known data augmentation Gibbs
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sampler described in Albert and Chib (1993). For example, using a binary response

probit model of the form P (yij = 1) = Φ(X ′
ijβ+Z

′
ijai), we introduce a latent variable

vij such that yij = 1(vij > 0) and vij ∼ N(X ′
ijβ + Z ′

ijai, 1), yielding a conditional

posterior distribution for vij ofN(X ′
ijβ+Z

′
ijai, 1)·{1(vij > 0)yij+1(vij < 0)(1−yij)}.

After updating vij, the MCMC algorithm proceeds as in the normal case, except that

σ2 = 1. In simulations this algorithm exhibited good mixing and convergence prop-

erties. This algorithm could also be adapted for ordinal probit models as described

in the preceeding section.

4.8 Discussion

The Bayesian framework for model selection with mixed effects models discussed

here is advantageous in that it allows for fixed and random effects to be selected

simultaneously. Additionally it allows for marginal posterior inclusion probabilities

to be computed for each predictor along with model-averaged coefficient estimates.

Posterior model probabilities can be used to compare models; whereas frequentist

testing for variance components is more limited.

In addition to model selection and averaging, the proposed prior structure and

computational algorithm should be useful for efficient Gibbs sampling for fitting

single mixed effects models. In particular, the prior and computational algorithm

represent a useful alternative to approaches that rely on inverse-Wishart priors for

variance components (e.g.Gilks et al. (1993)). There is an increasing realization that

inverse-Wishart priors are a poor choice, particularly when limited prior information

is available. Although this chapter focused on LMEs of the Laird and Ware (1982)

type, it is straightforward to adapt the methods for a broader class of linear mixed

models, accomodating varying coefficient models, spatially correlated data, and other

applications (Zhao et al., 2006).
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Gibbs sampling chains from random effects model parameters tend to exhibit slow

mixing and convergence. Gelfand et al. (1996) recommend hierarchical centering for

improved convergence and posterior surface behavior. Vines et al. (1994) also propose

a transformation of random effects to improve mixing. A challenge in implementing

the hierarchically centered model is to efficiently update the correlation matrix in

the context of random effects selection where we are interested in separating out the

variances. One solution is proposed by Chib and Greenberg (1998); however, it is

prohibitively slow for more than a couple random effects. Further work is needed

to develop fast approaches that can be easily implemented and incorporated into

software packages.
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Chapter 5

Model selection with partially synthetic

data

This chapter considers the problem of conducting model selection with partially syn-

thetic data. As described in Section 1.2, partially synthetic datasets are constructed

by replacing a portion of a confidential observed dataset with multiple imputations,

for the purpose of reducing the risks of disclosing confidential information. While

several inferential methods have been developed for various applications of multiple

imputation (See Reiter and Raghunathan, 2007), few methods have been developed

for conducting model selection with multiply-imputed data, and as far as I know, none

for partially synthetic data. As different implicates of a multiply-imputed dataset

may yield different model comparisons, a method for combining these inferences is

desired.

The approach taken here is to give careful consideration to the correct fully

Bayesian approach to obtaining posterior model probabilities from partially synthetic

datasets. This provides a starting point from which to implement different Bayesian

model selection procedures, such as a stochastic search variable selection algorithm

(George and McCulloch, 1997; Geweke, 1996), which allows for both parameter and

model uncertainty to be accounted for simultaneously, as discussed in Chapter 4. In

addition to posterior model probabilities, model-averaged parameter estimates can

be computed, along with marginal inclusion probabilities for each predictor. Also

of interest is a method for computing Bayes factors, or posterior odds, which are

commonly used to summarize the relative evidence provided by the data in support

of one model against another. While these can be computed using posterior proba-
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bilities estimated from a stochastic search algorithm, Bayes factor approximations,

such as the BIC, are popular for their relative ease of computation and default prior

specification. The availability of a simple Bayes factor approximation such as the

BIC would be a valuable tool for users of partially synthetic data.

The remainder of this chapter is organized as follows. Section 5.1 gives notation

and the general form for the appropriate likelihood and posterior model probability.

These are used to develop a stochastic search variable selection procedure, described

in Section 5.2, and Bayes factor approximations, described in Section 5.3. Section

5.4 provides concluding remarks and directions for future work.

5.1 Notation and motivation

For a finite population of size N , let Il = 1 if unit l is included in the survey, and

Il = 0 otherwise, where l = 1, . . . , N . Let I = (I1, . . . , IN), and let the sample size

n =
∑

Il. Let X be the N × d matrix of sampling design variables, e.g. stratum

or cluster indicators or size measures. The design variables X are assumed to be

known approximately for the entire population, for example from census records or

the sampling frame(s). Let Y be the N × p matrix of survey data for the population

and Yinc be the n × p matrix of survey data for the units sampled. Let Yinc = Yobs,

i.e., assume that all all selected units are observed and no missing values are present.

Let Zl = 1 if unit l is selected to have any of its data replaced with synthetic values,

and let Zl = 0 for those units with all data left unchanged. Let Z = (Z1, . . . , Zn).

The observed data is thus Dobs = (X,Yobs, I, Z).

Let Yrep be the values of Yobs which are to be replaced with multiple imputations,

let Y
(∗)
rep = {Y (1)

rep , . . . , Y
(m)
rep }, where Y (i)

rep are all the imputed (replaced) values in the

ith synthetic dataset, and let Ynrep be all unchanged (unreplaced) values of Yobs. The

Y
(i)
rep are generated from the conditional distribution of (Y

(i)
rep | Dobs, Z), or a close ap-
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proximation of it. Each synthetic data set, D
(i)
syn, then comprises (X,Y

(i)
rep, Ynrep, I, Z).

The entire collection of m data sets, Dsyn = {D(i)
syn, i = 1, . . . ,m} is released to the

public.

The available literature on model selection for multiply-imputed data is limited.

Aside from a few ad-hoc attempts to obtain a combined BIC in the applied literature

(e.g. Ball, 2001), there is one recent paper, Yang et al. (2005), where two model se-

lection approaches are proposed for use with multiply-imputed data for nonresponse.

In one approach, referred to as “simultaneously impute and select,” or SIAS, the

steps for imputation and Bayesian variable selection are embedded in a single Gibbs

sampler. This approach is unsuitable for partially synthetic data as the imputer has

access to the observed data, in which case the partially synthetic data are irrelevant,

and the analyst has access only to the synthetic data. Another approach proposed by

Yang et al. (2005), referred to as “impute then select,” or ITS, is conducted with only

the imputed data. The derivation, however, is based on the likelihood p(Dobs|M),

which does not represent a true likelihood in the partially synthetic data case since

Dobs is not fully observed by the analyst, and sensible likelihoods cannot generally

be constructed from the portion that is observed. Thus it is unclear that the method

can be extended to partially synthetic data.

Nonetheless, the ITS method is illustrative of the challenges in carrying out model

selection with multiply-imputed data. The method is conducted by computing poste-

rior model probabilities with each completed dataset using a stochastic search variable

selection algorithm, and then applying the standard combining rules of Rubin (1987)

to obtain a combined posterior model probability. The justification for ITS relies on
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the approximation

p(M |Dobs) =

∫

p(M |Dobs, Dmis)p(Dmis|Dobs)dDmis

=

∫∫

p(M |Dobs, Dmis, θ)f(Dmis|Dobs, θ)p(θ|Dobs)dθdDmis

∝
m
∑

i=1

∫

p(M |Dobs, D
(i)
com, θ)dθ

where Dmis is the portion of the data missing, Dobs is the portion observed, and

D
(i)
com, i = 1, . . . ,m are the imputed datasets. While this approximation may be

reasonable in many cases, it is not theoretically justified. If D
(i)
com is considered to

be a draw from f(Dmis|Dobs, θ), then the approximation follows as a simple Monte

Carlo estimate; however, as M is a random variable variable in the expression above,

p(Dmis|Dobs) is correctly interpreted as
∑

M p(Dmis|Dobs,M). Further, the approxi-

mation implicitly assumes that D
(i)
com are drawn from f(Dmis|Dobs,M). In actuality

the imputations are drawn under a specific imputation model M ∗.

In many imputation scenarios, the imputation model M ∗ is a collection of models

{M∗
l , l = 1, . . . , p}, used to model the joint distribution of the confidential data and

generate multiple imputations. In contrast, M is one of 2p possible models posited

to explain the relationship between a specific response variable Y and p potential

predictors. Existing multiple imputation combining rules for parameters (e.g. Rubin,

1987; Reiter, 2003) assume agreement between M and M ∗; however, this assumption

is not sensible for model inferences when there are several models under consideration.

As the assumption of agreement between the analyst and imputer models clearly

is inadequate for inferences about models, the dependence of the imputations on M ∗

must be explicitly accounted for. The combining rules for inferences about population

parameters are based on the posterior f(θ|Ynrep, Y (∗)
rep ). Inferences for models Mj, j =

1, . . . , 2p are thus based on the posterior model probabilities f(Mj|Ynrep, Y (∗)
rep ,M∗) ∝
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f(Ynrep, Y
(∗)
rep |Mj,M

∗)f(Mj|M∗). This posterior probability is used to construct a

model search algorithm and a Bayes factor in the sections that follow.

Although combining rules for parameters assume agreement between the analyst

and imputer models, valid inferences are still obtained as long as imputations are

proper (Rubin, 1987) and analyses congenial (Meng, 1994), as described in Section

1.1.3. A similar notion of congeniality is necessary between M ∗ and the models

under consideration, even though the imputation model is explicitly factored into

the analysis. For example, if M specifies a relationship between two variables that

is assumed to be zero in M ∗, then model comparisons are likely to favor models

excluding those predictors. This only presents a serious problem if a significant

relationship truly exists, i.e., the imputer has made poorly grounded assumptions.

5.2 Bayesian model uncertainty

This section describes the application of a Bayesian model uncertainty procedure to

partially synthetic data. A stochastic search algorithm is computed for an illustrative

example of a linear model in a particular imputation scenario. This differs from Yang

et al. (2005) in that a single combined stochastic search algorithm is used rather than

running a separate Gibbs sampler on each imputed dataset.

Let Yrep = Y , for some response variable Y , and Ynrep = X for a n × p matrix

of predictor variables X. Suppose an analyst is interested in locating a subset of

predictors in X that parsimoniously describes the relationship between Y and X

using the linear model Y = Xβ + ε, ε ∼ N(0, σ2). Assume that M ∗ is the satu-

rated model, Y = Xγ + δ, δ ∼ N(0, τ), so that Y
(1)
rep , . . . , Y

(m)
rep are drawn from from

N(Xγ̂obs, τ̂(I + X ′(X ′X)−1X)), I now indicating a p-dimensional identity matrix.

The joint posterior distribution f(β, σ2,M |Ynrep, Y (∗)
rep ,M∗) is not easily determined,

however, the posterior f(β, σ2,M |Ynrep, Yrep) is well known, and a stochastic search
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Gibbs sampler can easily be performed. By augmenting the posterior with Yrep, we

have f(β, σ2,M, Yrep|Ynrep, Y (∗)
rep ,M∗), which can be factored as

f(β, σ2, Yrep,M |Ynrep, Y (∗)
rep ,M

∗)

= f(Yrep|Ynrep, Y (∗)
rep ,M

∗)p(β, σ2,M |Ynrep, Y (∗)
rep , Yrep,M

∗) (5.1)

= f(Yrep|Ynrep, Y (∗)
rep ,M

∗)p(β, σ2,M |Ynrep, Yrep) (5.2)

∝ f(Yrep|Ynrep, Y (∗)
rep ,M

∗)p(Yrep, Ynrep|M,β, σ2)p(M,β, σ2). (5.3)

The simplification from (5.1) to (5.2) follows because if the observed data Yrep is

known, then there is no use for the synthetic data Y
(∗)
rep and imputation model M ∗.

The distribution f(Yrep|Ynrep, Y (∗)
rep ,M∗) can be computed by analysts without ac-

cess to Dobs. The distribution p(β, σ
2,M |Yrep, Ynrep) is simply p(β, σ2,M |Dobs), so by

inserting draws of Yrep from its conditional posterior distribution, we can then com-

pute p(β, σ2,M |Ynrep, Y (k)
mrep), where Y

(k)
mrep is draw from f(Yrep|Ynrep, Y (∗)

rep ,M∗), as if

(Ynrep, Y
(k)
mrep) represents an observed dataset. Running this data augmentation Gibbs

sampler in effect obtains the joint posterior f(β, σ2,M |Ynrep, Y (∗)
rep ,M∗) by averaging

over Yrep.

In order to obtain the full conditional posterior distributions, the prior p(β, σ2,M)

needs to be specified. Proper distributions are desired in order for Bayes factors to be

well-defined (Pauler et al., 1999), but otherwise any reasonable prior specification for

an observed-data model selection problem may be used. A common choice of priors

for regression coefficients in Bayesian model selection problems is a mixture of a point

mass at zero and a normal or heavier-tailed distribution. A similar formulation, used

here and in Chapter 4, is to place a Zellner-type prior on βJ , where βJ is the vector

of coefficients corresponding to the current model MJ and J is a vector of indicator

variables J , such that Jl, l = 1, . . . , p indicates that the l-th predictor is in the model.

By updating the full conditional posterior of J in the Gibbs sampler, the algorithm
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is able to move between models with different dimensions (Smith and Kohn, 1996).

For the illustrative example, the prior specification is given by (β|J, σ2) ∼

N(0, σ2(X ′
JXJ)

−1/g), where the n × kJ matrix XJ is the matrix X with columns

corresponding to Jl = 0 excluded, g ∼ G( 1
2
, N
2
), (σ2|J) ∝ 1

σ2 , and Jl ∼ Be(p0), l =

1, . . . , p, with Be(p0) denoting a Bernoulli distribution with prior probability p0 and

G(a, b) denoting the Gamma distribution with mean a/b and variance a/b2.

The Gibbs sampler proceeds by iteratively sampling from the full conditional

posterior distribution of Yrep, followed by the full conditional posterior distributions

of β and σ2, as well as J and g. After discarding an initial burn-in period, the

draws of J can be used to determine posterior model probabilities using the percent

of times each model is visited, and the marginal inclusion probabilities for a l-th

predictor using the percent of the time that Jl = 1. Model-averaged estimates of the

parameter coefficients and associated uncertainties may also be obtained from the

draws of β.

The full conditional posterior distribution of Yrep is f(Yrep|Ynrep, Y (∗)
rep ,M∗) which

is determined as f(Yrep|Ynrep, Y (∗)
rep ,M∗) =

∫

f(Yrep|Ynrep, Y (∗)
rep ,M∗, γ, τ)×

p(γ, τ |Ynrep, Y (∗)
rep ,M∗)dγdτ . The form of this distribution for the illustrative ex-

ample is N(Xγ, τ), where p(γ|Ynrep, Y (∗)
rep ,M∗) = N(γ̄, Tp), and γ̄ and Tp are the

posterior mean and variance of γ, as defined in (1.4) and (1.6). The distribution

p(τ |Ynrep, Y (∗)
rep ,M∗) is taken to be (n−p)s̄2χ−2

n−p, where s̄
2 =

∑m
i=1(Y

(i)
rep−Xγ̂(i))′(Y (i)

rep−

Xγ̂(i))/m(n− 1), and γ̂(i) is the estimate of γ obtained from D
(i)
com.

The remaining full conditional posteriors follow from the joint posterior distribu-

tion f(βJ , σ
2, J, Yrep|Ynrep, Y (∗)

rep ) and prior specification through straightforward alge-

braic routes and are given by:

• f(βJ |Ynrep, Yrep, σ2,M, g) = N(β̂J , VJ), where β̂J = (X ′
JXJ)

−1X ′Yrep and VJ =

132



(X ′
JXJ)

−1(1/σ2 + g)−1.

• p(Jl = 1|J−l, Ynrep, Yrep, β, σ2, g) = 1/(1 + hl), obtained by integrating out βJ

and σ2 as in Smith and Kohn (1996), where

hl =
1− p0l
p0l

(

1 +
1

g

)1/2
S(Jl = 0)

S(Jl = 1)
,

S(J) = (Y ′
repYrep − β̂J

′
V −1
J β̂J)

−n/2,

and S(Jl = 0) is equivalent to S(J) but with the element Jl of J set to 0, so

β̂J and VJ may need to be recomputed to correspond to Jl = 0. Similarly for

S(Jl = 1).

• The hyperparameter g has a Gamma posterior given by

G

(

kJ + 1

2
,
β′
JX

′
JXJβJ/σ

2 + n

2

)

where kJ =
∑p

l=1 I(Jl = 1).

• The posterior f(σ2|Ynrep, Yrep, β, J,M, g) is given by

G

(

kJ + n

2
,
(Yrep −XJβJ)

′(Yrep −XJβJ) + gβ ′
JX

′
JXJβJ

2

)

.

5.2.1 Simulation example 1

Using the illustrative example, an SSVS algorithm is implemented on a simulated

dataset. For comparison purposes, similar algorithms are conducted both on the

observed data and partially synthetic data. The procedure is run repeatedly on

models drawn at random to compare the percent of time that the true model has

the highest posterior probability, and then a few cases are examined in detail. Let
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n = 1000 and p = 6. The n × p matrix of predictors X = Ynrep is generated from

a standard normal distribution. A dependent variable Y = Yrep is generated from

N(Xβ, I), where β is generated from a standard normal distribution and Jl, l =

1, . . . , p is drawn from a Beta(2, 2).

The imputations Y
(∗)
rep = Y

(1)
rep , . . . , Y

(m)
rep , with m = 5, are generated from the

posterior predictive distribution of Y |X, using the saturated model Y = Xγ + δ, δ ∼

N(0, τ), by drawing τ from (n− p)s2/χ2
n−p, γ from N(Xγ̂, (X ′X)−1τ), and Y

(i)
rep from

N(Xγ, τ). The data augmentation Gibbs sampling algorithm is used on the partially

synthetic dataset (X,Y
(∗)
rep ) to compute the posterior model probabilities. A similar

algorithm is run on the observed data (X,Y ). The observed data algorithm used is

the same as the synthetic data algorithm except that Yrep is known and fixed. After

a burnin period of 100 iterations, 1000 iterations are saved.

When 1000 models are drawn, all 64 possible models are visited between 7 and

29 times, with different coefficients each time. The coefficient vectors are saved so

that unusual results can be re-examined. The observed data algorithm assigns the

highest probability to the true model 758 times while the synthetic data algorithm

assigns it 702 times. The true model is ranked below fifth 19 times in the observed

data and 35 times in the synthetic data algorithm. The lowest ranking of the true

model is 17th in the observed data and 26th in the synthetic data.

Capturing the “truth” is not the only measure of success for a model search

algorithm, so by itself it is not very alarming if the true model does not have the

highest posterior probability. Often there are several models with approximately the

same posterior probability, so that the difference between them is nominal. Further

examination of the cases in which the observed and/or synthetic data model searches

fail to find the true model reveals that nearly all of these involve null models or

models with very small coefficients so that there is little difference between them and
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Table 5.1: Posterior model probabilities, null model true, Example 1
Observed Synthetic

Top 10 Models P (M |Data) Top 10 Models P (M |Data)
X4 0.133 X1 0.119
X3 0.133 X3 0.118
X5 0.118 X4 0.092
X1 0.118 X6 0.090
X2 0.117 X2 0.082
X6 0.109 X5 0.081
null 0.109 null 0.080
X1, X3 0.026 X1, X3 0.033
X3, X4 0.018 X3, X6 0.024
X2, X3 0.016 X2, X3 0.023

Table 5.2: Marginal inclusion probabilities, null model true, Example 1
X1 X2 X3 X4 X5 X6

Observed 0.361 0.417 0.361 0.278 0.389 0.389
Synthetic 0.426 0.362 0.447 0.404 0.426 0.426

other models with zero or small coefficients. This information is readily available

from the Gibbs sampler output.

To illustrate, generate Y independently of X so that β = (0, 0, 0, 0, 0, 0), generate

partially synthetic data as before, and run the observed and synthetic data Gibbs

sampling algorithms. In one run, the observed data algorithm visited 36 models in

1000 iterations while the synthetic data algorithm visited 47. The top 10 models are

given in Table 5.1 and the marginal inclusion probabilities in Table 5.2. The results

from both cases are seen to be similar, although the probabilities differ slightly. In

neither case is the null model selected as the highest posterior probability model;

however, in both cases it is clear that there is no evidence to support the inclusion

of any predictors.

In contrast, let Y be generated from N(Xβ, σ2) with β = (1, 0, 0, 0, 0, 0), generate

partially synthetic data, and run the observed and synthetic data model Gibbs sam-
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Table 5.3: Posterior model probabilities, one predictor in true model, Example 1
Observed Synthetic

Top 10 Models P (M |Data) Top 10 Models P (M |Data)
X1 0.767 X1 0.552
X1, X4 0.070 X1, X6 0.104
X1, X6 0.041 X1, X2 0.095
X1, X2 0.038 X1, X3 0.052
X1, X3 0.034 X1, X5 0.048
X1, X5 0.023 X1, X4 0.041
X1, X4, X6 0.006 X1, X2, X6 0.023
X1, X4, X5 0.004 X1, X3, X6 0.017
X1, X3, X6 0.003 X1, X4, X6 0.010
X1, X2, X5 0.002 X1, X2, X5 0.008

Table 5.4: Marginal inclusion probabilities, one predictor in true model, Example 1
X1 X2 X3 X4 X5 X6

Observed 1.000 0.051 0.039 0.085 0.033 0.053
Synthetic 1.000 0.015 0.097 0.074 0.082 0.176

pling algorithms. In one run, the observed data algorithm visited 16 models while

the synthetic data algorithm visited 25. The results in both cases convincingly show

that the true model is the high posterior probability model. Table 5.3 shows the top

10 models and their posterior probabilities and Table 5.4 gives the marginal inclusion

probabilities.

5.2.2 Simulation example 2

This example considers a variation of the illustrative example where two variables are

imputed in entirety. Let Yrep = (Y,X1), and Ynrep = (X2, . . . , Xp) for some response

variable Y and a n × p matrix of predictor variables X. The imputation procedure

is to generate f(Y,X1|X2, . . . , Xp) = f(Y |X1, . . . , Xp)f(X1|X2, . . . , Xp) using normal

linear models as in Example 1. The analysis model is the same, so the augmented

posterior distribution p(β, σ2, Yrep,M |Ynrep, Y (∗)
rep ,M∗) is the same as given in (5.1) to
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(5.3), and the stochastic search algorithm is the same, but since M ∗ and Yrep are

different, the specification of the distribution f(Yrep|Ynrep, Y (∗)
rep ,M∗) is different.

In this example, f(Yrep|Ynrep, Y (∗)
rep ,M∗) is factored as f(Y |X1, . . . , Xp, Y

(∗)
rep ,M∗)

f(X1|X2, . . . , Xp, Y
(∗)
rep ,M∗), where Y

(∗)
rep are the synthetic values of (Y,X1), the distri-

bution f(Y |X,Y (∗)
rep ,M∗) isN(Xγ1, τ1) and f(X1|X2, . . . , Xp, Y

(∗)
rep ,M∗) = N(X2:pγ2, τ2).

Draws of Yrep are thus updated in the Gibbs sampler as follows:

1. Draw τ2 from (n − p − 1)s̄22χ
−2
n−p−1 where s̄22 =

∑m
i=1(X

(i)
1 − X2:pγ̂

(i)
2 )′(X

(i)
1 −

X2:pγ̂
(i)
2 )/m(n− 1).

2. Draw γ2 from N(γ̄2, T2), where γ̄2 and T2 are the posterior mean and variance

of γ2, as defined in (1.4) and (1.6).

3. Draw X1 from N(X2:pγ2, τ2).

4. Draw τ1 from (n−p)s̄21χ−2
n−p, where s̄

2
1 =

∑m
i=1(Y

(i)
rep−Xγ̂(i)1 )′(Y

(i)
rep−Xγ̂(i)1 )/m(n−

1).

5. Draw γ1 from N(γ̄1, T1), where γ1 and T1 are the posterior mean and variance

of γ1, as defined in (1.4) and (1.6).

6. Draw Y
(k)
mrep from N(Xγ1, τ1).

The rest of the Gibbs sampler steps are the same as in Example 1. This procedure

can potentially be generalized for a variety of imputation scenarios and inference mod-

els. There is no requirement that the distributional assumptions of the imputation

model and analysis model agree.
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Table 5.5: Posterior model probabilities, null model true, Example 2
Observed Synthetic

Top 10 Models P (M |Data) Top 10 Models P (M |Data)
X1 0.146 X6 0.099
X2 0.129 X5 0.083
X6 0.128 X2 0.073
X3 0.126 X1 0.070
null 0.115 null 0.064
X5 0.108 X3 0.059
X4 0.106 X4 0.057
X2, X6 0.014 X1, X5 0.032
X3, X5 0.012 X2, X3 0.030
X1, X5 0.011 X2, X5 0.030

Table 5.6: Marginal inclusion probabilities, null model true, Example 2
X1 X2 X3 X4 X5 X6

Observed 0.192 0.174 0.177 0.154 0.163 0.185
Synthetic 0.260 0.269 0.264 0.241 0.315 0.295

The simulation is carried out as in Example 1, with model searches run on ob-

served data and synthetic data over 1000 draws of data and models. In 1000 draws,

each of 64 possible true models was drawn between 6 and 23 times. The observed

data algorithm ranked the true model highest 791 times while the synthetic data

model search pick the true model 735 times. As in Example 1, we can examine the

Gibbs sampler output for one run of each algorithm when the true model is the null

model. The results are shown in Table 5.5 and Table 5.6 and the results are seen to

be similar to those of Example 1.
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5.3 Bayes factors

Using the appropriate posterior model probabilities to construct a Bayes factor to

compare two models M1 and M0, we have

f(M1|Ynrep, Y (∗)
rep ,M∗)

f(M0|Ynrep, Y (∗)
rep ,M∗)

=
f(Ynrep, Y

(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

× p(M1|M∗)

p(M0|M∗)
.

As frequently done for Bayes factors, the prior odds ratio is taken to equal one, so

that the Bayes factor is just the likelihood ratio

f(Ynrep, Y
(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

. (5.4)

The likelihood f(Ynrep, Y
(∗)
rep |M,M ∗) is not readily available but can be obtained

in an analytically tractable form by integrating over the replaced values Yrep:

f(Ynrep, Y
(∗)
rep |M∗,M) =

∫

f(Yrep, Ynrep, Y
(∗)
rep |M∗,M)dYrep (5.5)

∝
∫

f(Y (∗)
rep |Ynrep, Yrep,M∗)f(Ynrep, Yrep|M)dYrep (5.6)

∝
∫

f(Yrep|Ynrep, Y (∗)
rep ,M

∗)
f(Ynrep, Yrep|M)

f(Ynrep, Yrep|M∗)
dYrep (5.7)

To get from (5.5) to (5.6), note that f(Y
(∗)
rep |Ynrep, Yrep,M∗,M) = f(Y

(∗)
rep |Ynrep, Yrep,M∗)

since Y
(∗)
rep are generated from f(Y

(∗)
rep |Ynrep, Yrep,M∗) independently of M . Addition-

ally, f(Ynrep, Yrep|M∗,M) = f(Ynrep, Yrep|M), as Yrep and Ynrep do not depend onM ∗,

and f(M ∗,M) is assumed to be a constant. The integral in (5.7) follows directly from

Bayes rule and can be approximated with a Monte Carlo estimate as

f(Ynrep, Y
(∗)
rep |M∗,M) ∝ 1

K

K
∑

k=1

f(Ynrep, Y
(k)
mrep|M)

f(Ynrep, Y
(k)
mrep|M∗)

(5.8)
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where Y
(k)
mrep is a draw from f(Yrep|Ynrep, Y (∗)

rep ,M∗) and K is the number of Monte

Carlo draws. Note that the term f(Ynrep, Y
(k)
mrep|M∗) represents a density rather than

a likelihood since M ∗ is assumed to be known and fixed. This expression can be

computed by an analyst without access to the confidential data, provided that M ∗

is made available by the imputer, though it is numerically difficult to compute for

large n, and in test runs yielded unstable estimates with small n. Applying Laplace

approximations simplifies the computation and provides a good approximation, up

to a constant, of the observed-data likelihood.

Using the Laplace method yields the Bayes factor approximation of

−2 log f(Ynrep, Y
(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

≈ −2 log
(

K
∑

k=1

f(Ynrep, Y
(k)
mrep|M1, θ̄)

f(Ynrep, Y
(k)
mrep|M∗, γ̄)

)

+2 log

(

K
∑

k=1

f(Ynrep, Y
(k)
mrep|M0, θ̄)

f(Ynrep, Y
(k)
mrep|M∗, γ̄)

)

+ (k1 − k0) log n. (5.9)

where θ̄ and γ̄ are the maximum likelihood estimates of θ and γ obtained from

(Ynrep, Y
(∗)
rep ) under M and and M ∗, respectively. These are used over the MLEs ob-

tained from (Ynrep, Y
(k)
mrep) as overall the likelihood of interest is f(Ynrep, Y

(∗)
rep |M,M ∗).

To illustrate, using the Laplace method to integrate f(Ynrep, Y
(∗)
rep |M,M ∗) over θ

and γ yields

f(Ynrep, Y
(∗)
rep |M,M ∗) =

∫∫

f(Ynrep, Y
(∗)
rep |M,M ∗, θ, γ)p(θ|M)p(γ|M ∗)dθdγ

≈ C ·
∫

f(Ynrep, Y
(∗)
rep |M,M ∗, θ̄, γ) · n−k/2 · p(γ|M ∗)dγ

≈ C ′ · f(Ynrep, Y (∗)
rep |M,M ∗, θ̄, γ̄) · n−k/2n−p/2

where C and C ′ represent the terms in the Laplace approximation that are On(1)

or less. Integrating f(Ynrep, Y
(∗)
rep |M,M ∗, θ̄, γ̄) over Yrep as in (5.5) to (5.7) yields the

approximation in (5.9).

140



As the imputations Y
(i)
rep, i = 1, . . . ,m are readily available, an approximation us-

ing these in place of Y
(k)
mrep, k = 1, . . . , K in (5.9) will yield an estimate that is simpler

to compute. The distributions of Y
(i)
rep and Y

(k)
mrep in this example are equivalent under

infinitely many imputations, suggesting this might be a reasonable approximation.

Further assessment is needed to make a general assertion. An alternative approxi-

mation to (5.9) using the Y
(1)
rep , . . . , Y

(m)
rep in place of Y

(k)
mrep is given by

−2 log f(Ynrep, Y
(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

≈ −2 log
(

m
∑

i=1

f(Ynrep, Y
(i)
rep|M1, θ̄)

f(Ynrep, Y
(i)
rep|M∗, γ̄)

)

+2 log

(

m
∑

i=1

f(Ynrep, Y
(i)
rep|M0, θ̄)

f(Ynrep, Y
(i)
rep|M∗, γ̄)

)

+ (k1 − k0) log n. (5.10)

5.3.1 Simulation examples

This section evaluates the performance of the Bayes factor approximations in (5.9)

and (5.10) using a few simple simulation examples. Let n = 10, 000 and p = 6. The

n×pmatrix of predictorsX = Ynrep is generated from a standard normal distribution.

A dependent variable Y = Yrep is generated from N(Xβ, I), where β is generated

from a standard normal distribution and Jl, l = 1, . . . , p is drawn from a Beta(2, 2).

The imputations Y
(∗)
rep = Y

(1)
rep , . . . , Y

(m)
rep ,m = 5, are generated from the posterior

predictive distribution of Y |X, using the saturated model Y = Xγ+δ, δ ∼ N(0, τ), by

drawing τ from (n− p)s2/χ2
n−p, γ from N(γ̂obs, (X

′X)−1τ), and Y
(i)
rep from N(Xγ, τ).

Under repeated draws of models, the performance of the approximations, using K =

5, is evaluated relative to the observed-data BIC by comparing the estimated rank of

the true model, which ideally should be ranked first. For computational simplicity, the

approximations are only estimated for the ten highest ranked models as determined

by the observed-data BIC.

Table 5.7 gives the frequencies of the estimated rankings of the “true” model for
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Table 5.7: Comparison of Bayes factor approximations
Est. ranks: 1 2 3 4 5 6+
Obs. BIC 465 19 9 4 2 1
Approx 1 393 55 30 17 2 3
Approx 2 453 28 10 6 1 2

the observed-data BIC and both approximations for 500 true models. Interestingly,

Approximation 2 in (5.10) appears to perform slightly better than Approximation 1

in (5.9) relative to the BIC. This evaluation does not take into account cases where

there are multiple top models with similar values of BIC.

5.4 Discussion

This chapter has described some model selection procedures for use with partially

synthetic data. The stochastic model search proposed is general and can be ap-

plied to different imputation scenarios; however, the specification of the distribution

f(Yrep|Ynrep, Y (∗)
rep ,M∗) may be more difficult than in the illustrative examples. The

algorithm described is based on an observed-data algorithm with an augmentation

step. It is expected that the augmentation step could be applied to other Bayesian

observed-data models. Certainly it could be applied to linear model estimation, and

potentially extended to analyses currently unavailable to users of multiply-imputed

data. Further work is needed to evaluate such procedures, and assess when they yield

analytically valid inferences. Similar procedures are also desired for other applications

of multiple imputation, including missing data and two-stage imputation.

The Bayes factor approximations presented provide reasonable results in the cases

demonstrated; however, additional work is needed to determine the appropriate ap-

proximation for the term f(Ynrep, Y
(k)
mrep|M∗) under more complex imputation proce-

dures M ∗. Additionally, determining the proper numerical approach for computing
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the Monte Carlo estimate of the Bayes factor in (5.8) will provide a close estimate of

the Bayes factor and provide a better metric than the observed-data BIC, itself an

approximation, for assessing the accuracy of the approximations in (5.9) and (5.10).

The development of model selection procedures when M ∗ is unknown is also left

for future work. In the absence of a better approach, the best an analyst typically

can do is to make a reasonable guess as to M ∗. Imputation models are recommended

to be as general and saturated as possible (Meng, 1994; Schafer, 1997), so a satu-

rated model is a good place to start, perhaps with reasonable transformation and

interaction terms appropriate for the scientific context. It is also plausible that agen-

cies may release partial information about the imputation procedure, enough to yield

a reasonable approximation. Further evaluation of the concepts of congeniality and

proper imputations for model inferences is needed to determine explicitly when model

inferences are valid and provide a deeper understanding of model selection with data

imputed under a specific model.
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Appendix A

Full conditional posterior distributions

Full conditional distributions are presented for the parameter-expanded Gibbs sam-

pling algorithm of Chapter 4 for a binary logistic model. Except where noted, the

corresponding distribution for the normal case is obtained by substituting yij for wij,

and σ2 for σ̃2/φij. Additionally, σ2 is sampled only in the normal case, and wij and

φij only in the logistic case. Let XJ

ij denote the subvector of Xij, {Xijl : Jl = 1} and

ψ be the N -vector such that ψij = wij −XJ′

ijβ −Z ′
ijAΓξi.

• The full conditional posterior p(βJ |J ,α,γ,φ, ξ,y,X,Z) is N(β̂
J
,V J) where

β̂
J
=

(

n
∑

i=1

ni
∑

j=1

φij
σ̃2
ψijX

J′

ij

)

· V J and V J =

(

n
∑

i=1

ni
∑

j=1

XJ
ijX

J′

ij

(

φij
σ̃2

+ g

)

)−1

• To calculate the posterior for J we need to update each Jl individually. We

calculate p(Jl = 1|J−l,α,γ,φ, ξ,y,X,Z) for l = 1, . . . , p, by integrating out β

as in Smith and Kohn (1996) and obtaining p(Jl = 1|J−l,α,γ,φ, ξ,y,X,Z) =

1
1+hl

, where J−l = {Ji : i 6= l} and hl =
1−pl0
pl0

· c1/2 · S(Jl=0)
S(Jl=1)

. For the logistic case

we set c = 1
g
and define

S(J) = |XJ′XJ|1/2 · |V J|1/2 exp
{

−1

2

(

n
∑

i=1

ni
∑

j=1

φijψ
2
ij − β̂

′

J
V −1

J
β̂

J

)}

and for the normal case we set c = 1 + 1
g
. We integrate out σ2 and define:

S(J) =
(

ψ′ψ − β̂
J
V −1

J
β̂

J

)−N/2
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S(Jl = 0) is equivalent to S(J) but with the element Jl of J set to 0, so ψ,

XJ, β̂
J
and V J may need to be recomputed to correspond to Jl = 0. Similarly

for S(Jl = 1).

• The gamma prior on g yields a conjugate gamma posterior:

Γ

(

pJ + 1

2
,
βJ

′XJ′XJβJ/σ
2 +N

2

)

where pJ =
∑p

l=1 1(Jl = 1). Set σ2 =1 for the logistic case.

• Similary each φij has a conjugate gamma posterior:

G

(

ν + 1

2
,
(wij −ZijAΓξi −X ′

ijβ)
2/σ̃2 + ν

2

)

• The posterior for p(σ2|α,β,J ,γ, ξ,y,X,Z) is:

IG

(

N + pJ
2

,
ψ′ψ + gβJ

′XJ′XJβJ

2

)

• The full conditional posterior p(γ|α,β,λ, ξ,φ,y,X,Z) is given by N(γ̂, V̂ γ) ·

1(γ ∈ Rλ) where

V̂ γ =

(

n
∑

i=1

ni
∑

j=1

φij
σ̃2
uiju

′
ij + V

−1
γ

)−1

and

γ̂ =

(

n
∑

i=1

ni
∑

j=1

φij
σ̃2

(wij −XJ
ijβJ)u

′
ij + γ0V

−1
γ

)

· V̂ γ

145



The q(q−1)/2 vector uij is defined as (ξilαmZijm : l = 1, . . . , q,m = l+1, . . . , q)′

so that the random effects term Z ′
ijAΓξi can be written as u′

ijγ.

• The latent variables ξi have posterior p(ξi|β,α,γ,φ,y,X,Z) given by

N(ξ̂i,V ξ) where

ξ̂i =

ni
∑

j=i

φij(wij −XJ′

ijβJ)Z
′
ijAΓV ξσ̃

−2

and

V ξ =

(

ni
∑

j=1

φijΓ
′AZijZ

′
ijAΓσ̃

−2 +D−1

)−1

• Each αl must be updated individually. The zero-inflated truncated normal

prior for αl yields a conjugate posterior p(αl|α−l,β,γ, ξ,φ,y,X,Z) = ZI −

N+(α̂, Vαl, p̂l) where

α̂ =

(

∑n
i=1

∑ni
j=1 φijtijlTij

σ̃2

)

Vαl, Vαl =

(

n
∑

i=1

ni
∑

j=1

φijt
2
ijl

σ̃2
+ 1

)−1

p̂l =
pal

pal + (1− pal)
N(0;0,1)
N(0;α̂,Vαl)

· 1−Φ(0;α̂,Vαl)
1−Φ(0;0,1)

where Tij = wij − XJ′

ijβJ −
∑

k 6=l tijkαk and N(0;m, v) denotes the normal

density with mean m and variance v evaluated at 0 and Φ(0;m, v) is the normal

cumulative distribution function with mean m and variance v evaluated at 0.

The q vector

tij =

(

Zijl

(

ξil +
l−1
∑

m=1

ξimγml

)

: l = 1, . . . , q

)T
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is defined so that the random effects term Z ′
ijAΓξi can be written as t′ijα.

• The diagonal elements of D have inverse gamma priors IG( 1
2
, N
2
); hence the

posterior is given by p(dl|α,β,γ, ξ,φ,y) = IG
(

1
2
+ n

2
, N
2
+

Pn
i=1 ξ

2
il

2

)
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