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Abstract

This thesis discusses evolutionary inference from both a modeling perspective and

the algorithms associated with performing statistical inference.

Genetic data (DNA) takes on a nontraditional form in that a single observation

encompass at least hundreds of base pairs and is nonnumeric in nature. Beyond

this fact, DNA from individuals that share a common ancestry have similarities

in their genetic makeup, so the notion of independent and identically distributed

samples does not hold. In turn, a complex network of associations must be em-

ployed when modeling the data.

The complexities involved in the modeling procedure directly relate to the com-

plexities involved when reconstructing likelihood functions, or posterior distribu-

tion. Many computational methods used during statistical inference involve the

idea of drawing samples from proposal distributions. However, such proposal dis-

tributions are difficult to construct so that their probability distribution match

that of the true target distribution, in turn hampering the efficiency of the overall

sampling scheme.

We will describe a general approach to modeling the evolutionary past. Within

this framework, we will discuss specific models which address particular phenom-

ena (speciation, introgression and paracentric inversions) which relate to genomic

data. The latter part of this thesis will address two simulation methods used for

statistical inference. The first will pertain to direct likelihood construction under

an Importance Sampling (IS) framework and the second will address a Markov

Chain Monte Carlo (MCMC) procedure for posterior sampling.
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Chapter 1

Introduction

The field of statistics has grown tremendously in the last 70 years, dating back

to the days of Fisher and being motivated primarily by genetic and biological

problems. However, the field of genetic inference on a molecular level is just

getting past its infancy. The principal reason for this is that biologists have

recently begun to refine methods of data acquisition, and molecular data are

now plentiful. Unfortunately, these data are not of the traditional shape and

form that the field of multivariate statistics has become accustomed to dealing

with. Primary problems stem from the fact that nucleotide sequence data is

nonnumeric, massive in scale (the human genome is made up of approximately 6

billion bases), and the notion of independent and identically distributed samples

often does not apply. While the first of these three problems is easily tackled

by numeric summaries of the sequence data, the latter two are problematic and

are confounded by each other. That is, models based on genomic associations

are complex and the scale of the data creates computational demands that are

only surmountable through large networks of computers or supercomputers. This

thesis is a cumulative work in understanding particular numeric summaries from
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genomic data, the patterns which arise in DNA sequences and how they related to

ancestral relationships between genes, models for genealogical inference and the

computation which arises in handling such inference problems.

1.1 Thesis outline

This thesis will comprise modeling, methods and analyses on real data.

Chapter 3 will introduce the models which will be studied. This work is an exten-

sion of the original coalescent work summarized in Kingman (2000) and has been

developed by Marcy K. Uyenoyama, and myself. The bulk of chapter 3 is based

on a probability generating function which computes the probability of mutation

counts from DNA data which can be found in appendix A. This work was pre-

viously introduced by Uyenoyama and Takebayashi (2004). Appendix A begins

with laying out the theoretical constructs for modeling, while chapter 3 sections

3.2.1, 3.2.7 and 3.2.12 will specifically show how the modeling framework can be

applied to precise structured models. Chapter 3 will also discuss computational

issues involved with these models and motivates the sampling methodology dis-

cussed in subsequent chapters.

In chapter 4 we will describe an Importance Sampling (IS) technique which is

described in the paper by Leman et al. (2005). This method greatly reduces the

computational demands required by the exact computation of probability gener-

ating functions as described in chapter 3. Chapter 4 will illustrate the proposal

distributions used for the IS method (see section 4.2) and will describe the tuning

procedures required for the method (see sections 4.3 and 4.3.3).

2



Chapter 5 provides a case study for analyzing real data under the model de-

scribed in section 3.2.7. This case study will employ the importance sampling

method described in chapter 4. Comparisons to exact methods as described in

chapter 3 are also detailed.

Chapter 6 will describe the Evolutionary Forest (EF) algorithm. The EF al-

gorithm is a novel Markov chain Monte Carlo procedure for constructing the

posterior distribution of the interesting parameters in the models described in

chapter 3. Instead of examining the posterior distribution for a single genealogy

and parameters, the EF method replaces the space in which the genealogy lives

with a forest of genealogies. In chapter 6 we will describe both the distribution on

forest space and the algorithm used for sampling. Theoretical results will also be

shown. Chapter 6 will conclude with a case study and a comparison to alternative

methods.

3



Chapter 2

An Historical Perspective

We begin with a survey of the field of population biology which dates back to 1930

when Fisher laid out the foundations of the field and explored concepts of genetic

drift and how it governs evolution. Through this historical perspective, we will

motivate coalescence theory, which serves as a powerful device under which real

data can be analyzed.

2.1 Genetic drift and a forward perspective

Genes are passed down from generation to generation through breeding. Each

time a new individual is introduced into the population, small differences between

the individual and its parent’s genome exist. These difference can occur due to

selection, the process in which particular genes are selected based on a propensity

to increase fitness, or neutral drift. This process of neutral drift is a process in

which random mutations are introduced and aren’t influenced by outside selec-

tive pressures. We will often refer to neutral drift as genetic drift or simply as drift.
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Neutral drive is governed my a constant neutral rate of mutation, which we will

denote as u. It is the neutral rate of mutation that is responsible for how fast drift

occurs. Neutral drift is responsible for a vast quantity of the species we see today.

That is, small changes in an offsprings genome, from its parents, occur randomly.

Accumulation of these small changes in the genome are ultimately responsible for

the formation of new species. This process is very slow and is ultimately dictated

by the mutation rate u and other demographic influences. For instance, at some

time in the past, there may have existed a species which we will denote as group 0.

From this group 0 species, through drift, two new species may have been created,

which we will denote as group 1 and 2 respectively. Hence group 1 and 2 are

somehow related to each other, but are not considered the same species. Species 1

and 2 together have a common ancestor, which is species 0 (see figure 2.1). Under

Figure 2.1: Species groups 1 and 2 both have species group 0 as a common
ancestor.

the evolutionary process, two species will have existing members who through

5



their genealogical past share a common ancestor. It is the time of the species di-

vergence, the time since the two species were created from a single species, which

is of primary concern throughout this thesis. While estimation of this time is

primarily of biological concern, the estimation of this time, using genomic data, is

ultimately a statistical question. This divergence time we will often refer to as the

time of speciation or speciation time. Other processes may affect the inference of

this time, so complex models are often deployed.

Before going into depth about models of speciation, it is helpful to examine drift

processes in a very simplistic framework. The next two sections explore models

that were developed in the 1930s. While these models are simple, these models

are illuminating in terms of motivating more complex models.

2.1.1 The Wright-Fisher model

The Wright-Fisher model (Fisher, 1930) is possibly the simplest model for genetic

drift. The key assumptions involved in this model are

• finite population size,

• no overlap between generations,

• allele frequency is determined only by the drift process.

The first assumption states that the number of individuals in the population is

fixed throughout time. The second assumption asserts that no individuals survive

from one generation to the next. The third assumption states that no selection

exists and genetic drift is neutral. While all three assumptions may seem unrealis-

tic, they provide a starting point in which we can study genetic drift and motivate

6



coalescence theory.

Let there be a constant population size of N individuals. Without loss of gener-

ality, consider a scenario where there are two allele types in the population. For

the description here, let us call these red and black alleles. At a given time k

(measured in number of generations) in the history, let Xk be the number of red

alleles at generation k. Under the Wright-Fisher model, the transition probability

of having j red alleles in the (k + 1)st generation given i red alleles in the kth

generation is

P (Xk+1 = j|Xk = i) =

(
N

j

)(
i

N

)j (
1− i

N

)N−j

. (2.1)

This expression simply expresses a sampling with replacement from generation k

to generation k+1. From this, we note the expected number of red alleles in the

(k + 1)st generation is N × i
N

. Therefore, we have that E[Xk+1|Xk] = Xk as well

as E[|Xk|] < ∞, so the Wright-Fisher process is a martingale. The conditional

variance of Xk+1 given Xk during each generation is N × i
N

(1 − i
N

). The states

where Xk = 0 or Xk = N are fixed (or absorbing) states. That is, once either of

these states are reached, Xk will remain in that state for an infinite amount of time.

Under the Wright-Fisher process, at each generation, the number of of descen-

dants of a particular allele follows the binomial distribution Bin(N, 1/N).

As N → ∞, this distribution can be approximated by the Poisson distribution,

with rate parameter λ = 1
N
× N = 1. We let Yk+1 denote the number of de-

scendents left by an individual allele in the subsequent generation. With the

7



approximation that λ = 1, we have

P (Yk+1 = n) =
1

n!
e−1.

Hence the probability that any allele doesn’t leave a descendent in the next gen-

eration of sampling is approximately e−1 = 0.37.

While this is a seemingly simple scenario for the drift of black and red alleles,

this process can be generalized to any number of alleles and provides a reasonable

basis for studying the drift process.

2.1.2 The Moran model

Like the Wright-Fisher model, the Moran model is a simple model under which

the drift process can be studied. Unlike the Wright-Fisher model, where there is

no overlapping of individuals between generations, the Moran model does have

overlapping individuals between generations.

In the Moran model, at each generation two individuals are selected with replace-

ment. The first individual is chosen to reproduce, while the second individual

dies. All other individuals remain as they were in the previous generation. Each

individual has a 1
N

chance of being selected. Again, we phrase the model in

terms of two alleles (red and black) and let Xk be the number of red alleles in the

population at the kth generation. The Markov transition probabilities between

generations follow as

P (Xk+1 = j|Xk = i) =


i
N

(1− i
N

) if j = i + 1,

(1− i
N

) i
N

if j = i− 1,

( i
N

)2 + (1− i
N

)2 if j = i,

0 otherwise.

(2.2)
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It follows from these transition probabilities that

E[Xk+1|Xk = i] = (i + 1)
i

N
(1− i

N
) + (i− 1)(1− i

N
)

i

N
+ i((

i

N
)2 + (1− i

N
)2)

= i.

So, E[Xk+1|Xk] = Xk and since Xk is bounded between 0 and N for all k,

E[|Xk|] < ∞. Hence, the Moran process is a Martingale. It can also be shown

under the Moran model that V ar(Xk+1|Xk = i) = 2 i
N

(1− i
N

).

While the variation at each step of the Moran model is less than in Wright-

Fisher case, we note that at each step of the Wright-Fisher process every individual

dies and is replaced at the next generation and the Moran process only allows for

a maximum of one death at each step. The variance of the Moran process after

two steps follows as

V ar(Xk+2|Xk = i) = E[V ar(Xk+2|Xk+1, Xk = i)] + V ar(E[Xk+2|Xk+1, Xk = i])

= E[2
Xk+1

N
(1− Xk+1

N
)|Xk = i] + V ar(Xk+1|Xk = i)

=
2

N
E[Xk+1|Xk = i]− 2

N2
E[X2

k+1|Xk = i] + V ar(Xk+1|Xk = i)

=
2

N
E[Xk+1|Xk = i]− 2

N2
(V ar(Xk+1|Xk = i) + E[Xk+1|Xk = i])

+ V ar(Xk+1|Xk = i)

=
2

N
E[Xk+1|Xk = i](1− E[Xk+1|Xk = i])

N
)− 2

N2
V ar(Xk+1|Xk = i)

+ V ar(Xk+1|Xk = i)

= V ar(Xk+1|Xk = i)− 2

N2
V ar(Xk+1|Xk = i) + V ar(Xk+1|Xk = i)

= (1− 2

N2
)V ar(Xk+1|Xk = i) + V ar(Xk+1|Xk = i).
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For the time being, let us leave the previous two step variance formula in the

current form and derive the general recursion for the M step variance. After

three steps of the Moran process, the variance follows as

V ar(Xk+3|Xk = i) = E[V ar(Xk+3|Xk+2, Xk = i)] + V ar(E[Xk+3|Xk+2, Xk = i])

= E[2
Xk+2

N
(1− Xk+2

N
)|Xk = i] + V ar(Xk+2|Xk = i)

=
2

N
E[Xk+2|Xk = i]− 2

N2
E[X2

k+2|Xk = i] + V ar(Xk+2|Xk = i).

Substituting the expression,

E[X2
k+2|Xk = i] = V ar(Xk+2|Xk = i) + E[X2

k+2|Xk = i]

and using that E[Xk+M |Xk = i] = E[Xk+1|Xk = i] (since Xk is a martingale),

yields the expression

V ar(Xk+3|Xk = i) = (1− 2

N2
)V ar(Xk+2|Xk = i) + V ar(Xk+1|Xk = i).

In general we have the recursion

V ar(Xk+M |Xk = i) = (1− 2

N2
)V ar(Xk+M−1|Xk = i)+V ar(Xk+1|Xk = i). (2.3)

Upon iteratively applying recursion (2.3), we obtain the solution to the M step

variance of the Moran process as

V ar(Xk+M |Xk = i) =
M−1∑
j=0

(
1− 2

N2

)j

V ar(Xk+1|Xk = i). (2.4)

In the Moran process, each individual has a 1/N chance of dying at each step, so

each individual is expected to live N steps before death. Hence, it is reasonable
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to equate a Moran generation to N steps of the Moran process. With this, we

have E[Xk+N |Xk = i] = i and from equation(2.4), the variance follows as

V ar(Xk+N |Xk = i) =
N−1∑
j=0

(
1− 2

N2

)j

V ar(Xk+1|Xk = i).

For N large, we have that
(
1− 2

N

)j ≈ 1, so

V ar(Xk+N |Xk = i) ≈ N × V ar(Xk+1|Xk = i)

= 2N × i

N
(1− i

N
).

This is an interesting result, since for N generations of the the Moran process,

the variance is approximately twice as large as in the Wright-Fisher process.

It is of course true that genetic variation occurs through the generational repro-

duction of children, which always happens in a forward direction in time. While

the realization of this forward process is the full genealogical history, in practice,

we only get to observe the present state of allele frequencies and must infer the

history from the sample (the present state of alleles).

Forward models, such as the Wright-Fisher process or the Moran process can be

used to construct probability distributions about the unknown parameters, such

as N in the process. Unfortunately, closed form probability distributions resulting

from complex forward processes seldom exist, so likelihood functions or probabil-

ity distributions for the unknown distributions are difficult to analyze via the

forward process framework. With respect to computation, in order to construct

probability distributions using forward processes, one might, for a given set of

unknown parameters, run the process until the pattern of variation observed in a
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given data set is observed. The relative frequency of times the observed data is

simulated would be an estimate of the probability of the data. Performing this

task for a 1-dimensional might be feasible, but over a high dimensional data set,

the computation time required is a limiting factor.

The Moran and Wright-Fisher models both represent relatively simple drift pro-

cesses with straightforward stochastic realizations. This is in part due to the fact

that both processes, as described, don’t include a mutational model or mechanism

in which allele types can change from generation to generation after production.

For now, we will proceed without mutation, but the issue of mutational processes

will be the topic of subsequent discussions within this thesis.

Since mutation has been neglected in both the Wright-Fisher and Moran models,

at some point in time only one allelic type will exist in the sample. Once this

occurs, the process will be fixed in that allelic state. This is referred to as an

absorbing state of the process. It can be shown by calculating the stationary

distribution for both the Wright-Fisher and Moran processes that

lim
k→∞

P(Xk = N |X0 = i) =
i

N

lim
k→∞

P(Xk = 0|X0 = i) = 1− i

N
.

That is, the probability of fixation is equal to the proportion of red (or black) alleles

in the initial sample. This result could have also been rationalized intuitively.
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2.2 A backwards perspective

We will set our focus now on models that do not mimic the natural time progres-

sion (forward). These models will start at the data level and run backwards until

some finishing state of the data.

2.2.1 Coalescence models

Before directly addressing coalescence models, or simply the coalescent, consider

figure 2.3, which represents a realization under the Wright-Fisher process.

Figure 2.2: A realization of genetic drift under the Wright-Fisher process.

The genealogy from a sample of alleles, constructed through the forward pro-

cess, can be readily viewed through a backward perspective. Branches which split
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in the forward direction are said to coalesce through a backwards trajectory of the

sample. In a forward direction, lineages can be terminated before the present day

state (bottom of the genealogy) by not being selected in the generational tran-

sition. However, at the present state, going backwards, all genealogies proceed

without termination. Figure 2.3 shows a realization of the Wright-Fisher process

(left and central panels), and a backwards tracing of two individuals in the present

sample (rightmost panel). The point in which the two samples find their most

recent common ancestor is the point of coalescence.

Figure 2.3: A realization of genetic drift under the Wright-Fisher process with
a backward tracing of two samples in the present sample.

We notice that in the present day state, the alleles have a genealogy which is

represented by the backwards trajectory from all the alleles at the bottom state

of the ancestry.
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While tracing back two individuals in the sample is the fundamental principal

in a coalescence model, this principal can be applied to any arbitrary number of

individuals. Figure 2.4 illustrates the back tracing (coalescing) of three individuals

in the sample (present state), as produced by the Wright-Fisher model. The left

panel in figure 2.4 represents a realization of the Wright-Fisher process, while

the central panel shows a back tracing of three individuals in the sample. The

right most panel shows an untangled version of the genealogy, for the three chosen

individuals in the sample.

Figure 2.4: A realization of genetic drift under the Wright-Fisher process with
a backward tracing of three samples in the present sample.

The following derivation is a standard result in coalescence theory and can be

found in Hudson (1990) or Felsenstein (2003). If we do not observe the genealogy,

then each allele has probability 1
N

of coming from any particular parent in the

previous generation. Hence, the probability that a given pair of alleles do not

share the same parents in the previous generation is p2 = 1− 1
N

. The probability
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that a given third allele has a distinct parent as the previous two alleles (given

that they have distinct parents) in the previous generation is given by 1 − 2
N

.

Therefore the probability that all three of these alleles have different parents in

the previous generation is given by

p3 =

(
1− 1

N

)(
1− 2

N

)
.

From this, we see that the probability of k genes all having distinct parents in the

previous generation is given by

pk =

(
1− 1

N

)(
1− 2

N

)
. . .

(
1− k − 1

N

)
.

Expanding this expression yields

pk = 1− 1

N

k−1∑
i=1

i + O

(
1

N2

)

= 1− 1

N

(
k

2

)
+ O

(
1

N2

)
,

where O
(

1
N2

)
is a sum with terms involving 1

Nj with j ≥ 2. These terms represent

the probability contribution from three or more alleles sharing the same parent

in the previous generation. For large N , we obtain the approximation for the

probability of all k alleles having distinct parents in the previous generation as

pk ≈ 1−
(

k
2

)
N

.

This is simply a statement that when N is large, the probability that three or more

descendants come from the same parent in the previous generation is vanishingly
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small. From this expression for pk, the probability that two alleles share a parent

in the previous generation is given by

1− pk =

(
k
2

)
N

.

This probability simply states, the probability that any two alleles have probability(
k
2

)
/N of coalescing in the previous generation. This could have been intuitively

derived by noting that for a given set of alleles, the probability they share the

same parent in the previous generation is 1
N

. Since there are
(

k
2

)
ways of selecting

two alleles, we obtain the probability of
(

k
2

)
/N of coalescence in the previous

generation. From this, we see that the number of generations until two individuals

coalesce has a geometric distribution with parameter p =
(k
2)
N

. If we denote G as

the number of generations until coalescence, then the probability of waiting g

generations for coalescence is given by

P (G = g) =

(
1−

(
k
2

)
N

)g−1 (k
2

)
N

.

The expected number of generations until a coalescence event is given by

E[G] =
N(
k
2

) . (2.5)

Instead of using a discrete generational process, it is convenient to model the co-

alescence process through a continuous time model. The exponential distribution

provides a continuous time approximation to the geometric distribution. In terms

of time (instead of generations), the time to coalescence is approximated by an

exponential distribution, so that when there are k individuals in the sample, the
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time to coalescence is modeled by

P (tk = t) = exp(−t

(
k
2

)
N

), (2.6)

where tk is the time to coalescence when there are k individuals in the sample.

Notice that

E[tk] =
N(
k
2

) ,
which is equal to the expected number of generations required for coalescence

under the discrete model.
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We define the coalescent to be the complete set of ordered coalescing events, which

begins with the sample and ends once all the individuals have coalesced into a

single entity, which is termed the Most Recent Common Ancestor (MRCA) of

the sample. We may wish to know how long this actually takes to occur. That

is, we might want to know how long we expect to wait until all lineages in the

sample have coalesced. This is simply derived by summing over all levels of the

coalescent. Letting TMRCA denote the time required to reach the MRCA, we have

TMRCA =
k∑

j=2

tk. (2.7)

By taking the expectation of both sides of equation (2.7), we have

E[TMRCA] = E[
k∑

j=2

tj]

=
k∑

j=2

E[tj]

=
N(
k
2

) +
N(
k−1
2

) + · · ·+ N(
2
2

)
= 2N

[(
1

k − 1
− 1

k

)
+

(
1

k − 2
− 1

k − 1

)
+ · · ·+

(
1

1
− 1

2

)]

= 2N

(
1− 1

k

)
.

We see that when k is large, the expected length of the tree is approximately

2N . Also, note, that when k = 2, that is when there are two individuals waiting

to coalesce, the expected waiting time is N . Therefore, the waiting time for the

last two individuals to coalesce nearly consumes half of the waiting time over the
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whole coalescence event.

Calculating the total expected length of a genealogy with k individuals at the

base of the genealogy illustrates the power of a coalescence analysis. It is this

backward perspective that enables us to easily incorporate all the boundary pa-

rameters of the stochastic realization, that is incorporation of the sample itself.

While the forward process is ultimately responsible for producing the sample,

inference is often times simpler under a coalescence based analysis.

2.3 Mutation

When we include mutations into the process, a coalescence based approach be-

comes even more attractive since genealogies compatible with the sample are easy

to construct and mutations can easily be superimposed on the genealogy con-

structed via coalescence.

When mutations are allowed to occur in the drift process, it is not necessarily

the case that a descendant will inherit the allelic state of its parent. Consider

a realization of the Wright-Fisher in which mutations arise per individual, per

generation, with probability u (see figure 2.5) Inclusion of mutation into the for-

ward process now means that the boundary states 0 and N are not absorbing.

The coalescence process is easily modified to incorporate mutation into the drift

process.

It is not exactly possible to measure incremental units of time by the examination

of gene samples alone, since we do not know what the population size N is and

we don’t know the initial state of the population. However, measuring the diver-
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Figure 2.5: A realization of genetic drift under the Wright-Fisher process with
mutation. Individuals who have experienced a mutation have been highlighted
with blue circles.

gence in genetic structure is possible by incorporation of a known mutation rate u.

We assume that mutations arise independently, as they would under neutral evo-

lutions. That is, the existence of a mutation will not inspire new mutations (as is

the case with deleterious mutations which effect fitness). Since u is the probability

that a gene experiences a mutation, the number of mutations Dt a particular gene

will experience in t generations has (approximately) the Poisson distribution

P (Dt = d) = exp(−tu)
(tu)d

d!
. (2.8)
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If we observe to random individuals from a population, we may wish to know how

many mutational differences they have between them, for a given gene. Again, we

let the mutational rate for this gene be u and denote the number of mutational

differences between the individuals as π. For convience, we assume the infinite

sites model, where all mutations are observed in the sample. Since these genes

ultimately came from some common ancestor t time units ago, we have

E[π] = 2× E[t]× u. (2.9)

The factor of 2 in equation (2.9) exists since mutations will occur on both lineages

of the two individuals. From equation (2.5), we obtain

E[π] = 2× E[t]× u

= 2Nu

since E[t] = N .

Traditionally, we denote

θ = 2Nu

Hence the parameter θ represents the expected number of mutational differences

between sequences. Also, θ can be seen as a scaled effective population size N ,

where the scaling is by a multiple of the mutation rate u. This mutation parame-

ter u is often described as the molecular clock or mutation clock since it can give

us an indication of time (it is measured in units of mutations/time), given the

number of mutations observed in the sample. Typical mutation rate values for

eukaryotes (i.e. plants, animals, fungi) are in the range 10−4 − 10−6 (Kumar and

Subramanian, 2002).
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In a coalescence model, it is not possible to estimate population parameters such

as N separately from u. In subsequent chapters we will be interested in estimat-

ing clock scaled parameters like θ for a given data set. Although, all parameters

within a coalescence framework will only be estimable through a product with the

mutation rate, the mutation rate can often be estimated through other experi-

mental means. We will not go into detail about this process, but rather take it

for granted that the mutation rate u is known.

2.3.1 Distribution of mutations

In order to study a given data set, a model must be specified for how mutations

are accumulated during the genealogical history of the sample. One such model

is to let the mutations occur under a similar distribution as coalescence events.

That is, we might wait for an exponential amount of time before a mutation event

is observed. We let Xu denote this time. For two diverging individuals, we let

D2u denote the number of mutations that arise during a fixed amount of time t.

It follows from the exponential waiting time assumption that D2u has a Poisson

distribution. Since we are considering two individual genes that are diverging from

a common ancestor, the rate of mutation for both sequences is 2u. Also, since

time in a forward model is the same as the time under a backward model, we have

that the number of mutations accumulated between two coalescing individuals

follows the Poisson distribution

P (D2u = d|u, N, t) = e−2tu (2tu)d

d!
. (2.10)
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We have let continuous time be denoted as t, however, it is convenient to scale

time by N generations as

τ =
t

N
. (2.11)

With this we can rewrite equation (2.10) as

P (D2u = d|u, N, t) = e−2tu (2tu)d

d!

= e−2Nu t
N

(2Nu t
N

)d

d!

= e−θτ (θτ)d

d!

= P (D2u = d|θ, τ).

The distribution gives the probability of observed d pairwise mutations between

two sequences given it takes τ time units to coalesce. We wish to know the

distribution of mutations not dependent on this time (since we don’t actually

know it). Recall (from equation (2.6)) that the time required to coalesce two

genes is has the exponential density

p(tk = t) =
1

N
e−t/N .

Under the transformation in (2.11), we have p(τ) = e−τ . From this we derive the

probability of observing d pairwise mutations between two samples follows as

P(D2u = d|θ) =

∫ ∞

0

P(d|θ, τ)p(τ)dτ

=

∫ ∞

0

e−θτ (θτ)d

d!
e−τdτ

=

∫ ∞

0

e−τ(θ+1)(θτ)d

d!
dτ (2.12)
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Recognizing the integrand in equation (2.12) as the kernel of the Gamma distri-

bution:

g(x|α, β) = xα−1 βα

Γ(α)
e−βx,

and noting that Γ(d + 1) = d!, we can rewrite equation (2.12) as

P(D2u = d|θ) =

∫ ∞

0

e−τ(θ+1)(θτ)d

d!
dτ

=

∫ ∞

0

τ d (θ + 1)d+1

(θ + 1)d+1

θd

Γ(d + 1)
e−τ(θ+1)dτ

= θd 1

(θ + 1)d+1

∫ ∞

0

τ d (θ + 1)d+1

Γ(d + 1)
e−τ(θ+1)dτ (2.13)

It follows that ∫ ∞

0

τ d (θ + 1)d+1

Γ(d + 1)
e−τ(θ+1)dτ = 1

since the integrand has a Gamma distribution with parameters

(α, β) = (d + 1, θ + 1). Therefore we have

P(D2u = d|θ) = θd 1

(θ + 1)d+1

=

(
θ

θ + 1

)d
1

θ + 1
. (2.14)

Hence the distribution of mutations (only conditional on θ) has a geometric dis-

tribution.

This result is easily generalize to the case when there are k individuals eligi-

ble for coalescence. Letting Dku be the number of mutations that accumulate in

25



the interval separating the kth and k − 1st levels of the coalescent is

P(Dku|θ, k) =

(
ku

ku +
(

k
2

)
/N

)d (
k
2

)
/N

ku +
(

k
2

)
/N

=

(
θ +

θ

(k − 1)

)d
k − 1

θ + (k − 1)
.

From this, the expected number of mutations accumulating between the kth and

k − 1st levels is

E[Dku|k] =
θ + (k − 1)

k − 1
.

Letting Mtot be the total number of mutations accumulated over the whole coa-

lescent, when we start with j individual genes, we have in expectation

E[Mtot] =
2∑

k=j

θ + (k − 1)

k − 1

=

j−1∑
1

θ + k

k

=

j−1∑
1

(
θ

k
+ 1

)

=

(
θ

j−1∑
1

1

k

)
+ j − 1.

For large j, we obtain the approximation

E[Mtot] =

(
θ

j−1∑
1

1

k

)
+ j − 1

≈ θ(γ + log(j − 1)) + j − 1,

where γ ≈ 0.577 is Euler’s constant.
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2.4 The Ewens sampling formula

In this section we will introduce the Ewens Sampling Formula (ESF), which is a

sampling distribution for the number of alleles and their frequencies in a sample

of n genes. For this, we assume that there are an infinite number of alleles in

the population, which is known as the infinite alleles assumption in population

biology. The underlying assumption of infinite alleles is that any new mutation

will result in a new allele (resulting in an infinite number of possible alleles).

Under this notion of infinite alleles, the ESF yields the probability that a sample

of n genes will contain k allelic types and that there will be A = (a1, a2, . . . , an)

alleles represented 1, 2, . . . , n times in the sample. As an illustration, consider

figure 2.6. Figure 2.6 illustrates a sample of 10 alleles. In this sample, there are

Figure 2.6: A sample of 10 alleles.

3 allelic types, where A = (0, 0, 2, 1, 0, 0, 0, 0, 0, 0). Notice that we must have

n∑
i=1

iai = n
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and,

n∑
i=1

ai = k.

Ewens (Ewens, 1972) derived the ESF as

P (k, a1, a2, . . . , an) =
n!θk

θ(n)

n∏
j=1

1

jajaj!
, (2.15)

where θ(n) = θ × (θ + 1)× · · · × (θ + n− 1).

Under this description of the ESF, θ = 4Nu, which is twice the mutation rate

in which we’ve been accustomed to using. This simple modification reflects the

description of a diploid rather than a haploid population. Since ESF is actually

the joint probability distribution of observing k allelic types in a sample of n

genes with the assignment of alleles given by (a1, a2, . . . , an), we will also refer to

the Ewens sampling formula as Ewens distribution. Karlin and McGregor (1972)

added an addendum to Ewens’ original proof to help illuminate some of the more

difficult theoretical issues in the original paper.

2.4.1 ESF derivation

While the conception of the ESF predates the coalescence, the ESF is much easier

to derive from a coalescence argument. The original proof for equation (2.15)

is quite difficult, and even subsequent simplified re-derivations of the Ewens dis-

tribution tend to be complex. We will employ a derivation of Ewens sampling

distribution as described in Griffiths and Lessard (2005).

The number of ways in which k allelic types can be distributed in a sample of
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n genes is

n!∏k
i=1 ni

,

where the ni’s are the frequency of each allele. For our example, n1 = 3, n2 = 4,

n3 = 3. Since the k allelic types in the sample are not labeled, these can also be

permuted. For example, in figure 2.6, we have three allele types where type 1 and

type 2 alleles both 3 representatives in the sample. Hence these allele types can

be permuted in a3! ways without changing the overall configuration of the sample.

In general there are a total of

n∏
i=1

ai!

of these permutations. Hence there is a total of

n!∏k
i=1 ni!

∏n
i=1 ai!

unlabeled configurations of the n genes.

Now we must account for how the variation in the sample arose under the in-

finite allele model in the first place. This is most easily accounted for through a

coalescence perspective. At this point, we employ the infinite alleles assumption.

That is, only a single mutation is responsible for the formation of the novel al-

lele. This means that in a backwards (coalescence) perspective, the allele must

ultimately disappear due to mutation.
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Figure 2.7 shows that each allele type in a sample of 10 alleles was generated by a

single mutation. From a backwards coalescence perspective, this mutation must

be the last event to occur before coalescing with a different allele type.

Figure 2.7: A possible genealogy responsible for the resulting allele types ob-
served in a sample of 10 genes.

We let transitions refer to a change in state to the sample, either by mutation

or a coalescence. When there are i genes left in the sample ,the overall rate of

transition is

iu +

(
i
2

)
N

.

The rate at which a single allele disappears due to mutation is u, so the probability

that a given allele disappears due to mutation, when there are i individuals left,

is

u

iu +
(i
2)
N

=
θ

i(θ + i− 1)
.
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When there are j individuals of the same allelic type left in the sample (and i total

individuals left), there are
(

j
2

)
possible ways of choosing any of these j individuals

to coalesce. Therefore the rate at which a particular individual coalesces with

another individual is 1
j

(
j
2

)
. It follows that the probability that an individual is

lost due to coalescence, where there are j individuals of that type is

1
j

(
j
2

)
iu +

(i
2)
N

=
j − 1

i(θ + i− 1)
.

The joint probability of a given ordered history of mutational losses and coales-

cence events follows as

(n1 − 1)! . . . (nk − 1)!θk

1θ × 2(θ + 1)× · · · × n(θ + n− 1)

=
(n1 − 1)! . . . (nk − 1)!θk

n!θ(n)

,

which is the product of coalescence probabilities and mutation probabilities for a

particular genealogical history or the sample.

Since there are n events in the coalescing history, there are n! possible histories.

Hence the overall total probability of the sample follows as

P (k, a1, a2, . . . , an) = n!
n!∏k

i=1 ni!
∏n

i=1 ai!

(n1 − 1)! . . . (nk − 1)!θk

n!θ(n)

=
n!∏k

i=1 ni

∏n
i=1 ai!

θk

θ(n)

.

Noting that

k∏
i=1

ni =
n∏

i=1

iai ,
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we arrive at P (k, a1, a2, . . . , an) = n!θk

θ(n)

∏n
j=1

1
jaj aj !

, which is the ESF!

This derivation of Ewens distribution makes use of the coalescent and tremen-

dously simplifies the mathematics over other derivations which employ compli-

cated combinatorial analyses, recursions, or Poisson-Dirichlet process insights.
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Chapter 3

Decoupled Parameter Space Models

A coalescence process can be considered a pure death process in which the number

of elements in the state space decreases due to the merging of two elements at a

time. This merging process is referred to as coalescing. This process starts from

the number of initial samples in the data set, and proceeds until all the individuals

have coalesced into a common element. This common element is what we shall

refer to as the most recent common ancestor (MRCA). The stochastic realization

(path) which describes the pattern of coalescences, from the individuals in the

sample to the MRCA, represents the gene genealogy of the studied data set. This

gene genealogy we will refer synonymously to as a history, demographic, or simply

a tree due to its bifurcating nature.

In general, inference can include anything on the tree, such as cumulative branch

lengths from the sample, which might represent the time since an event occurred,

as well as include any parameters which drive the stochastic process. In this chap-

ter we will introduce a set of coalescence models, in which all time inferences are

restricted to the parameters that drive the process, and not the stochastic real-
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izations themselves. We will denote θ as the population parameters that are of

primary interest which drive the stochastic process, and T the evolutionary tree

which will be the stochastic outcomes of the process. We impose that if event

times in the genealogy are wanted, they must be included in the set θ and not

explicitly on the sample path T . The feature that event times are contained in

the set θ, rather than T is what we call a decoupling of the system. Hence T ,

in our view, serves completely as a latent process and merely acts as a modeling

device.

Models of coalescence generally share the exponential waiting time till event frame-

work and exploit the fact that modeling the backward process greatly simplifies

computational demands and clarifies theoretical insights of the drift process. Key

to the models studied in this chapter is that the parameters of interest and stochas-

tic realizations are decoupled. In mathematical terms, by a decoupling, we mean

we can easily seperate the joint posterior distribution

P (T,θ|D)

into the components

P (T |θ, D) and P (θ|T, D).

The notion of branch length will not be included in the description of T , but rather

T will simply be an ordering of events. The parameter set θ will serve as functions

of the rate parameters in sampling distributions that model waiting times, so the

sampling distribution of the particular times of interest may be inferred through

marginalization of T .

There are many reasons for requiring this decoupling. One reason being that
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it lends it self to a simpler extraction of the information since we really only desire

the distribution P (θ|D) for inference. Also, being that θ only contains numerical

quantities, whereas T is a high dimensional and oddly topological construction,

it makes sense to separate the numerical quantities of interest from the non-

numerical elements. In later chapters, we will build sampling methodologies which

are much more efficient, from a computational perspective, due to this decoupled

structure.

3.1 The Data

Before introducing a thorough description of the coalescence models for the partic-

ular demographic parameters that we wish to study, let us describe the observed

data and the summary statistics that we will explore. Our data comes from

nucleotide sequence data, which for this chapter we will consider to be from a

single locus. That is, from multiple individuals, nucleotide sequence data is ex-

tracted which will come from a single common region of the genome and summary

statistics will be formed from the sequence data. A nucleotide sequence (or DNA

sequence) is a succession of the 4 bases A,G,C and T which stand for adenine,

guanine, cytosine and thymine respectively. A sequence can consist of any number

of bases. An example of a nucleotide sequence is

GGGAACCTAAGACCTAGATCAAGGCCA.

3.1.1 Outgroups

Before describing the summarization of the sequence data, let us consider the

notion of an outgroup species. For any two species, say species 1 and species 2,
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a third species, say species 3, is called an outgroup if it is more distantly related

to species 1 and species 2 than they are to each other. In terms of a phylogeny,

the topology of species 1, species 2 and the outgroup species can be seen in figure

3.1. The concept of an outgroup is necessary for classifying different mutations

Figure 3.1: A topological representation of an outgroup species.

in the data set and determination of the ancestry of the mutation. Consider for

example the two observed nucleotide sequences

AAGTTC

AACTTC

which come from two species, species 1 and species 2 respectively. The two se-

quences are identical in all but the third position. This third position, since it

differs in both sequences, is known as a polymorphic site, polymorphism or a seg-

regating site. We know that at least one mutation occurred in the evolutionary

history at site three. Under the infinite sites model, we assume exactly one mu-

tation occurs per site in the entire history of the sample. With the assumption of

infinite sites, we can use information from an outgroup sequence for identifying
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which sequence is mutated and which is ancestral. For example, if the outgroup

sequence was

AACTTC,

we would know the mutation occurred somewhere in the history of species 1, but

not in the history of species 2. This evolutionary history is depicted in figure 3.2.

Figure 3.2: The outgroup species identifies which species group develops the
mutation.

3.1.2 Segregating Sites And Watterson’s Estimator

A common parameter of interest in population genetics is θ ∝ Nu, where u is

the mutation rate and N is the effective population size for a single population.

This parameter, θ, is essentially of interest for describing the effective size of a

population but, as we shall see, can only be estimated relative to the mutation

rate u. Segregating sites from a sample of DNA data are base positions where the

sequences differ. Watterson (Watterson, 1975) contributed an estimator for θ in

which knowing the total count of segregating sites (total number of base positions
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that show differences) is sufficient. Although, Watterson did not originally use a

coalescence approach in constructing this estimator, we will motivate his estima-

tor via coalescence.

Consider for example being at a position on the evolutionary tree, in which there

are k branches and we are waiting to coalesce to k−1 branches. The mutation rate

on any one of these branches is u, so the total mutation rate for all k branches

is uk. From chapter 2, the waiting time to coalesce from k branches to k − 1

branches is

2N

k × (k − 1)
.

From this, we have the expected number of accumulated mutations on the level

of the tree with k branches as

2N

k × (k − 1)
× uk =

θ

(k − 1)
,

where we have taken to be θ = 2Nu. To determine the total number of mutations

(segregating sites) that occur in the samples (DNA sequences) evolutionary past,

we must count the number of mutations that occur on all levels of the tree. Hence

the expected number of segregating sites follows as

E[S] = θ
L∑

k=2

1

k − 1
= θ

L−1∑
k=1

1

k
,

where L is the total number of samples. From this, the method of moments

(MOM) estimator for θ follows as

θ̂ = Ŝ/

L−1∑
k=1

1

k
,
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where Ŝ is the total number of segregating sites observed in the L samples.

3.1.3 Classification Of Segregating Sites

Wakeley and Hey (1997) extend the idea of counting segretating sites to consider

estimation of a larger set of population parameters, which model the demographic

history of two species groups, by considering the number of sites which segregate

in both groups, segregating in a single group and those with fixed differences (see

figure 3.3).

Figure 3.3: The Wakley Hey classification of segregating sites.

We will further extend this concept of counting segregating sites based on the

classification of mutations, where derived mutations can be either absent (not

occurring), segregating (occurring in at least one but not all), or fixed (occurring

39



in all). Mutations will be jointly classified in a joint two species configuration

based on the fixed, absent or segregating types. This joint classification defines

seven types since mutations are restricted from being fixed or absent in both

groups simultaneously. Table 3.1 shows the classification of the seven types of

segregating sites n = (n1, n2, n3, n4, n5, n6, n7).

Count Group 1 Group 2

n1 segregating absent
n2 fixed absent
n3 absent segregating
n4 absent fixed
n5 segregating segregating
n6 fixed segregating
n7 segregating fixed

Table 3.1: Counts of segregating sites provide multiple summary statistic from
nucleotide sequences.
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An example of the data we might observe is depicted in table 3.2.

Table 3.2: An example of the observed data.

We see in table 3.2, there are 4 types of mutations observed in the data set, these

are of type fixed/absent, absent/fixed, segregating/absent and absent/segregating.

These 4 mutational types have occurred with frequencies {1, 1, 2, 1} respectively,

and the total number of segregating sites (Ŝ) is 5.

Unlike Watterson’s estimator for θ, where only the total number of segregat-

ing sites is sufficient, classifying the counts of segregating sites yields information

about the genealogical history by determining classes of branches that must be

present in the gene tree.

41



For example, from our running example, a possible topology of the tree with

mutational placements is shown in figure 3.4.

Figure 3.4: An example of the tree structure that is induced by the classification
of mutations.

Notice for example, the highest mutation in the tree in figure 3.4 corresponds to

a branch that has fixed descendents in species 1, and no descendent in species 2.

So, this mutation is of type n2 and describes the fixed/absent mutation seen in

table 3.2. Hence, the joint classification of mutations, as defined by table 3.1 yields

information about the gene tree. In subsequent chapters, we will demonstrate how

good this summarization of the data is by comparing the inference under models

conditioned on this data to models conditioned on the fully un-summarized data.
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3.1.4 State Space

We define the level of a tree by the number of branches that exist between consec-

utively ordered coalescence events. One a given tree, level l denotes the section

of the tree where l lineages exist (see figure 3.5).

Figure 3.5: Levels of the tree are denoted by the number of branches that exist
between consecutive coalescence events.

Every branch of the gene genealogy is classified by lineage according to its species

membership. That is we note to what group(s) its descendants belong. A type

1 lineage has descendants in only the species 1 group, and a type 2 lineage has

descendants in only the species 2 group. Type 3 lineages have descendants in both

groups.

On level l of the geneology, where there are l genes still available for coalescence,
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we denote the state space as

Sl = (l1,1, l1,2, l1,3|l2,1, l2,2, l2,3|l0,1, l0,2, l0,3),

where li,j denotes the number of lineages, on level l, that belong to the species i

group and are of type j.

It follows that l =
∑3

i=1

∑2
j=0 li,j and (l1,j + l2,j)× l0,j = 0, since we are either in

the post or prespeciation phase.

The model state space reflects the types of branches on the genealogical tree at

each level l. A full sequence of state spaces Sl, for l = (n, . . . , 2), where n is the

number of individuals in the initial sample, denotes a tree structure. An example

of the a tree structure and its (partial) state space representation is illustrated in

figure 3.6.

Figure 3.6: A genealogical representation of the state space Sl for each level
of the tree. Notice that between level 4 and level 3 there was a change in pop-
ulation structure, induced by a speciation event which transitioned the state to
(0, 0, 0|0, 0, 0|2, 2, 0).
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3.2 Models

We will now turn to modeling the summary collection of joint segregating sites as

described in section 3.1. We will discuss three primary models. The first model

(see section 3.2.1) of interest will be used for inferring the how long ago two extant

species emerged in the population. That is, we will attempt to infer the time of

speciation. This model will reflect the most basic set of parameters in a two

population coalescent framework and will serve as core example for most of this

thesis.

The remaining two models we will consider will be extensions of the simple model.

The second model (see section 3.2.7) we will be adapted to the case in which a

single gene is present in the two respective populations which prevent sustained

breeding between the species groups. The third and final model we will discuss

(see section 3.2.12) will be adapted for the modeling of introgression between

species.

3.2.1 Simple Isolation Model

This model will serve as a starting model which will commonly be the model

of reference with possibly minor modifications. The simple isolation model is

dependent on the following parameters

• λ : The rate of speciation between species 1 and 2.

• N0 : The ancestral effective population size.

• N1 : The effective population size for species 1.

• N2 : The effective population size for species 2.
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Figure 3.7 depicts the divergence of extant groups 1 and 2 from ancestral group

0 τ time units in the past. Group i (i = 0, 1, 2) comprises an effective number of

Ni genes. While we don’t explicitly model the divergence time τ in the model, we

model the rate at which divergence occurs through the speciation rate parameter

λ. Under the strict isolation model, the state space can be simplified further

Figure 3.7: Divergence of extant groups 1 and 2 from ancestral group 0. Diver-
gence occurs τ time units backwards in time.

since there is no possibility of obtaining states in which (l1,2, l1,3) and (l2,1, l2,3)

are positive. That is, while the state is in the post-speciation phase (before the

divergence event in a backwards perspective) species 1 or species 2 lineages can

only have descendants in group 1 or group 2, respectively. Hence for the strict

isolation model, the state space can be written as

Sl = (l1,1|l2,2|l0,1, l0,2, l0,3). (3.1)
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Although, the parameters (λ, N0, N1, N2) are the desired parameters, it is through

the mutation rate u that we are able to calibrate the events to time. Hence all

the parameters are only estimable with respect to mutation rate. We consider the

infinitesimal rates of change for the parameters with respect to mutation rate as

Λ = lim λ/u (3.2)

θi = lim 2Niu for i ∈ (0, 1, 2), (3.3)

where the limit is taken as (λ, 1
Ni

, u → 0). The factor of 2 in the definition

of θi appears strictly for historical purposes. The only within level transition

in this model is a speciation event, which occurs only once in the genealogy,

and therefore a maximum of once per level. It is in this case that the within

level transition matrix P l is nilpotent, and the relationship given by equation

(A.9) holds. Coalescence events happen at rates proportional to 1/Ni, since the

probability that two genes chosen at random share a common ancestor in the

previous generation is 1/Ni. On level l this rate is scaled by the number of

ways two randomly chosen branches can be selected. That is, the total rate of

coalescence on the level l is (
l
2

)
Niu

=
l(l − 1)

θi

.

The rate at which mutations occur at each level l is just the rate at which a

mutation can occur on a single branch u multiplied by the number of branches.
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3.2.2 Coalescence Trees And Probabilities

We consider a the set of events: coalescence, speciation and mutations which

explain the observed set of segregating sites observed in from a set of sampled

sampled individuals. Let us explain the simple isolation model with the context

of an example. Consider for a moment a data set with 3 individuals sample from

group 1 and 4 individuals sampled from group 2. We let the joint segregating

counts from the sampled individuals be as in table3.3 A possible evolutionary

Count Group 1 Group 2

2 segregating absent
3 fixed absent
3 absent segregating
1 absent fixed
0 segregating segregating
0 fixed segregating
0 segregating fixed

Table 3.3: Example counts of joint segregating sites.

tree explaining the mutational summary from the example data set in table 3.3

is illustrated by figure 3.8. This shows a history of 14 events. Of these 14 events,

we have 9 mutation events, 4 coalescence events and the single speciation event.

Under the model parameters, θ = {λ/u, , uN0, uN1, uN2}, we describe the proba-

bility of the tree and the data. That is, we determine the probability P (D, T |θ),

where D denotes the data and T denotes a particular tree.

In accordance with the backwards coalescence theory, discussed in section 2.2,

we let the waiting times for all events in a coalescence tree be modeled as expo-

nential distributions, with their respective rate parameters.
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Figure 3.8: The ordered events in a genealogical history.

Since the genealogy is described in terms of an ordered history, we need the prob-

ability of this event. For the example shown in figure 3.8, the probability of the

data and the genealogy is the product of the probability of each of the 14 events

occurring in their illustrated orders.

Before providing the exact details on obtaining the probability of the full geneal-

ogy, we state a useful result. Letting Xt1 and Xt2 be exponentially distributed

random variables with rate parameters γ1 and γ2 respectively. Having t1 ∼ Xt1
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and t2 ∼ Xt2 , the probability that t1 < t2 follows as

P (t1 < t2) =

∫ ∫
t1<t2

γ1e
−γ1t1γ2e

−γ2t2dt1dt2

=

∫ ∞

0

∫ t2

0

γ1e
−γ1t1γ2e

−γ2t2dt1dt2

=
γ1

γ1 + γ2

.

The general result, when there are n competing exponentials, with rate parameters

γ1, . . . , γn, the probability that the kth event happens first is γk/
∑n

i=1 γi. We use

this result to next obtain the probability of the various ordered events on the

tree.

3.2.3 Transition Probabilites

Consider states of the form (l1,1|l2,2|0, 0, 0), which represent a portion a genealogy

in the extant post-speciation phase. The obtainable states from this initial state

follows as

(l1,1 − 1|l2,2|0, 0, 0) for l1,1 > 1,

(l1,1|l2,2 − 1|0, 0, 0) for l2,2 > 1,

(0|0|l0,1 − 1, l0,2, 0) for l0,1 > 1,

(0|0|l0,1, l0,2 − 1, 0) for l0,2 > 1,

(0|0|l0,1 − 1, l0,2 − 1, 1) for l0,1 > 0 and l0,2 > 0,

where we are imposing that state termination ends with a coalescence event. The

last three transition events reflect those in which a speciation event occurred

prior to the coalescence event. The first two transitions, representing coalescence
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in groups 1 and 2 respectively, occur with probabilities

(l1,1
2 )

N1

(l1,1
2 )

N1
+

(l1,1
2 )

N2
+ λ

=

l1,1(l1,1−1)

θ1

l1,1(l1,1−1)

θ1
+ l2,2(l2,2−1)

θ2
+ Λ

,

and

(l2,2
2 )

N2

(l1,1
2 )

N1
+

(l1,1
2 )

N2
+ λ

=

l2,2(l2,2−1)

θ2

l1,1(l1,1−1)

θ1
+ l2,2(l2,2−1)

θ2
+ Λ

,

respectively. The last three transition events occur with probabilities

λ

(l1,1
2 )

N1
+

(l1,1
2 )

N2
+ λ

(l0,1
2 )

N0

(l
2)

N0

=
Λ

l1,1(l1,1−1)

θ1
+ l2,2(l2,2−1)

θ2
+ Λ

(
l0,1

2

)(
l
2

) ,

and

λ

(l1,1
2 )

N1
+

(l1,1
2 )

N2
+ λ

(l0,2
2 )

N0

(l
2)

N0

=
Λ

l1,1(l1,1−1)

θ1
+ l2,2(l2,2−1)

θ2
+ Λ

(
l0,2

2

)(
l
2

) ,

and

λ

(l1,1
2 )

N1
+

(l1,1
2 )

N2
+ λ

l0,1l0,2

N0

(l
2)

N0

=
Λ

l1,1(l1,1−1)

θ1
+ l2,2(l2,2−1)

θ2
+ Λ

l0,1l0,2(
l
2

) ,

respectively.

For transitions that occur during the pre-speciationphase, that is the state repre-

senting a lineage in the ancestral state, consider the transition moving the state
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(0|0|l0,1, l0,2, l0,3) to one of the following states

(0|0|l0,1 − 1, l02, l03) for l0,1 > 1,

(0|0|l0,1, l02 − 1, l03) for l0,2 > 1,

(0|0|l0,1, l02, l03 − 1) for l0,3 > 1,

(0|0|l0,1 − 1, l02 − 1, l03 + 1) for l0,1 > 0 and l0,2 > 0.

The first transition reflects a transition in which two l0,1 lineages coalesce, which

occurs with probability

(l0,1
2 )

N0

(l
2)

N0

=

(
l0,1

2

)(
l
2

) ,

or a transition where a l0,1 lineage coalesces with a l0,3 lineage, which occurs with

probability

l0,1l0,3

N0

(l
2)

N0

=
l0,1l0,3(

l
2

) .

Hence the total probability of transition (0|0|l0,1, l0,2, l0,3)→ (0|0|l0,1 − 1, l0,2, l0,3)

is (
l0,1

2

)
+ l0,1l0,3(

l
2

) .

Similarly, the probability of transitioning to state (0|0|l0,1, l02 − 1, l03) is

(
l0,2

2

)
+ l0,2l0,3(

l
2

) .

52



The probability of making the transition (0|0|l0,1, l02, l03) → (0|0|l0,1, l02, l03 − 1)

occurs with probability

(l0,3
2 )

N0

(l
2)

N0

=

(
l0,3

2

)(
l
2

) .

And finally, the the transition (0|0|l0,1, l02, l03)→ (0|0|l0,1−1, l02−1, l03+1) occurs

with probability

l0,1l0,2

N0

(l
2)

N0

=
l0,1l0,2(

l
2

) .

With respect to the exact recursion in probabilities, which computes the exact

likelihood of the of the data (see appendix A), It is these probabilities that form

the entries of the matrices U l and V l in the equation (A.8). U l stores the within

level probabilities Λ
l1,1(l1,1−1)

θ1
+

l2,2(l2,2−1)

θ2
+Λ

, which relates to the speciation event, and

V l stores the coalescence probabilities.

We have documented all of the transition probabilities that relate to changes in a

tree’s structure. In the next section, we determine the probability of the mutation

configuration on a given tree.

3.2.4 Mutation Process Probabilities

In accordance with section 2.3.1, we let the (backwards) time until a mutation

arises be modeled as exponential with rate parameter ul, where l denotes the level

of the tree. For each mutation that arises on level l, we uniformly choose which

branch it is situated on. Recall that each each level, branches are classified as type

1,2 or 3, with relative frequencies l1 = (l1,1 + l0,1), l2 = (l2,2 + l0,2) and l3 = l0,3.

This is equivalent to modeling the time to a type i mutation as exponential with
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rate parameter uli. On level l of a tree, the arrival of a mutation of a type i branch

occurs with probability li/l.

Now, on level l, we are only concerned with the number of mutations that situate

on type 1,2 and 3 lineages. Therefore, the order in which they arrive isn’t of

consequence. If we assume that q mutations arrive on level l, where q1, q2 and q3

mutations are accumulated on a type i branches, then assignment of the (q1, q2, q3)

mutations on level l in the pre-speciation phase, has the multinomial probability

q!

q1!q2!q3!

(
l0,1

l

)q1
(

l0,2

l

)q2
(

l0,3

l

)q3

.

In the post-speciation phase, type 3 lineages are eliminated and the configuration

of (q1, q2) mutations have the binomial distribution

(
q

q1

)(
l1,1

l

)q1
(

l2,2

l

)q2

,

for which q1 and q2mutations accumulate on type 1 and type 2 branches repsec-

tively.

3.2.5 On Level Joint Probability Distributions

For a given level, the joint probability distribution of observing a particular ar-

rangement of mutations and a transition to end the level, the joint probability

distribution can be determined from the marginal distributions of both events.

While, the mutational events are not independent of the tree since the branch

types at a given level determine the types of mutations which can be distributed,

they are conditionally independent, given the current state (determining tree

structure) and model parameters. For instance, consider the l lineages comprising
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the pre-speciation state (0|0|l0,1, l0,2, l0,3), where l =
∑3

i=1 l0,i. Accumulation of q

mutations distributed as (q1, q2, q3) before terminating the level with a transition

to level (0|0|l0,1, l0,2 − 1, l0,3) occurs with probability

q!
q1!q2!q3!

(ul0,1)
q1(ul0,2)

q2(ul0,3)
q3 [
(

l0,2

2

)
+ l0,2l0,3]/N0

[
(

l
2

)
/N0 + ul]q+1

. (3.4)

This probability is derived by noting that the probability of a mutation event is

ul(
l
2

)
/N0 + ul

.

Given a total of q mutations, we obtain through a product of independent prob-

abilities (
ul(

l
2

)
/N0 + ul

)q

. (3.5)

However, the probability of the mutational assignment (q1, q2, q3) on the three

branch types given the total number of mutations q has the multinomial proba-

bility

q!

q1!q2!q3!

(
l01
l

)q1
(

l02
l

)q2
(

l03
l

)q3

. (3.6)

Hence by taking the product of (3.5) and (3.6), we obtain

q!
q1!q2!q3!

(ul0,1)
q1(ul0,2)

q2(ul0,3)
q3

[
(

l
2

)
/N0 + ul]q

. (3.7)

By multiplying (3.7) by the transition probability

[
(

l0,2

2

)
+ l0,2l0,3]/N0(

l
2

)
/N0 + ul

,
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we obtain the joint probability given by (3.4).

Similarly, given the post-speciation state (l1,1, l2,2|0, 0, 0), accumulation of q muta-

tions, in the arrangement (q1, q2) and transitioning to (l1,1, l2,2 − 1|0, 0, 0), occurs

with probability (
q
q1

)
(ul0,1)

q1(ul0,2)
q2
(

l2,2

2

)
/N2

[λ +
(

l1,1

2

)
/N1 +

(
l2,2

2

)
/N2 + ul]q+1

. (3.8)

The post-speciation state (l1,1, l2,2|0, 0, 0) can also go through the speciation bar-

rier before a coalescence event occurs. Hence, a transition accumulating q muta-

tions in the configuration (q1, q2) and terminating in the state (0|0|l0,1 − 1, l0,2 −

1, 1), occurs with probability

q∑
k=0

(
q
q1

)
(ul0,1)

q1(ul0,2)
q2λ l1,1l2,2

N0

[λ +
(

l1,1

2

)
/N1 +

(
l2,2

2

)
/N2 + ul]k+1[

(
l
2

)
/N0 + ul]q−k+1

. (3.9)

Equation (3.9) follows by considering all configurations of k mutations before

the speciation event and the remaining q − k mutations occurring in the pre-

speciation phase. Since these are all disjoint events, the total probability of the

q1 and q2 mutations arising between the boundary states, (l1,1, l2,2|0, 0, 0) and

(0|0|l0,1 − 1, l0,2 − 1, 1), result from the sum of each individual probabilities with

k and q − k mutations before and after speciation, respectively.

3.2.6 Exact Determination Of Likelihood

Although, we have derived the joint transition probabilities on level l directly

from the transition probabilities, an analysis of the recursion in pgfs
g
(p)
l (0)Q7
i=1 pi!

=

∑
q

R
(q)
l (0)Q7
i=1 qi!

g
(p−q)
l−1 (0)Q7

i=1(pi−qi)!
(see appendix A) shows that the terms (3.4), (3.8), (3.9) all
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result from elements in the term
R

(q)
l (0)Q7
i=1 qi!

. However, for exact computation of the

sample, the recursion in pgfs is useful, since it gives us a format in which iterating

over all tree topologies and mutational configurations is simple.

The likelihood of the data simply reflects a sum of probabilities, each representing

a unique history in which the sample was derived. Also, each probability compo-

nent is a product of probabilities over each level of the tree. Unfortunately, exact

calculation of the probability of our sample is not easily accomplished do to the

tremendous number of fully resolved trees that can explain the data. However, not

all trees reflect the same degree of strength for modeling the data. In subsequent

chapters, we will explore sampling techniques for constructing both the likelihood

of the data and posterior distributions for the parameters in the model to help us

overcome the enormous complexity involved in even the simplest of data sets.
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3.2.7 Gene Incompatibility Models

While the simple isolation model (section 3.2.1) serves as a natural starting point

to inferring the time since speciation, it assumes that only point mutations (base

substitutions) are responsible for the genomic variation observed within a sample

of individuals. However, this might not be the case.

We might consider the scenario of locus specific incompatibility factors within

the genome. For instance, chromosomal rearrangements, more complicated than

point substitutions, may exist and effect the locus being modeled. A paracen-

tric inversion is a type of chromosomal rearrangement that does not include the

centromere (the midsection of a chromosome) and actually permutes consecutive

blocks of the genome. If a recombination event occurs during meiosis within this

inverted section, the effects on the resulting chromosomes will be detrimental (see

figure 3.9).

In figure 3.9, the knots on the chromosomes represent the relative position of the

centromeres. In state A, we see two pairs of chromosomes which have difference

genetic patterns. In state B, the child inherits a chromosome from each parent and

pairs the chromosomes up in the ”loop” configuration seen. State C represents

the chromosomes produced after meiosis, where a recombination event occurs.

The final configuration of chromosomes is severely abnormal compared to that

of the parent groups when a paracentric inversion exists. That is, two of the chro-

mosomes that are possibly produced in meiosis phase, of the individuals with the

chromosomal inversion, have either zero or two centromeres. These chromosomes

with an imbalance of centromeres are a result of crossover (recombination) during

the meiosis phase. This phenomena can severely cripple the offspring population,
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Figure 3.9: The paracentric inversion process during meiosis.

and if the recombination rate is high, lead to an isolation of the two groups. It

is speculated that these chromosomal inversions, in certain species, can eventual

lead to the speciation event (Noor et al., 2001). However, the formation of the

inversion may not coincide exactly with the emergence of a new species group, we

must consider separately from the divergence.

The model we will consider is nearly identical to the simple isolation model.

However, after the speciation event, the population will be separated due to an

inversion existing in the two groups, which effectively prevents breeding between

inverted groups. For our purposes, we will consider that group 1 descends from
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the group inheriting the inversion, where the inversion is present with frquency

p ∈ (0, 1) in the ancestral population, see figure 3.10. In a backwards coalescence

Figure 3.10: Divergence of extant groups 1 and 2 from ancestral group 0. Di-
vergence occurs τ time units backwards in time. After the speciation barrier,
there is an additional separation of groups in the ancestral state due to gene
incompatibility.

prospective, the ancestral population is separated until there is only a single type 1

descendent left. That is the ancestral lineages are separated with frequency p until

the state (0|0|1, l0,2, 0) is achieved. This states that since an inversion is fixed and

absent in the respective population groups, there must be a fixed absent branch

in their genealogy. Hence, even if there are no f/a (fixed/absent) mutations in

the data, we condition on the presence of a f/a branch in the genealogy.

3.2.8 Transition Probabilities

While the mutational process is unperturbed by the necessity of observing an

f/a branch in the history of the sample, the state transition probabilities are af-
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fected. The unconditional transition probability in the extant state (l1,1|l22|0, 0, 0)

to (l1,1 − 1|l2,2|0, 0, 0) is (
l1,1

2

)
/N1(

l1,1

2

)
/N1 +

(
l2,2

2

)
/N2 + λ

.

The conditional probability at this level on seeing a fixed/absent branch in the his-

tory is augmented. For now, let us denote the conditional probability of transition

and obtaining the fixed/absent branch as

Te(l1,1 − 1, l2,2)

(
l1,1

2

)
/N1(

l1,1

2

)
/N1 +

(
l2,2

2

)
/N2 + λ

, (3.10)

where Te(l1,1−1, l2,2) is the probability of being in the extant state (l1,1−1|l22|0, 0, 0)

and observing the state (0|0|1, l0,2, 0) higher up on the tree. Similarly, we denote

the probability of transitioning from (l1,1|l22|0, 0, 0) to (0|0|l0,1 − 1, l0,2, 0) condi-

tional on seeing the fixed/absent branch in the history as

Ta(l1,1, l2,2)
λ(

l1,1

2

)
/N1 +

(
l2,2

2

)
/N2 + λ

× Ta(l1,1 − 1, l2,2)

(
l0,1

2

)(
l
2

) , (3.11)

where Ta(i, j) is the conditional probability of being in the ancestral state (0, 0|i, j, 0)

and obtaining the fixed/absent branch in the history.

3.2.9 Recursion In PGFs

As presented in appendix A, we can formulate a recursion in pgfs for the coales-

cence model with gene incompatibility constraints. We note that the mutational

process is unaffected by the transition constraints, since these happen forward in

time and the rate of mutation is unperturbed by any constraints in the tree. These

constraints merely reflect that at some point in the history, all the descendants
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in group 1 were present with a chromosomal inversion and ultimately transmit

these to their offspring. Hence the recursion in pgfs (as stated in appendix A) are

modified as

gl(a) = [I − F l(a)U ∗
l ]
−1F l(a)V ∗

l gl−1(a) (3.12)

where U ∗
l and V ∗

l denote within level and between level transitions conditioned

on seeing a fixed/absent branch in the genealogy. Examples of the entries found

within the matrices U ∗
l and V ∗

l are found in (3.10) and (3.11). The pgf matrix

F l(a) controlling the mutational process, is exactly the same as in equation (A.2).

3.2.10 Constrained Probabilites

Earlier we denoted the probability of seeing a fixed/absent branch in the genealog-

ical path as Te(i, j) and Ta(i, j) while being at extant state (i|j|0, 0, 0) and ances-

tral state (0|0|i, j, 0), respectively. Let us now derive these probabilities through

a system of recursions, which was first presented by Wiuf and Donnelly (1999).

In the ancestral state (0|0|i, j, 0), we have the recursion

Ta(i, j)

(
i + j

2

)
= Ta(i− 1, j)

(
i

2

)
+ Ta(i, j − 1)

(
j

2

)
, (3.13)

where the boundary conditions follow as

Ta(1, j) =

{
1 for l0,3 = 0

0 for l0,3 > 0.

This recursion reflects a weighting scheme for transitions to states of the form

(0|0|i, j, 0). Introducing the final boundary condition ensures these weights fall

with [0, 1], so these are exactly the probabilities of obtaining the destination state
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(0|0|1, j, 0), under the coalescence framework found for the simple isolation model.

Similarly, in the extant state (i|j|0, 0, 0), the recursion for finding Ta(i, j) follows

as

Te(i, j)

((
i
2

)
N1

+

(
j
2

)
N2

+ λ

)
= Te(i− 1, j)

(
i
2

)
N1

+ Te(i, j − 1)

(
j
2

)
N2

+ Ta(i, j)λ, (3.14)

with the boundary condition

Te(1, j) = 1.

Hence by solving the system of recursions given by (3.13) and (3.14), we will be

able to compute the probabilities, Te(i, j) and Ta(i, j), of transitioning and seeing

the the required state (0|0|1, l0,2, 0). By conditioning each of the transitions in

the state space by these probabilities, as in (3.10) and (3.11), we ensure the

appropriate fixed/absent branch branch exists in the genealogy.

3.2.11 Model Limitations And Usages

While we have casted the use of this coalescence model in the presence of a chro-

mosomal rearrangement, we have failed to discus the recombination process that

is associated with the paracentric inversion. Recombination, being the process in

which crossover between genes occurs, can have dramatic consequences on the pa-

rameters λ, N0, N1, and N2, so in general this process cannot be ignored. However,

genealogy being studied is not in fact of the gene that undergoes rearrangement,

but rather is tightly linked to the gene with the paracentric inversion and no recom-

bination exists in the studied gene, then this is an appropriate model for inferring

the demographic parameters of interest. That is, if the gene being studied shares
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the same genealogy as the inverted gene, but is not subject to recombination,

then the recombination process can be omitted as in the current framework. In

general, we may not know of genes tightly linked with the incompatibility gene, so

incorporation of recombination would be needed. However, this is not easily in-

corporated into a simple coalescence framework since the underlying genealogical

history is of a much greater complexity than that of a simple bifurcating tree.
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3.2.12 Migration Models

The simple model of isolation (section 3.2.1) can be extended to allow for intro-

gression between groups. That is, after the species divergence, the two groups

may be still allowed to exchange genes. This of course raises many questions

about what a species really is. Common beliefs concerning reproductive isolation

being needed for species definition are not acknowledged here. We will not be so

ambitious to define what a species is, but rather we will rely on scientific expertise

to define these groups.

The migration model is identical to the simple isolation model with the slight

modification that groups may interchange genes from population i to population

j with migration rates mi,j (see figure 3.11). In the migration model, there is an

Figure 3.11: Divergence of extant groups 1 and 2 from ancestral group 0. Di-
vergence occurs τ time units backwards in time. During the extant period, there
is the possibility for gene introgression through the migration process, with mi-
gration rates m1,2 and m2,1.
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initial population size N0 in the ancestor species. The point of species divergence

is measured as time τ , which is a backwards time measurement from the time of

the present sample. At this time, the two effective population sizes N1 and N2

are present, and gene exchange can occur between population 1 to 2 at rate m1,2,

and from population 2 to 1 at rate m2,1.

3.2.13 State Space And Transitions

Due to the migration process, the state space from the simple isolation model

must be expanded to

Sl = (l1,1, l1,2, l1,3|l2,1, l2,2, l2,3|l0,1, l0,2, l0,3),

in order to reflect that lineages in extant populating i may have descendants

of type j 6= i. For example, given the state (l1,1, l1,2, l1,3|l2,1, l2,2, l2,3|0, 0, 0), a

transition can result in any of the 15 possible states. Of these, 8 of the resulting

destination states reflect coalescence, 6 reflect migration, and finally one reflects

speciation. Of these destination states, only the migration events are novel to our

discussion this far. These possible destination states resulting from migration can

be

(l1,1 − 1, l1,2, l1,3|l2,1 + 1, l2,2, l2,3|0, 0, 0) for l1,1 > 1,

(l1,1, l1,2 − 1, l1,3|l2,1, l2,2 + 1, l2,3|0, 0, 0) for l1,2 > 1,

(l1,1, l1,2, l1,3 − 1|l2,1, l2,2, l2,3 + 1|0, 0, 0) for l1,3 > 1,

(l1,1 + 1, l1,2, l1,3|l2,1 − 1, l2,2, l2,3|0, 0, 0) for l2,1 > 1,

(l1,1, l1,2 + 1, l1,3|l2,1, l2,2 − 1, l2,3|0, 0, 0) for l2,2 > 1,

(l1,1, l1,2, l1,3 + 1|l2,1, l2,2, l2,3 − 1|0, 0, 0) for l2,3 > 1,
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where the probability of transition into the first of the listed states occurs with

probability

m1,2l1,1

m1,2gl,1 + m2,1gl,2 +
(

gl,1

2

)
/N1 +

(
gl,2

2

)
/N2 + λ

, (3.15)

where we have let gl,1 =
∑3

i=1 l1,i and g2,1 =
∑3

i=1 l2,i.

3.2.14 Computational Challenges Using the Exact Method

In order to calculate the exact likelihood of the data through the recursion in pgfs

gl(a) = [I − F l(a)U l]
−1F l(a)V lgl−1(a)

as derived in equation (A.2), we must compute a sum of the form

g
(p)
l (0)∏7
i=1 pi!

=
∑

q

R
(q)
l (0)∏7
i=1 qi!

g
(p−q)
l−1 (0)∏7

i=1(pi − qi)!
, (3.16)

which is documented in equation (A.11). This sum reflects the marginalization of

the tree space from the probability P (D, T |θ). In this recursion, the term Rl(a)

has the form

Rl(a) = [I − F l(a)U l]
−1F l(a)V l. (3.17)

In the simple isolation model, computation of the matrix inverse [I −F l(a)U l]
−1

is simplified since the matrix is nilpotent. However, in the migratory case, this

inverse does not simplify. the entries in the matrix U l (appendix A) are the

transition probabilities which represent migration (as in (3.15)), and

λ

m1,2gl,1 + m2,1gl,2 +
(

gl,1

2

)
/N1 +

(
gl,2

2

)
/N2 + λ

, (3.18)

which reflects the speciation event. The non simplification of the matrix inverse in

equation (3.17) is a direct result of the fact that an infinite number of migrations
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can occur before a termination of the level, by coalescence. This means that the

sum used in likelihood evaluations is infinitely long and thus impossible to compute

explicitly. Compare this result to the simple isolation model, where the number of

possible histories, although massive, is finite. We will tackle this problem through

a battery of sampling methodologies examined in subsequent chapters.
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Chapter 4

Importance Sampling Approach To

Parameter Estimation

We introduce an Importance Sampling (IS) procedure for estimating the popula-

tion parameters (θ) which drive the evolutionary process. While these parameters

may be general, we will focus on the model of speciation (see section 3.2.1). In

theory, exact inference may be performed by using the recursive probability gen-

erating function

g
(p)
l (0)∏7
i=1 pi!

=
∑

q

R
(q)
l (0)∏7
i=1 qi!

g
(p−q)
l−1 (0)∏7

i=1(pi − qi)!
, (4.1)

where R
(q)
l (0) depends on the population parameters θ. This, sum reflects a

recursion in levels of a tree, over all possible mutation rearrangements on the tree.

For more details, refer to section A.1.3.

While this recursion generates the exact probability of the data for a specific

parameter set θ, reconstruction of the multidimensional likelihood requires too

much time computing for more than one dimension. The IS sampling procedure

studied in this chapter aims to speed up the computation so that a full multidi-
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mensional analysis can be executed.

4.1 Importance Sampling

The goal of this chapter is to construct an importance sampler for construction

of the probability of the data, where the data is the vector of mutational states

(see section 3.1.3). This likelihood can be expressed by marginalizing out the tree

space from the likelihood

L(θ|D) = P (D|θ)

=
∑
t∈ΩT

P (D, t|θ), (4.2)

where ΩT is the space of all evolutionary trees which can explain the data. In

terms of the exact recursion (see appendix A), this likelihood simply expresses

P (D|θ) =
g

(n)
L (0)∏7
i=1 ni!

,

where n = (n1, n2, n3, n4, n5, n6, n7) is the set of mutational counts and L is the

total number of individuals in the data set. If we knew how to sample from the

distribution P (D, T |θ), then devising a sampling procedure for constructing the

likelihood function would be simplified. That is we would generate N samples of T

and D from P (D, T |θ), written as St = {t1, t2, . . . , tN} and Sd = {d1, d2, . . . , dN}

respectively. The estimated likelihood function follows as

L(θ|D) = P (D|θ)

≈ 1

N

∑
(t,d)∈(St,Sd)

I(d=D), (4.3)

70



where

I(d=D) =

{
1 if d = D

0 if d 6= D.

Unfortunately, this method of approximating the probability of the data, under θ,

is very inefficient. The inefficiency arises from the fact that hitting the observed

data is a rare event which hampers the overall accuracy of the estimate when N

is fixed. Using the notion of relative error, we illustrate why this is the case.

We define the relative error in our estimate (4.3) for P (D|θ) as

∣∣∣ 1
N

∑
(t,d)∈(St,Sd) I(d=D) − P (D|θ)

∣∣∣
P (D|θ)

.

For fixed ε > 0, by Chebyschev’s inequality P

(
| 1N

P
(t,d)∈(St,Sd) I(d=D)−P (D|θ)|

P (D|θ)
> ε

)
follows as

P

∣∣∣∣∣∣ 1

N

∑
(t,d)∈(St,Sd)

I(d=D) − P (D|θ)

∣∣∣∣∣∣ > P (D|θ)ε

 ≤ P (D|θ)(1− P (D|θ))

NP (D|θ)2ε2

=
1− P (D|θ)

NP (D|θ)ε2
.

This statement says, that for fixed N , the relative error will be large when P (D|θ)

is small, as is the case here. Hence, the sampling method in (4.3) is expected to

perform poorly. Devising a sampling method with high accuracy usually requires

sampling from P (D, T |θ), such that every sample draw is consistent with the ob-

served data.
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If we knew how to sample from the distribution P (t|D, θ), then estimation of

P (θ|D) would be simple. If we sample ti ∼ P (t|D, θ) for i = (1, 2, . . . , N), then

∑
t∈ΩT

P (D, t|θ) =
∑
t∈ΩT

P (D, t|θ)

P (t|D, θ)
P (t|D, θ)

≈ 1

N

∑
t∈St

P (D, t|θ)

P (t|D, θ)
, (4.4)

(4.5)

where St = {t1, t2, . . . , tN}. The final expression in equation (4.5) converges

strongly to

E

[
P (D, t|θ)

P (t|D, θ)

]
= E

[
P (D, t|θ)P (D|θ)

P (t|D, θ)P (D|θ)

]

= E

[
P (D, t|θ)P (D|θ)

P (D, t|θ)

]
= E[P (D|θ)]

= P (D|θ).

That is, ∀ε > 0

P

(
lim

N→∞

∣∣∣∣∣ 1

N

∑
t∈ST

P (D, t|θ)

P (t|D, θ)
− P (D|θ)

∣∣∣∣∣ < ε

)
= 1,

So the sum 1
N

∑
t∈ST

P (D,t|θ)
P (t|D,θ)

closely approximates P (D|θ), for large N . Unfor-

tunately, we do not know how to directly sample from P (t|D, θ). However, this

provides us with a theoretical framework which we can exploit in constructing an

efficient sampling method.

72



If we let Q(D, T |θ) denote a probability distribution that has the same support

as P (D, T |θ), we can rewrite the probability of the data (equation 4.2) as

P (D|θ) =
∑
t∈ΩT

P (D, T |θ)

=
∑
t∈ΩT

P (D, t|θ)

Q(D, t|θ)
Q(D, t|θ). (4.6)

In importance sampling, Q(D, T |θ) represents some distribution which we know

how to sample from and is referred to as the proposal distribution (or proposal

mechanism).

The data D is the classification of segregating sites vector n which contains infor-

mation on both the types of segregating sites and the number of counts for each

type of segregating site in the sample. We partition the data into the set

D = {D1, D2},

where D1 represents the types of segregating site and D2 is the counts. For exam-

ple, in chapter 3, figure 3.2, the data is described by the 4 types {f/a, a/f, s/a, a/s},

with the respective counts {1, 1, 2, 1}.

We can partition the evolutionary history (T ) into two components: mutations

and transitions. That is we can decompose the tree structure as

T = {G, U},

where G represents the trees topological structure, and U represents the muta-

tions on the tree.
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Since mutations are classified by their descent, each branch in G determines which

kind of mutations it can hold. Hence, knowing the types of segregating sites, given

by D1, is all we need to know when building a tree structure that is compatible

with the data set.

Given a tree topology G, the mutations U can be applied which will yield a com-

plete tree T . Therefore, the topology is sufficient for determining the branch types

D1, and the mutations and branch types are sufficient for the determination of

count data D2. Using this partition of tree space into topology and mutations,

we will break our proposal mechanism Q(·) into two distributions Q1(·) and Q2(·)

which pertain to proposals for the topology and mutations, respectively.

We can rewrite equation (4.6) in terms of the partitioning structure on the data

and tree space, as

P (D|θ) =
∑
t∈ΩT

P (D, t|θ)

Q(D, t|θ)
Q(D, t|θ)

=
∑
t∈ΩT

P (D, t|θ)

Q(D, t|θ)
Q2(D2, U |D1, G, θ)Q1(D1, G|θ), (4.7)

where

Q(D, T |θ) = Q2(D2, U |D1, G, θ)Q1(D1, G|θ).

Q1(D1, G|θ) is the proposal mechanism for the topology G, with branch types D1.

Q2(D2, U |D1, G, θ) is a proposal distribution which determines the probability of

a set of mutations (U), with counts given by D2, given a tree topology G.
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The proposal mechanism Q1(D1, G|θ) generates a sequence

G = {SL, SL−1, . . . ,S1}

where Si, for (i = L, . . . , 1), represents the state of branches in the topology

on level i (see section 3.1.4 for full details on the state space). We typically

generate this sequence starting at SL (the bottom of the tree) and move through

the sequence

SL → SL−1 → · · · → S1,

where S1 represents the MRCA of the sample. The transition probabilities,

P (Si−1|Si, θ) from Si to Si−1, are determined by the coalescence process (see

3.2.3 for examples). The total probability for Q1(D1, G|θ) is determined by

Q1(D1, G|θ) =
2∏

i=L

P (Si−1|Si, θ).

Once the topology is constructed, we can superimpose the mutations, onto G,under

some proposal distribution Q2(D2, U |D1, G, θ).

We can approximate P (D|θ) by the sum

L(θ|D) = P (D|θ)

≈ 1

N

∑
(d,t)∈{Sd,St}

P (d, t|θ)

Q(d, t|θ)
, (4.8)

where St = {t1, t2, . . . , tN} and Sd = {d1, d2, . . . , dN} and

(di, ti) ∼ Q(D, T |θ)

= Q2(D2, U |D1, G, θ)Q1(D1, G|θ).
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Even though an importance sampling scheme using this approach is feasible, it

can be inefficient due to the fact that P (D, t|θ) = 0, if the data generated under

Q(D, t|θ) does not conform to the observed data. Our previous partitioning of

the trees into to the space T = {G, U} is useful for generating the consistent trees,

since only a tree’s topology can be responsible for the data not conforming to the

tree. Therefore, we must generate topologies that are consistent with D1.

We aim to generate tree topologies under a proposal mechanism Q1(·), such that

Q1(G|D, θ) = Q1(G|D1, D2, θ)

= Q1(G|D1, θ). (4.9)

Once a consistent tree topology is proposed, we can apply the mutations to that

tree under the proposal mechanism

Q2(U |D, G, θ) = Q2(U |D1, D2, G, θ)

= Q2(U |D2, G, θ).

The last line conveys that G contains all the type information in D1. Together,

Q1(·) and Q2(·) form the joint proposal

Q(T |D, θ) = Q2(U |D2, G, θ)Q1(G|D1, θ) (4.10)

which enforces that P (D, T |θ) > 0. The proposal mechanism Q1(G|D1, θ) will

generate a sequence of states

G = {SL, SL−1, . . . ,S1},

where the sequence is guaranteed to contain the lineage types specified by D1.

The transition probabilities P (Si−1|Si, θ), from the unconstrained coalescence
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process, are no longer sufficient to guarantee the genealogy’s consistency. We set

out to constrain the process such that the observed branch set (given by D1) is

obtained in the sequence of states. We can write the joint probability (constrained

such that D1 matches the type set in the data)

Q1(D1, G|θ) =
2∏

i=L

TP(SL)(L1(Si), L2(Si), L3(Si))× P (Si−1|Si, θ), (4.11)

where

TP(SL)(L1(Si), L2(Si), L3(Si))

is the probability, under the coalescent, of obtaining a topology that is con-

sistent with the data, such that the state currently resides in the P(SL) ∈

{ancestral, extant} = {a, e} phase, with (L1(Si), L2(Si), L3(Si) lineages of type

1,2 and 3, respectively. In the next section, we will discuss the derivation of these

probabilities.

Once we have Q1(D1, G|θ), we can form Q1(G|D1, θ) through the expression

Q1(G|D1, θ) =
Q1(D1, G|θ)

Q1(D1|θ)

=
Q1(D1, G|θ)

Te(L1(SL), L2(SL), 0)
. (4.12)

Putting this altogether, the approximation to the likelihood function can be gen-

erated through the sum

P (D|θ) ≈ 1

N

∑
t∈St

P (D, t|θ)

Q(t|D, θ)
, (4.13)
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where St = {t1, t2, . . . , tN} with ti ∼ Q(t|D, θ), and Q(t|D, θ) has the form shown

in equation (4.10).

The next section discusses in detail the proposal distributions Q1(·) and Q2(·), for

sampling consistent trees.

4.2 Proposal Mechanisms

We propose samples under a two stage partition of the genealogical history. We

partition the history T = {G, U}, where G represents the topology of the history

and U is the mutational history given the topology. Given θ, we can sample

from G directly by simulating a coalescence path, from the sample, conditional

on having the correct topological branch structure so that P (D1|G) > 0 through

the process shown in equation (4.11).

From the partition T = {G, U} and the partition of the data D = {D1, D2}

into types and counts, we describe an importance sampling approximation to the

likelihood function of the form

L(θ|D) = P (D|θ)

≈ 1

N

∑
t∈St

P (D, t|θ)

Q(t|D, θ)
,

where

Q(T |D, θ) = Q2(U |D2, G, θ)Q1(G|D1, θ).
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We set out to derive a set of model based proposal distributions Q1(·) and Q2(·)

that determine the topological history and mutational placements of the sample

respectively. While the mutational placements is the most difficult component

of the sampling mechanism, the topology solely determines which trees are com-

patible with the mutations seen in the sample so conditioning the mutational

placements on consistent topologies is a natural approach. We will first show how

to sample from Q1(G|D1, θ) then, conditional on G, show how to sample from

Q2(U |D2, G, θ).
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4.2.1 Sampling Histories With Topological Constraints

Some topologies are inconsistent with the data since they do not contain the

sufficient branch types in that have the necessary lineages.

For example, if a data set contains a fixed-absent mutation (f/a), there must be

a branch present that can hold that mutation. That is, there must be a branch in

the tree that has descendants in all of the species 1 group and none in the species 2

group. It is also the case that some branches in the topology restrict the presence

of other branch types in the topology. For example, if a fixed-absent branch is

present in the history, then a segregating-fixed branch may not be present. Table

4.1 summarizes all the type incompatibilities.

Type Group 1/Group 2 Incompatible Compatible

1 s/a None All
2 f/a s/s, s/f {s/a, a/s} and {a/f or f/s}
3 a/s None All
4 a/f s/s, f/s {s/a, a/s} and {f/a or s/f}
5 s/s f/a, a/f {s/a, a/s} and {f/s or s/f}
6 f/s a/f, s/f {s/a, a/s} and {f/a or s/s}
7 s/f f/a, f/s {s/a, a/s} and {a/f or s/s}

Table 4.1: Incompatibilities between types.

80



Given the type incompatibilities, we can partition the space of trees into four

mutually exclusive structures, which are depicted in figure 4.1. The partition on

Figure 4.1: The four partitions of tree space based on branch topologies (figure
from Leman et al. (2005)).

tree space shows that trees will either have branches in the history that are of

type {f/a, a/f}, {f/s, f/a}, {f/s, s/s} or {s, s}. We assume under this partition

that the labels of the species types (1 and 2) are arbitrary and can be exchanged

if necessary.
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4.2.2 Example: Trees With Fixed-Absent And Absent-

Fixed Lineages

After seeing the data set and observing which types are present, we can choose

which type of tree is eligible for explaining the data. This is how we will propose

trees which are guaranteed to be compatible for the data. In theory, we could run

an Accept Reject (AR) algorithm to sample consistent trees from the coalescence

process, but this will reject a large proportion of the trees. Consider for example,

the space of topologies made up from two individuals in each species group. Figure

4.2 shows the space of topologies. For this relatively small tree space, we notice

that not all of the trees have fixed-absent and absent-fixed lineages. In fact,

only trees 1, 3, 4, 6, 10 and 11 have lineages that would be consistent with the

observation of a f/a and a/f mutation. The probabilities of each of these 6

topologies follows as

P (T1) =
1

N1

1
N1

+ 1
N2

+ λ
×

1
N2

1
N2

+ λ

P (T3) =
1

N1

1
N1

+ 1
N2

+ λ
× λ

1
N2

+ λ
× 1

3

P (T4) =
1

N2

1
N1

+ 1
N2

+ λ
×

1
N1

1
N1

+ λ

P (T10) =
λ

1
N1

+ 1
N2

+ λ
× 1

6
× 1

3

P (T11) =
λ

1
N1

+ 1
N2

+ λ
× 1

6
× 1

3
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Figure 4.2: 13 topologies are possible when there are 2 individuals in each species
group.

In the case where λ = N1 = N2 = 1, the total probability of all of these trees

is 0.4815, which is the probability of obtaining a tree with fixed and absent lin-

eages in both groups. In our earlier notation, for the weighting probabilities

TP(SL)(L1(Si), L2(Si), L3(Si)), we would have written

Te(2, 2, 0) = 0.4815.

So far, we have obtained this value only through the enumeration of the entire tree

space, which is infeasible for most problems. However, the next section details

the derivation of these probabilities by a recursion through the tree levels.
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4.2.3 Recursion Constraints

Since the coalescence process is a hierarchical process, from tree level to tree level,

the entering level can be weighted by the probability of ultimately obtaining a

particular branch type. Hence, if the entering level will restrict the particular

branch types that are needed to make the tree compatible, the entering level will

have probability zero and will not be selected. Wiuf and Donnelly (1999) derived

a recursive form for weighting the coalescence process such that a f/a branch is

present in the history. Leman et al. (2005) extend the result of Wiuf and Donnelly

(1999) to condition on the existence of the branch types {f/a, a/f}, {f/s, f/a},

{f/s, s/s} and {s, s}, so that for any (nonrecombining) data set, a consistent tree

may be proposed.

We lay out the recursion probabilities for weighting the entering levels of the

tree, so that each proposed tree will be consistent with the data set. Since there

are four possible topological configurations on the tree space, four sets of proba-

bility weights are required.

Before we layout the recursion, let us illustrate the general procedure for the

case when λ = N1 = N2 = 1 and compute Te(2, 2, 0).

4.2.4 Recursion Constraints Example

We refer to the example in section 4.2.2 and illustrate and efficient method for

computing the probability of compatible trees based on a sequence of recursively

determined calculations.
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From the state S4 = (2, 2|0, 0, 0), the possible transitions are to states (1, 2|0, 0, 0),

(2, 1|0, 0, 0) and (0, 0|2, 2, 0) which occur with probabilities
1

N1
1

N1
+ 1

N2
+λ

,
1

N2
1

N1
+ 1

N2
+λ

and λ
1

N1
+ 1

N2
+λ

, respectively. Of course, each of these entry states induces some

probability of hitting a tree with fixed and absent lineages in both groups. This

determines the recursion

Te(2, 2, 0) = Te(1, 2, 0)
1

N1

1
N1

+ 1
N2

+ λ
+Te(2, 1, 0)

1
N2

1
N1

+ 1
N2

+ λ
+Ta(2, 2, 0)

λ
1

N1
+ 1

N2
+ λ

.

Following this procedure for the determination of Te(1, 2, 0) yields

Te(1, 2, 0) = Te(1, 1, 0)
1

N2

1
N2

+ λ
+ Ta(1, 2, 0)

λ
1

N2
+ λ

.

Now since, S2 = (1, 1|0, 0, 0) has lineages which are fixed in both groups, Te(1, 1, 0) =

1, which results in

Te(1, 2, 0) =
1

N2

1
N2

+ λ
+ Ta(1, 2, 0)

λ
1

N2
+ λ

. Similarly, we have

Te(2, 1, 0) =
1

N1

1
N1

+ λ
+ Ta(2, 1, 0)

λ
1

N2
+ λ

.

All that is left is to find Ta(2, 1, 0), Ta(1, 2, 0) and Te(2, 2, 0).
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If we arrived at the state S4 = (0, 0|2, 2, 0), then a coalescence between any group

is possible under the coalescence process. This results in the recursion

Ta(2, 2, 0) = Ta(1, 2, 0)
1

6
+ Ta(2, 1, 0)

1

6
+ Ta(1, 1, 1)

4

6
.

Note however that the state S3 = (0, 0|1, 1, 1) violates the existence of lineages

which are fixed and absent in both groups. Figure 4.3 illustrates why lineages

can’t be fixed and absent in both groups if a type 3 lineage exists before all type

1 and type 2 lineages coalesce amongst themselves.

Figure 4.3: Fixed absent lineages cannot exist if type 3 lineages emerge prior to
coalesce of all type 1 and type 2 lineages amongst themselves.

From this we determine that Ta(1, 1, 1) = 0 and hence

Ta(2, 2, 0) = Ta(1, 2, 0)
1

6
+ Ta(2, 1, 0)

1

6
.
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Since Ta(1, 1, 0) = 1 (i.e. fixed absent lineages exist in both groups), we have

that Ta(2, 1, 0) = Ta(1, 2, 0) = 1/3. Plugging all of these probabilities into their

appropriate spots yields the final probability that

Te(2, 2, 0) =

1
N2

+λ/3

1
N2

+λ
1

N1

1
N1

+ 1
N2

+ λ
+

1
N1

+λ/3

1
N1

+λ
1

N2

1
N1

+ 1
N2

+ λ
+

λ/9
1

N1
+ 1

N2
+ λ

.

Upon plugging in the values λ = N1 = N2 = 1, we obtain Te(2, 2, 0) = 0.4815,

which coincides with our earlier calculation.

We will now derive these recursion probabilities in the most general forms for

all four of the topologies shown in figure 4.1

4.2.5 Case 1: Trees with {f/a, a/f} Branches

In the case where we require that a topology has f/a and a/f branches, we require

that the tree have fixed lineages in both groups, the MRCA of the history may

only be obtained after all of the lineages of type 1 and 2 have coalesced among

themselves (and not with each other). Letting Ta(i, j, k) denote the probability

of obtaining f/a and a/f branches in the ancestral portion of the history when

there are i lineages of type 1, j lineages of type 2, and k lineages of type 3, we

have that

Ta(i, j, k) = 0 if k > 0 and i, j > 1,

which states that all type 1 and 2 lineages must coalesce prior to the formation of a

type 3 lineage. Recursively, we express the probability of obtaining the {f/a, a/f}
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branch set as

Ta(i, j, 0) = Ta(i− 1, j, 0)

((
i
2

)
N0

/

(
i+j
2

)
N0

)
+ Ta(i, j − 1, 0)

((
j
2

)
N0

/

(
i+j
2

)
N0

)
. (4.14)

Equation (4.14) expresses the probability, while in the ancestral phase, of obtain-

ing the branch set {f/a, a/f} through the possible entry states it can make while

having i type 1 lineages and j type 2 lineages. Hence, either coalescence of a

type 1 linage can occur (with probability
(i
2)

N0
/
(i+j

2 )
N0

), or a coalescence of a type

2 lineage can occur (with probability
(j
2)

N0
/
(i+j

2 )
N0

). Each of these transitions leaves

the process at a state with either (i− 1, j, 0) or (i, j − 1, 0) type 1,2 and 3 lineage

types, respectively. We can rewrite equation (4.14) as

Ta(i, j, 0)

(
i + j

2

)
= Ta(i− 1, j, 0)

(
i

2

)
+ Ta(i, j − 1, 0)

(
j

2

)
. (4.15)

In the ancestral phase, since the obtainment of the branch types {f/a, a/f} will

be satisfied once the state has (1, 1, 0) type 1,2 and 3 lineage types, we have that

Ta(1, 1, 0) = 1.

We let Te(x, y, z) denote the probability of obtaining f/a and a/f branches in the

extant portion of the history when there are i lineages of type 1, j lineages of type

2, and k lineages of type 3. It follows that

Te(i, j, k) = 0 if k > 0.
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If we are dealing with a non-migrating process, it is guaranteed that z > 0. The

recursion for Te(x, y, 0) follows as

Te(i, j, 0)

((
i
2

)
N1

+

(
j
2

)
N2

+ λ

)
= Te(i− 1, j, 0)

(
i
2

)
N1

+ Te(i, j − 1, 0)

(
j
2

)
N2

+ Ta(i, j, 0)λ

(4.16)

with the boundary condition

Te(1, 1, 0) = 1.

4.2.6 Case 2: Trees with {f/a, f/s} Branches

For the case where we require {f/a, f/s} branches in the history of the sample,

we derive a recursive system that results in the required weighting probabilities

for the coalescence process. Since a state in which there are (i, 1, 0) type 1,2 and

3 linages, results in an a/f branch, which is incompatible with the f/s mutation,

we have

Ta(i, 1, 0) = Te(i, 1, 0) = 0 for i > 0. (4.17)

Ta(i, j, k) and Te(i, j, k) denote the probabilities of obtainment of the {f/a, f/s}

branch set, at states with (i,j,k) type 1,2 and 3 lineage types, in the ancestral and

extant phases of the process, respectively.

Since a f/a branch requires a state with lineage types (1, j, 0) and a f/s branch

requires a state, in the ancestral phase, with lineage types (0, j, k), we have that

Ta(i, j, k) = 0 for ik 6= 0. (4.18)
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Because a f/a branch must arise previous to the f/s under the coalescence process,

we must obtain the a state with (1, k, 0) type 1,2 and 3 lineages, respectively, prior

to obtainment of a state with lineage numbers (0, j, 1) for j ≥ 1. Hence we solve

the recursions

Ta(i, j, 0)

(
i + j

2

)
= Ta(i− 1, j, 0)

(
i

2

)
+ Ta(i, j − 1, 0)

(
j

2

)
, (4.19)

and

Te(i, j, 0)

((
i
2

)
N1

+

(
j
2

)
N2

+ λ

)
= Te(i− 1, j, 0)

(
i
2

)
N1

+ Te(i, j − 1, 0)

(
j
2

)
N2

+ Ta(i, j, 0)λ,

(4.20)

while respecting the boundary conditions in equations (4.17) and (4.18). The

boundary condition in equation (4.18) will guarantee that a f/a branch is observed

prior to a f/s branch. Once the f/a branch arises, the recursion in equation (4.19)

changes to

Ta(1, j, 0)

(
i + j

2

)
= Ta(i, j − 1, 0)

(
j

2

)
+ Ta(0, j − 1, 1)j. (4.21)

At the point in the process where there are (0, j, 1), for j ≥ 1, type 1,2 and 3

lineages, respectively, we have

Ta(0, j, 1) = 1.
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4.2.7 Case 3: Trees with {f/s, s/s} Branches

For the case where we require {f/s, s/s} branches in the history of the sample, we

derive a recursive system that results in the required weighting probabilities for

the coalescence process. We let Ta(i, j, k) be the probability, while in the ancestral

group, of obtaining the {f/s, s/s} branch set when there are (i, j, k) lineages of

type 1,2 and 3. Since at least one a/s branch must exist on any level in which a

f/s branch exists, we have that

Ta(i, 0, k) = 0 for i, j ≥ 0. (4.22)

Another way to see this is, if there are type 1 and type 3 lineages present, then

in order to form a f/s branch, all the type 3 and type 1 lineages must coalesce,

however a type 2 lineage must still be present for there to exist a branch with

segregating descendants in the second group.

Also, we have that

Te(i, j, 0) = Ta(i, j, 0) = 0 for i, j < 2, (4.23)

where Te(i, j, k) is the probability, while in the extant group, of obtaining the

{f/s, s/s} branch set when there are (i, j, k) lineages of type 1,2 and 3. This fol-

lows since a lineage of both types 1 and 2 must still be present when a lineage of

type 3 forms in order for there to exist branches that have segregating descendants

in both groups.
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Hence, we must solve the recursion

Te(i, j, 0)

((
i
2

)
N1

+

(
j
2

)
N2

+ λ

)
= Te(i− 1, j, 0)

(
i
2

)
N1

+ Te(i, j − 1, 0)

(
j
2

)
N2

+ Ta(i, j, 0)λ,

(4.24)

while respecting the boundary condition in equations (4.22) and (4.23). The

recursion for Ta(i, j, 0) follows as

Ta(i, j, 0)

(
i + j

2

)
= Ta(i− 1, j, 0)

(
i

2

)
+ Ta(i, j − 1, 0)

(
j

2

)
+ Ta(i− 1, j − 1, 1)ij.

(4.25)

Under the formation of a type 3 lineage (by the coalescence of a type one and

type 2 lineages), the recursion for Ta(i, j, k) follows as

Ta(i, j, k)

(
i + j + k

2

)
= Ta(i− 1, j, k)

((
i

2

)
+ ik

)
+ Ta(i, j − 1, 0)

((
j

2

)
+ jk

)

+ Ta(i− 1, j − 1, k + 1)ij + Ta(i, j, k − 1)

(
k

2

)
. (4.26)

Hence, solving the recursive system of equations (4.24), (4.25) and (4.26) yields

the probability weights for the coalescence process that ensures consistent trees

with the {f/s, s/s} branch set.

The boundary condition (4.23) will enforce that a state T (i, j, k) is achieved for

i ≥ 1, j ≥ 1 and k > 0, which produces an s/s branch. The boundary condition

in equation (4.22) will produce the f/s branch . This will result in the lineages

(0, 1, 1) at which point

T1(0, 1, 1) = 1.
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4.2.8 Case 4: Trees with {s/s} Branches

We now focus on the sampling weights that ensure the presence of a branch with

descendants that segregate in both groups. We also require that no f/s or s/f

branches can exist in this topology since this is covered by case 3. We let Ta(i, j, k)

be the probability, while in the ancestral phase, of obtaining a s/s branch in the

topology at a state where there are (i, j, k) type 1,2 and 3 lineages, respectively.

Similarly, we let Te(i, j, k) be the probability, while in the extant phase, of obtain-

ing a s/s branch in the topology at a state where there are (i, j, k) type 1,2 and

3 lineages, respectively.

Since the presence of an s/s branch forbids the presence of f/a and a/f branches,

we have the boundary conditions that

Ta(i, 1, 0) = Te(i, 1, 0) = 0

forbids presence of a f/a branch, and

Ta(1, j, 0) = Te(1, j, 0) = 0

which forbids the presence of an a/f branch. Also, since we are not allowing for

branches which have fixed descendants in one group and segregate in the other,

we have the boundary conditions

Ta(i, 0, 1) = Ta(0, j, 1) = 0.

The recursion for Ta(i, j, 0) follow as

Ta(i, j, 0)

(
i + j

2

)
= Ta(i− 1, j, 0)

(
i

2

)
+ Ta(i, j − 1, 0)

(
j

2

)
+ Ta(i− 1, j − 1, 1)ij.
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Under the formation of a type 3 lineage, the recursion for Ta(i, j, k) follows as

Ta(i, j, k)

(
i + j + k

2

)
= Ta(i− 1, j, k)

((
i

2

)
+ ik

)
+ Ta(i, j − 1, 0)

((
j

2

)
+ jk

)

+ Ta(i− 1, j − 1, k + 1)ij + Ta(i, j, k − 1)

(
k

2

)
.

In the extant phase of the process, the recursion for Te(i, j, k) follows as

Te(i, j, 0)

((
i
2

)
N1

+

(
j
2

)
N2

+ λ

)
= Te(i− 1, j, 0)

(
i
2

)
N1

+ Te(i, j − 1, 0)

(
j
2

)
N2

+ Ta(i, j, 0)λ.

Once a type 3 lineage is present in the history, we have

Ta(0, 0, k) = 1

and the standard unconstrained coalescence process is performed on the remaining

lineages.

4.2.9 Sampling The Mutations

The sampling distribution P (U |G) is complicated and direct sampling cannot be

done under the true coalescence model. However, the number of accumulated mu-

tations on any branch in G is expected to be larger than those on shorter branches.

While we don’t explicitly track the branch lengths in our topology (i.e. they have

been integrated out of the model), we can indirectly discuss them. Since we are

tracking the ordered coalescence and speciation events in the topology G, which

occur via a structured Poisson process, the time between events is exponentially

distributed. This is all described at large in chapter 3.
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In the extant post-speciation phase of the process, with (l1, l2, l3) type 1,2 and

3 lineages, the time to the first transition follows as

t = min(t1, t2, t3), (4.27)

where

t1 ∼ exp

((
l1
2

)
/N1

)

t2 ∼ exp

((
l2
2

)
/N2

)
t3 ∼ exp (λ) .

Since t1, t2 and t3 follow independent exponential distributions, t (shown by equa-

tion (4.27)) also follows an exponential distribution with the sum of the rate

parameters. The distribution of the minimum time t from equation (4.27) follows

as

t ∼ exp

((
l1
2

)
/N1 +

(
l2
2

)
/N2 + λ

)
. (4.28)

In the ancestral phase of the process, the time spent on level l follows as

t ∼ exp

((
l

2

)
/N0

)
. (4.29)

Recall that the time until a mutation event arises also follows a an exponential dis-

tribution (see sections 3.2.4 and A.1.1). Therefore, the distribution of mutations,

on any level of the distribution, is directly related to the amount of time spent

in that level. Since longer branches are expected to accumulate more mutations,

our proposal distribution for the placement of mutations (Q2(·)) is regulated by

the expected length of time spent in a certain level.
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The expected time spent on each level is computed as the inverse of the rate

parameters from equations (4.28) and (4.29). That is, the expected length of each

level in the prespeciation phase is

wl = N0/

(
l

2

)
.

In the postspeciation phase, the expected length is

wl = 1/

[(P2
i=0 l1,i

2

)
N1

+

(P2
i=0 l2,i

2

)
N2

+ λ

]
.

Consider for example the type 1 (s/a) mutations. We let el,1 be the number

of eligible type 1 lineages, on level l of the topology G, and let U1 denote the

mutational placement of type 1 (s/a) mutations. We propose the placement of

s/a mutations in the data set under the multinomial distribution

Q2(U1|D2, G, θ) = n1!
L∏

l=2

(rl,1)
n1,l

n1,l!
, (4.30)

where n1,l is the number of type 1 mutations placed on level l. The weighting

probability rl,1 is proportional to the expected length of the level and the number

of eligible lineages el,1. Explicitly, we write this as

r1,l =
el,1wl∑L

k=2 ek,1wk

. (4.31)

Let us give an explicit example of how this sprinkling procedure works. Consider
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Figure 4.4: Tree structure with fixed-segregating and segregating-segregating
lineages..

the tree structure in figure 4.4, where each lineage on level l has been marked for

clarity.

For sprinkling the type 1 segregating-absent (s/a) mutations, we use the sampling

distribution in equation (4.30), where r1,l is a weighting of the eligible lineages

(see equation (4.31)). For example, on level 11, we have

e11,1w11 = 5× 1

(5
2)

N1
+

(6
2)

N2
+ λ

.

For all 7 types of mutations, we write the full summary collection as U = {U1, U2, . . . , U7}.
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From this, the full joint distribution for the placement of all mutations in D on

a given G is expressed as the product of multinomial distributions. This joint

multinomial distribution follows as

Q2(U |D2, G, θ) =
7∏

j=1

Q2(Uj|D2, G, θ)

=
7∏

j=1

nj!
L∏

l=2

(rl,j)
nj,l

nj,l!
, (4.32)

where

rj,l =
el,jwl∑L

k=2 ek,jwk

.

From this, we have the full joint proposal distribution

Q(T |D, θ) = Q2(U |D2, G, θ)Q1(G|D1, θ).
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4.3 Tuning The Proposal

In our description of the proposal mechanism

Q(T |D, θ) = Q2(U |D2, G, θ)Q1(G|D1, θ),

we are conditioning the proposal of genealogies T on a fixed set of θ. We call this

fixed set of θ the driving set of parameters, or simply driving set or driving values

for the proposal. A driving set θ that is not in the mass of the likelihood function,

that is, in the concentrated region of the likelihood function, will create a poor

proposal distribution. This arises since, under the observed data, an unlikely θ

set will produce low probability trees.

Since our primary statistic of interest is that of the Maximum Likelihood Es-

timate (MLE), or mode in a Bayesian context, the optimal set for the driving

values θ is the MLE (or mode). This is cumbersome since, the best proposal

we can chose depends on the answer. We will address this problem through an

iterative mode searching algorithm in the next section.
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4.3.1 Mode Searching

We propose a method for finding the mode θ̂ = (N̂0, N̂1, N̂2, λ̂) of the likelihood

function. Our method relies on a two level search procedure. The first procedure

retrieves seeding values for a second stage steepest descent algorithm. Before the

algorithm begins, we initialize the driving set to be θ(∗).

4.3.2 Search Engine

The first level of the search generates points at a random location in the param-

eter space θ = (N0, N1, N2, λ) = (θ1, θ2, θ3, θ4). Likelihood estimates are com-

pute at each of these locations in the space. Hence we have a tuple of the form

(θ, L̃θ(∗)(D|θ)), where D is our observed data and L̃θ(i)(D|θ) is the approximation

to the likelihood, where θ(∗) is the current driving set. For some fixed tolerance

τ , we accept this randomly generated point θ if

L̃θ(∗)(D|θ) > τ. (4.33)

The tolerance should be set high enough so that the threshold is discriminatory,

however it must not be set so high that all θ fail to meet the criterion. A parameter

set such that equation (4.33) holds is passed to the second phase of the search

procedure.
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4.3.3 Steepest Descent

The steepest descent algorithm is launched when a seeding value is found by the

searching engine, it is passed to the slave code which performs a local steepest

algorithm starting from the seeding value. To find a searching direction, at each

iteration (i), for each parameter θ
(i)
j (the jth component of θ) we examine the the

point

θ
(i)
Kj

= θ
(i)
j + Kε

where K ∈ {−1, 0, +1}. We select the search direction ∆ from

∆ = max
K1,K2,K3,K4

(θ
(i)
K1

, θ
(i)
K2

, θ
(i)
K3

, θ
(i)
K4

).

Along the search direction ∆, we move each parameter θj according to some fixed

step size ε, and set

θ
(i)
N = {θ(i)

1 + Nεδ1, θ
(i)
2 + Nεδ2, θ

(i)
3 + Nεδ3, θ

(i)
4 + Nεδ4}

where N = 0, 1, 2, . . . , Z and Z is some predetermined maximum for the number

of steps, and δj ∈ ∆. From this we take the move to be

θ̃ = max
N

θ
(i)
N .

The above procedure is done using θ(i) as the driving values in the proposal

distribution for the IS routine.

4.3.4 Validation

Since, at every step, the likelihood is being generated under the importance sam-

pling approxiation (4.13), we may have generated a higher likelihood candidate
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point θ̃ simply by chance. Hence, once a proposed move θ̃ is found it must be

validated as an acceptable move. Our criterion for acceptance of the proposed

point, is that it must yield a higher likelihood value by using the values θ̃ as

driving values in the proposal distribution in the IS routine, than was obtained in

finding θ̃ under the driving values θ(i). If the criteria is met, we set

θ(i+1) = θ̃

else,

θ(i+1) = θ(i).

The complete algorithm follows as under the two stage procedure follows below

Algorithm 4.3.1: search-engine(τ)

for i← 0 to n
θ1 ∼ U(α1, β1)
θ2 ∼ U(α2, β2)
θ3 ∼ U(α3, β3)
θ4 ∼ U(α4, β4)
if Lθ(∗)(y|θ) ≥ τ

SEARCH(θ)

Algorithm 4.3.2: search(θ(0))

for i← 0 to n

∆ = maxK1,K2,K3,K4(θ
(i)
K1

, θ
(i)
K2

, θ
(i)
K3

, θ
(i)
K4

)
for N ← 0 to Z

θ
(i)
N = {θ(i)

1 + Nεδ1, θ
(i)
2 + Nεδ2, θ

(i)
3 + Nεδ3, θ

(i)
4 + Nεδ4}

θ̃ = maxN θ
(i)
N

if Lθ(i)(y|θ̃) ≤ Lθ̃(y|θ̃)

θ(i+1) ← θ̃

else θ(i+1) ← θ(i)
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Generally the seeding values will be perturbed and this procedure will be repeated

to guard against settling on local modes.

Once the driving set θ(∗) is determined, we let the final version of the impor-

tance sampler, that is the one we’ll use for inference, be written as

L(θ|D) = P (D|θ)

≈ 1

N

∑
t∈St

P (D, t|θ)

Q(t|D, θ(∗))
, (4.34)

where

Q(T |D, θ(∗)) = Q2(U |D2, G, θ(∗))Q1(G|D1, θ
(∗)).
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4.4 Surface Splines

Our IS procedure approximates the likelihood at only specified points, however

we desire a smooth likelihood function for performing parameter inference. Hence

given a set of uniformly placed points, we can generate approximations to the like-

lihood and interpolate between the points to obtain a meshed likelihood surface.

High dimensional mesh generation is a laborious procedure, and generally can-

not be done for all the parameters simultaneously at a very fine level. When the

full joint likelihood function is desired, a coarse grid approximation is generally

computed as an approximation to the full surface. Assuming the surface is rea-

sonably well behaved and the likelihood is computed on a grid at least fine enough

to capture the true behavior of the complete surface, interpolating splines can be

applied to impute the surface to the level of desired refinement. We accomplish

our interpolation via tensor product cubic spline interpolation with knots com-

puted uniformly on the grid. For the boundary conditions, we use the Not-A-Knot

method which requires the third derivatives at the second and second to last break

points be continuous.

Once our surface has been fitted via the interpolation scheme described about,

we will have a continuous approximation to the likelihood surface which is what

we need for joint parameter inference. Generally, the point estimate of interest is

the MLE, for which can can obtain profile likelihood intervals (see Berger et al.,

1999). This is described in the next section.
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4.5 Interval Estimation

From the interpolated likelihood surface, we are able to construct approximate

marginal intervals for the point estimates of interest. Of the possible point esti-

mates, the MLE is of the most appropriate quantities. The interval we will assume

for this quantity stems from the asymptotic distribution

−2 log(λ) ∼ χ2
1, (4.35)

where λ = L0(θ̂j)/L1. L0(θ̂j) is the maximum likelihood estimate under the

hypothesized quantity γ̂, of one of margins, and L1 is the maximum likelihood

estimate under the unconstrained parameter space.

By inverting the expression in equation (4.35), we can obtain an interval for each

margin θ̂j. By conditioning each marginal interval on the maximum likelihood

estimates at the remaining parameters, we obtain a set of marginal profile likeli-

hood intervals. These profile likelihood intervals for the marginal of interest are

computed as the set of θj values such that

log(L1(θj)) + xα/2 < log(L0(θj)

where α is the level of the interval.
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4.6 Discussion

In this chapter, we have laid out a full importance sampling framework for infer-

ring about the demographic parameter set θ. Key contributions to this method

are the determination of model based proposal distributions, which relate to the

coalescence process described in chapter 3. In building these proposal distribu-

tions, special attention was paid to sampling topologies, such that they provide

lineages which are consistent with the mutational type patterns observed in the

data (section 4.2.1).

This importance sampling method will generate reliable approximations to the

probability of the sequence data under a fixed parameter set θ. Using surface

splines (section 4.4) on a grid of specified parameter values (θ) and their corre-

sponding likelihoods, we are able to construct a continuous approximation to the

likelihood function. From this, MLEs and their corresponding interval estimates

(section 4.5) can be determined.

The next section shows how this method performs on a data set of closely related

members of the Drosophila family. Accuracy, computation time and limitations

will be discussed.
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Chapter 5

Case Study: A Recent Divergence In

Time Of Closely Related Members Of

The Drosophilia Family

The Drosophila family is a closely related family of fruit fly species. Machado

et al. (2002) has provided a data set for the Drosophila species: D. persimilis, D.

p. pseudoobscura, and D. p. bogotana. In this case study, we study the DPS2002

region of the genome, which is common to all of the Drosophila species. The

DPS2002 region in Drosophila is of interest since it has undergone a paracentric

inversion sometime in its evolutionary past (see section 3.2.7 for details). Labora-

tory experiments have shown that the DPS2002 region in D. persimilis is inverted

with respect to the genomes of both D. p. pseudoobscura and D. p. bogotana.

Inversions provide valuable information about the time since speciation. This is

due to the fact that inversions regulate the existence of a fixed-absent lineage

in the evolutionary history, since inversions must be fixed in one population and

absent from the other. This additional information provides information about

the topological structure of the genealogy, from which the sample has descended,
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and eliminates uncertainty.
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In this case study, we will estimate the species divergence time between D.

persimilis with D. p. pseudoobscura and D. persimilis with D. p. bogotana,

respectively. From 13 sequences from the D. persimilis and D. p. bogotana groups,

and 19 sequences from D. p. pseudoobscura, the mutational count summary as

described in 3.1 are shown in table 5.1.

Count Group 1 Group 2 Dpe1/Dpp2 Dpe/Dpb3

n1 segregating absent 16 16
n2 fixed absent 5 6
n3 absent segregating 65 18
n4 absent fixed 0 2
n5 segregating segregating 0 0
n6 fixed segregating 1 0
n7 segregating fixed 0 0

1 D. persimilis, 13 sequences
2 D. p. pseudoobscura, 19 sequences
3 D. p. bogotana, 13 sequences

Table 5.1: Segregating sites data collected from members of the Drosophila
species.
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As described by the topological partition on the space of trees (section 4.2.1),

after observing the mutational type data, we know which partition of tree space

explains the data. The data set for the Dpe/Dpb groups have the fixed-absent

and absent-fixed mutation types, so in our importance sampler, we constrain the

proposal of trees to have the fa/af topology as shown in figure 5.1. Also, for the

Figure 5.1: Topology of an evolutionary tree with descendants which are fixed
and absent in both groups.

data set for the Dpe/Dpp groups, the mutational types fixed-absent and fixed-

segregating are both present. Hence, we constrain the proposed topology to live

in the partition with fa/fs lineages, which is shown in figure 5.2.

Figure 5.2: Topology of an evolutionary tree with descendants which are fixed
and absent in one group and fixed and segregating in the other.
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In section 4.2.5, for the basic speciation model, we derived the proposal weights

TP(SL)(L1(Si), L2(Si), L3(Si))

in the product

Q1(D1, G|θ(∗)) =
2∏

i=L

TP(SL)(L1(Si), L2(Si), L3(Si))× P (Si−1|Si, θ
(∗)),

where θ(∗) is the driving set (see section 4.3), and P(SL) ∈ {ancestral, extant} =

{a, e} represents the phase the state currently resides in and Li(Si), for i =

{1, 2, 3}, is the number of lineages of type 1,2 and 3 respectively.

These weights are derived such that the generated trees come from the coalescence

process, but are conditional on having a topology consistent with the data. Since

the process with an inverted region undergoes a slightly modified coalescence pro-

cess, these weights should be modified as well. We will illustrate this modification

on for the fa/af topologies.

5.0.1 Modified Proposal Mechansim

For the model with a paracentric inversion (section 3.2.7) and lineages, we derive

the weights

TP(SL)(L1(Si), L2(Si), L3(Si)),

for enforcing topologies with fixed-absent lineages in both groups.

As illustrated in 4.2.5, the boundary condition

Te(i, j, k) = Ta(i, j, k) = 0 if k > 0 and i, j > 1,
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states that all lineages of type 1 and 2 must coalesce prior to the formation of a

type 3 lineage. The recursive form of Te(i, j, k) follows as

Te(i, j, 0)

((
i
2

)
N1

+

(
j
2

)
N2

+ λ

)
= Te(i− 1, j, 0)

(
i
2

)
N1

+ Te(i, j − 1, 0)

(
j
2

)
N2

+ Ta(i, j, 0)λ,

which is exactly the same as shown in equation (4.16). It is only the recursion

for Ta(i, j, 0), which resides in the ancestral phase, that undergoes a modification.

This follows as

Ta(i, j, 0)

( (
i
2

)
pN0

+

(
j
2

)
(1− p)N0

)
= Ta(i− 1, j, 0)

(
i
2

)
pN0

+ Ta(i, j − 1, 0)

(
j
2

)
(1− p)N0

,

where p is the frequency of inverted individuals in species group 1. This modified

recursion simply reflects that when there are i lineages left from subgroup 1, the

coalescence rate is
(

i
2

)
/pN0. Similarly, when there are j lineages left from sub-

group 2, the coalesnce rate is
(

j
2

)
/(1− p)N0.

It should also be noted that a modification in the expected time spent on each

level also occurs in the ancestral phase. The expected waiting time spent on

each level effects our proposal distribution for applying the mutations on a con-

sistent topology in the ancestral phase. That is, in the 7 dimensional multinomial

distribution, shown by equation (4.32), the weights follow as

wl =
1(

i
2

)
/pN0 +

(
j
2

)
/(1− p)N0

.

The proposal distribution for the three remaining topologies undergo similar mod-

ifications. These modifications are fully documented in Leman et al. (2005).
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5.1 Mode searching

We performed the mode searching algorithm (section 4.3.1) on both data sets

shown in table 5.1, in order to obtain the driving set θ(∗) for the proposal mecha-

nism. It was found that the MLE of the inversion frequency p was at a very small

value (≈ 0.00001) for both data sets. This result is consistent with the findings

of Dobzhansky and Powell (1975). The likelihood curve for p (conditioned at the

MLEs {uN̂0, uN̂1, uN̂2, λ/u}) shows very flat profiles, suggesting that it does not

influence the estimates of the other parameters. For this reason, we arbitrarily

fixed the inversion frequency (p = 0.00001) for the remainder of the analysis. The

entire mode searching process for each data set required approximately 2 weeks

of time to perform.
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5.2 D. p. bogotana and D. persimilis Study

For the Dpe/Dpb data set (column 5 of table 5.1), we wish to test the hypothesis

that the three population sizes are equal. The null (H0) and alternative (Ha)

hypotheses follow as

H0 : N0 = N1 = N2

Ha : Ni 6= Nj for some i and j ∈ {1, 2, 3}. (5.1)

Table 5.2 shows the maximum likelihood estimates for the parameters {uN̂0, uN̂1, uN̂2, λ/u}

under the unconstrained and constrained hypotheses.

parameter Unconstrained Constrained (H0)

λ/u 0.17 0.18
uN0 2.31 3.21
uN1 2.91 3.21
uN2 3.51 3.21

Likelihood 1.05× 10−5 8.78× 10−6

P-Value 0.83

Table 5.2: D. p. bogotana and D. persimilis parameter inferences

From the likelihood ratio test, we are able to test hypothesis 5.1. The last column

of table 5.2 shows the P-value under the likelihood ratio test and determines that

null hypothesis in (5.1) cannot be rejected.

5.2.1 Analysis Of The Importance Sampler

For the Dpe/Dpb data set, we set out to determine the accuracy in the importance

sampling technique. We’ve calculated exact conditional likelihood curves for the

λ/u parameter. The remaining parameters {uN0, uN1, uN2} have been fixed to
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their unconstrained MLEs (see table 5.2). From the exact recursion method, un-

der the gene incompatibility model 3.2.7, we have generated the exact likelihood

curve. This is illustrated by the red curve in figure 5.3. The importance sam-

pler was executed using 500,000 proposed sample genealogies and an approximate

(conditional) likelihood curve was drawn. This was repeated 18 times, for a to-

tal of 9 × 106 sample genealogies. The individual IS calculated likelihood curves

(500,00 genealogies) are plotted in grey, whereas the average of all of these (9×106

genealogies) is plotted in blue in figure 5.3.

Figure 5.3: Conditional likelihood curves for the λ/u parameter. Grey curves
represent IS approximations each using 500, 000 genealogies. The blue curve is
the average of all grey curves (9× 106 genealogies). The red curve represents the
true likelihood curve.

From figure 5.3, the modal height of the averaged IS curve (blue) appears to be
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somewhat lower than the modal height under the exact recursion. However, this

is not necessarily problematic since the heights of likelihood curves are irrelevant

for inferential purposes. What is relevant is if this height difference is uniform

over the whole range of likelihood values.

Figure 5.4 examines the differences between the approximated log-likelihood curve

using 9×106 genealogies and the exact log-likelihood curve, where we have scaled

both curves to their maximal values.

Figure 5.4: Scaled log likelihood comparison between IS approximated curve and
the exactly computed curve.

Figure 5.4 shows that the IS approximated likelihood curve compares well to the

exact curve, in both shape and location of the MLE. We also notice that the ap-
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proximated curve becomes wider than the exact curve as the range deviates from

the driving set. However, this deviation is hardly detectable in the range of 2

log-likelihood units which corresponds to the 95% confidence region.

5.2.2 Computational Demands

Each of the curves in figures 5.3 and 5.4 was computed using 200 points in the

range of (0, 2]. Each of these points computed under the exact recursion re-

quired ∼4 hours on a Macintosh PowerPC G5 (2.5-GHz processor, 3.5 GB DDR

SDRAM). The full exact likelihood curve (red) required ∼800 computing hours.

For each of the importance sampling curves, based on 500,000 genealogies, ∼30

minutes was required in computing time.

5.3 D. p. pseudoobscura and D. persimilis Study

The data set Dpe/Dpp (column 4 of table 5.1) is much more computationally

demanding than the previous data set. Due to the additional samples (13 and

19 sequences respectively), the number of tree topologies present in tree space

is much larger than in the Dpe/Dpb case (13 sequences each). Beyond this, we

also notice that there is an increase in the number of mutations. Under the exact

recursion, the computational complexity increases multiplicatively as the number

of mutations increases in each group. This creates a massive computational strain

when using the exact recursion. Under the IS method, increasing the number of

mutations requires virtually no more computational effort than smaller numbers

of mutations. We independently examine the three hypotheses N0 = N1, N0 = N2

and N1 = N2. The results found under the IS algorithm are shown in table 5.3

The results in table 5.3 were calculated using 4× 106 genealogies. From these
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parameter Unconstrained N0 = N1 N0 = N2 N1 = N2

λ/u 0.12 0.12 0.12 0.09
uN0 0.81 2.51 11.51 0.91
uN1 2.71 2.51 2.71 12.61
uN2 18.21 15.61 11.51 12.61

Likelihood 4.59× 10−6 2.88× 10−6 2.34× 10−7 9.23× 10−9

P-Value 0.33 1.5× 10−2 4.3× 10−4

Table 5.3: D. persimilis and D. p. pseudoobscura parameter inferences

results, the only hypothesis that we fail to reject is N0 = N1, suggesting that the

population of D. p. pseudoobscura is significantly larger than the other popula-

tions in the model.
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Under the maximum likelihood framework, confidence intervals for the parameter

estimates found in table 5.3 are found using the profile likelihood (see section 4.5).

Estimation of these intervals generally requires a full likelihood surface, which we

generate through a mesh refinement using interpolating splines which is described

in section 4.4. Profile likelihood curves, computed from the full 4-dimensional

likelihood surface, for the parameters uN1 and λ/u are shown in figure 5.5.

Figure 5.5: Profile likelihood curves for the effective population size of D. per-
similis and the divergence time between the groups Dpe/Dpp

Table 5.4 summarizes the 90% marginal confidence intervals for each of the pop-

ulation parameters. Each of the estimates in table 5.4 was based on 4 × 106

genealogies. The likelihood corresponding to the effective population size (uN2)

of the D. p. psuedoobscura group has a very heavy right tail, which limits the

computation of the right confidence bound for the parameter. In chapter 6, we

will study an MCMC procedure for computing the full 4-dimensional posterior

distribution, under which, such boundary limitations will be avoided.
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parameter MLE 90% confidence intervals

λ/u 0.12 (0.02, 0.46)
uN0 0.81 (0.1, 5.0)
uN1 2.71 (1.25, 5.75)
uN2 18.21 (8,−)

Table 5.4: Interval estimates for D. persimilis and D. p. psuedoobscura

5.4 Calibrating By Mutation Rate

Up until now, we have scaled all of the parameters to the mutation rate u. While

this parameter is not estimable under a coalescence model, it can be obtained

under experimental means and is necessary for direct inference on the un-scaled

parameters {N0, N1, N2, λ}.

5.4.1 Population Sizes

A coalescence event occurs at rate 1
Ni

, for i = (0, 1, 2), depending on subgroup,

hence the ratio

u

1/Ni

= uNi,

a ratio of rates, is measured on the unit scale mutations
coalescence

. The mutation rate u is

defined on the scale of mutations/year. However, in practice, we will obtain rates

û that are scaled as mutations/kb/year, where kb denotes kilo bases. We related

the effective population size with half the inverse rate of coalescence (see Slatkin,

1991). Under the assumption of 4 generations per year (Schaeffer, 1995) (which

is specific for Drosophila species), we scale the estimated quantity uNi as

4× uNi ×
1

2û

1

K
, (5.2)
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where K denotes the number of kb. After the scaling in (5.2), the units become

generations
coalescence

, which is the measurement unit for effective population size. This mea-

sures the rate of reproduction between coalescence events and is thus identified

with the population size.

5.4.2 Divergence Times

In order to better understand the estimate of the scaled speciation rate parameter

λ/u, we transform to a yearly time scale. Recall that λ is the rate of speciation

under an exponential waiting time model. Hence, the parameter 1/λ relates to

the expected time until speciation. After scaling our estimate to kb, we obtain

the estimate

u

λ
× 1

ûK
, (5.3)

which will produce an estimate of time in years.

121



5.4.3 Discussion

Hey and Nielsen (2004) estimate the mutation rate as 5.3×10−6 mutations/kb/year

from an analysis across 14 regions for the Drosophila species D. persimilis and

D. p. psuedoobscura. Tamura et al. (2004) estimate this same mutation rate as

1.1×10−5 after adjusting for codon usage bias. We investigate the population sizes

and divergence rates under both estimates. These are listed in table 5.5. These

parameter HNa TSKb

Divergence Time 1.76 0.85
Ancestral effective size 0.34 0.17
D. persimilis effective size 1.15 0.55
D. p. psuedoobscura effective size 7.70 3.71
All estimates ×106

a û = 5.3× 10−6

b û = 1.1× 10−5

Table 5.5: Adjusted divergence and population size estimates for D. persimilis
and D. p. psuedoobscura

results suggest a divergence time between D. persimilis and D. p. psuedoobscura

of 850 thousand years. This result is identical to that obtain by Tamura et al.

(2004) based on a genome wide experiment.

Based soley on the DPS2002 locus, Hey and Nielsen (2004) estimate the parame-

ters (λ/u = 0.15, N0 = 1.1, N1 = 2.4, N2 = 21.6) which correspond well to the es-

timates found under our method (λ/u = 0.12, N0 = 0.81, N1 = 2.71, N2 = 18.21).

In fact under a likelihood ratio test, the discrepancies in these estimates are in-

significant, adding credibility to the methodology.
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Chapter 6

Good Chains From Bad Proposals: The

Evolutionary Forest Algorithm

Up until this point, we have described a general class of models which can be

used to infer about aspects of the evolutionary process. Parameters which pertain

to these processes include the time since divergence, effective population sizes,

and migration rates (see chapter 3). The general modeling setup which we have

developed in chapter 3 gives rise to the joint probability of the data and the

genealogy t. However, for inferential purposes, we are interested in the marginal

distribution

P (D|θ) =
∑
t∈ΩT

P (D, t|θ) (6.1)

where θ incorporates the set of population parameters of interest. In chapter 4,

we proposed an importance sampling scheme which aided us in computing the

probability at a single point of the parameter space θ. Unfortunately, in the con-

text of the case study (see chapter 5), the full likelihood surface was necessary

for parameter inference, however exact computation of this is infeasible. Beyond

the computational burden of likelihood construction, the proposal mechanisms
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used in the importance sampler are dependent on a single fixed set of driving pa-

rameter values (θ(∗)) which require considerable tuning using the mode searching

algorithm presented in section 4.3.1.

In this chapter, we will develop a Markov Chain Monte Carlo (MCMC) method

for estimating the population parameters under the divergence model given in

section 3.2.1. While we specify the simple model for general purposes, modifica-

tions to the gene incompatibility model (section 3.2.7) and other related models

are straightforward.

Our MCMC algorithm will ultimately yield the joint posterior distribution (p(θ|D))

of interest, where θ = {λ/u, uN0, uN1, uN2} = {Λ, θ0, θ1, θ2}. Recall, the relation-

ship between the divergence time τ and the speciation rate λ is E[τ ] = λ−1.

Inherent to the problem of estimating the population parameters is the problem

of constructing the phylogenetic tree which represents the evolutionary history of

the gene sample. While MCMC algorithms provide a powerful frame work for

reconstructing complicated posterior distributions, proposal distributions used in

moving through the targeted space are a key concern and can require special at-

tention.

Simple proposal mechanisms used for updating genealogies based on local moves

generally convergence poorly, since tree space is not well connected. To aid in

moving around the space of genealogies, we will develop an augmentation of the

tree space which will improve the mixing properties of the Markov chain. Instead

of using a single genealogy, we will redefine the probability distribution which is
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simultaneously comprised of multiple genealogies. While we change the probabil-

ity distribution which pertains to the space of trees, the parameter space (θ) will

be unaffected.

This method greatly reduces the human efforts required by our importance sam-

pler, and yields massive time reductions over methods in which the exact recursion

probabilities are used (see section A.11).

6.1 Proposal Distributions

Before discussing the EF algorithm, we analyze the proposal distributions out-

lined in chapter 4. While these proposal distributions were derived using insights

from the coalescence model, this analysis highlights the inherent difficulties in

proposing sample draws from the coalescent.

Since ideal proposal distributions should resemble the target distribution, it is

important to measure how close these distributions are to each other. One quan-

titative method for assessing the proposals performance is by analyzing the im-

portance weights

w(x) = p(x)/g(x),

where we have used g(x) to symbolize the proposed density (or mass) value at x,

and p(x) is the density (or mass) under the true model. Clearly, if g(x) = p(x),

then w(x) = 1, for all values of x. Letting xi ∼ g(x) for i = (1, . . . n), we can

construct n importance weights, which we denote wi. A summary of how variable

these weights are is described by the coefficient of variation

cν =

∑n
i=1 (wi − w̄)2

(n− 1)w̄2
= (σ̂/µ̂)2 ,
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where w̄ =
∑n

i=1 wi/n. This coefficient of variation gives a measure of exactly

how variable the values of wi are, relative to its mean. Generally speaking, the

lower the coefficient of variation, the better the proposal distribution matches the

true target distribution. For example, if g(x) = p(x), then cν = 0.

Another quantity of interest, when analyzing proposal distributions, is the ef-

fective sample size (ESS). This is given by

ESS(n) =
n

1 + cν

,

where n is the quantity of sampled values. Roughly speaking, this quantity mea-

sures how many exact samples (generated under p(·)) our proposed samples (gen-

erated under g(·)) are worth. Notice when cν = 0, ESS(n)=n, so the effective

sample size is equal to the true number of samples. If cν is large, then the effec-

tive sample size will be reduced. In chapter 4, section 4.2, we considered a set

of proposal distributions that were used for construction of the genealogy. This

was a two tier process. The first tier constructed the tree topology via the coa-

lescence process, and the second tier sprinkled mutations over the tree structure

using weighted multinomial distributions on each mutation type. While this is a

seemingly reasonable method for constructing the proposed genealogy, it can at

times yield probability weights that greatly differ from the true quantities.

We examine the quantities cν and ESS(n) under the proposal mechanism studied

in 4.2, both with and without the recursion constraints discussed in section 4.2.1.

For the data sets given in 5.1, we sampled 1, 000, 000 genealogies under the pro-

posal distribution, with driving values set to the MLE found in chapter 5 (tables
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5.3 and 5.2), and computed the importance weights for each sampling. Table 6.1

summarizes the results of both ESS and cν for the data in table 5.1.

Data set ESS(10e + 6)† c†ν ESS(10e + 6)‡ c‡ν
Dpe/Dpp 9.6 7.2489e+03 42.3 2.3658e+04
Dpe/Dpb 137.9 1.0421e+05 561.7 1.7793e+03
† Without topology constraints
‡ With topology constraints

Table 6.1: Expected sample sizes and coefficients of variation from proposal
distributions, based on 1, 000, 000 samples.

From the comparison of the data sets (Dpe/Dpp with 32 individuals and Dpe/Dpb

with 26 individuals), we notice that the larger data set has a far lower sampling

efficiency, as determined by the ESS. This is due to the fact that the larger data

has a vastly larger tree space. Generally larger data sets have poor sampling ef-

ficiency due to the stochastic variability being so much higher. This presents a

dilemma since, more data suggests more accuracy in parameter estimation, but

more data enlarges the tree space and creates a high degree of sampling variation

which in turn hinders the estimation.

We note that by using the topology constraints (section 4.2.1), we obtain approx-

imately a 4 fold increase in sampling efficiency in both data sets. However, even

though the sampling performance is increased by adding the constraints, which

ensure consistent trees, the performance is still quite poor by most standards.

Instead of developing a new set of proposal distributions, we will explore a new

MCMC methodology that helps to uniformize the probability distribution on the

tree space and ultimately improve sampling performance.
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6.1.1 Gibbs sampling

Before introducing the EF algorithm, we first describe a more theoretically straight-

forward method to illuminate the basic idea in EF. One way to avoid the sum-

mation in (6.1) is to consider the joint posterior distribution p(θ, t|D), whose

marginal distribution p(θ|D) is the target distribution. Sampling from the pos-

terior distribution p(θ, t|D) can be accomplished by the use of a Gibbs sampler

(Geman and Geman, 1984; Gelfand and Smith, 1990) with Metropolis-Hastings

steps. That is, we sample iteratively from the distributions

p(θ|t,D) and p(t|θ, D).

Iterating through this algorithm a sufficient number of times yields samples from

the joint distribution p(θ, t|D). Albeit, this method is conceptually straightfor-

ward, convergence in the tree space is usually problematic. The main difficulty

in this sampling approach is proposing updates to the tree history which explore

the tree space efficiently and have good mixing properties.

For this reason, we introduce a new sampling algorithm called the Evolutionary

Forest (EF).
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6.2 The Forest Approach

In this thesis, we contribute a new MCMC algorithm which requires simple pro-

posals, yet achieves adequate mixing and convergence by augmenting the space

of trees with a collection of genealogies (forest). Instead of considering the joint

distribution p(θ, t|D), we will augment the dimension in which t ∈ ΩT lives, such

that the marginal distribution of θ is invariant under the augmentation. Another

feature of the augmentation is that the Markovian type moves in the MCMC

algorithm will be simplified. We start by defining the forest sample space by

ΩF =

{
K⊎

i=1

ti : ti ∈ ΩT

}
, (6.2)

for K a fixed number of trees. The operation
⊎

denotes a multiset union of

trees, where a multiset is an unordered set for which multiplicity is preserved. For

example, let A = {t1, t2, t3} and B = {t1, t4}. Under the operation ], we have

A ]B = {t1, t1, t2, t3, t4}. For each forest f ∈ ΩF , we denote the multiplicity of a

tree t ∈ f as M(t, f). Hence, we allow for multiple copies of the same tree in the

forest.

We explicitly assign the probability of the joint posterior distribution of f , θ, and

the data D by the system

q(f, θ|D) = C

K∑
i=1

p(ti, θ|D) (6.3)

q(D) = p(D),

where C is a normalizing constant, such that∑
f∈ΩF

∫
θ∈Ωθ

q(f, θ|D)dθ = 1. Before proceeding, we will derive some useful facts

concerning the distribution q(f, θ|D).
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The inverse of the normalizing constant is calculated as

1

C
=

(
N + K − 1

K

)
K

N
(6.4)

= R(N, K) = R

where N = |ΩT | is the size of tree space. That is, N describes the total number of

trees in the space of trees, where we assume N < ∞. This normalizing constant

is derived from the fact that there are

(
N + K − 1

K

)
possible multisets. This

is equivalent to the problem of randomly drawing from N indistinguishable balls

and placing them into K distinguishable urns. The solution to the number of ways

this can be accomplished is

(
N + K − 1

K

)
ways (Ross, 2005). Each forest has

K positions for trees to reside in, hence we can consider the forest space as being

a partition on

(
N + K − 1

K

)
× K positions. By symmetry, each tree appears

in the fraction 1
N

of the

(
N + K − 1

K

)
× K positions, which results in (6.4).

Another useful characterization of R is

∑
f∈ΩF

∑
t∈f

(·) = R
∑
t∈ΩT

(·). (6.5)

That is, R is the number of times each tree is represented in the full forest space,

and by symmetry is equal for every t ∈ ΩT .
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We also have that q(f |θ, D) = C
∑

t∈f p(t|θ, D) forms a proper distribution since

1 =
∑

f∈ΩF

∫
q(f, θ|D)dθ =

∑
f∈ΩF

∫
C
∑
t∈f

p(t,θ|D)dθ

=

∫ (∑
f∈ΩF

∑
t∈f

Cp(t|θ, D)

)
p(θ|D)dθ.

From equation 6.5, we can write the above term in parentheses as

∑
f∈ΩF

∑
t∈f

Cp(t|θ, D) = R
∑
t∈ΩT

Cp(t|θ, D)

= RC = 1.

Hence,
∑

f∈ΩF
q(f |θ, D) = C

∑
f∈ΩF

∑
t∈f p(t|θ, D) = RC = 1 and holds for all

θ. From this, we see that the definition of the distribution of f ∈ ΩF given

in equation (6.3) adheres to familiar rules of probability distributions. That, is

jointly and conditionally, the total probability mass of ΩF is 1.

The following theorem is the key to why we can use the augmentation defined in

equation (6.3) and still perform inference on the parameter set θ.
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Theorem 1. The marginal posterior distribution of θ is invariant under the forest

augmentation defined by equation (6.3).

Proof. The marginal posterior distribution is

q(θ|D) =
∑

f∈ΩF

q(f, θ|D)

=
∑

f∈ΩF

(∑
t∈f

Cp(t,θ|D)

)

= p(θ|D)
∑

f∈ΩF

(∑
t∈f

Cp(t|θ, D)

)

= p(θ|D)

(∑
t∈ΩT

RCp(t|θ, D)

)
= p(θ|D).

Hence, the marginal posterior distribution of θ under the forest augmentation is

the same as under the original tree construction. That is, under the augmentation

defining f , the margin on θ is preserved.

Notice that implied by q(θ|D) = p(θ|D), we have q(θ) = p(θ), since q(D) = p(D).

From the construction for f , we propose to sample from the posterior distribution

q(θ, f |D) ∝ q(D, f |θ)q(θ) (6.6)

= C
K∑

i=1

p(D, ti|θ)p(θ).

The above summation follows from the definition of the joint posterior probability
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on the forest space, since

q(D, f |θ) = q(θ, f |D)
q(D)

q(θ)

=
∑
t∈f

Cp(θ, t|D)
p(D)

p(θ)

=
∑
t∈f

Cp(D, t|θ).

We will see that augmenting the parameter space with a forest of trees increases

the sampling efficiency in the MCMC routine, which accelerates convergence to the

true distribution. Also, construction of the individual tree proposal distributions

can be done in a naive manner. That is, we can use simple proposal distributions

and still maintain rapid convergence to the target distribution. In particular, we

may use an independent proposal distribution on the individual trees rather than

proposing new trees based on complicated rules which define local moves.

6.3 The EF Algorithm

Our algorithm relies on Metropolis-Hastings within Random Gibbs Moves (Robert

and Casella, 1999). That is, we sample ν ∼ Bernoulli(p) to choose either a pa-

rameter space move or forest move respectively. A reasonable choice for p is 1
2
.

Parameter moves are proposed according to a normal random walk, while forest

moves are proposed by independent tree proposals.
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Explicitly, the algorithm is:

1. set parameter starting values θ(0) = {Λ(0), θ
(0)
0 , θ

(0)
1 , θ

(0)
2 }.

2. generate K genealogies f (0) = {t(0)1 . . . t
(0)
K }.

3. For i = 1, . . . , N

Sample ν ∼ Bernoulli(p).

• if ν = 1 (parameter space move)

Propose parameter updates θ(c) ∼ N(θ(i−1), σI).

With probability αp set θi = θc, where

αp = min

(
1,

q(D, f (i−1)|θ(c))p(θc)

q(D, f (i−1)|θ(i−1))p(θ(i−1))

)
. (6.7)

• if ν = 0 (forest space move)

Sample tj ∼ Unif(f (i−1)), so that f (i−1) = tj ] f
(i−1)
−j .

Propose a new tree independently from the distribution g(tc|θ(i), D)

and denote f (c) = tc ] f
(i−1)
−j . Acceptance of the jth tree occurs with

acceptance probability αf , where

αf = min

(
1,

q(f (c)|D,θ(i))M(tc, f (c))g(tj |θ(i), D)

q(f (i−1)|D,θ(i))M(tj , f (i−1))g(tc|θ(i), D)

)
. (6.8)

Continuing this algorithm for a sufficient number of iterations to guarantee con-

vergence results in sample draws from q(f, θ|D).

6.3.1 Algorithmic Details

In the above algorithm, we iterate between draws from the distributions: p(θ|D, f)

(parameter space) and p(f |D, θ) (a forest of trees). Upon convergence, this yields
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sample draws from q(f, θ|D). In the parameter updates, we use in the acceptance

ratio (6.7), the quantity

K∑
k=1

p(D, t
(i−1)
k |θ(c))p(θc) = q(D, f (i−1)|θ(c))p(θc).

The desired acceptance probability at this step is

q(θc|D, f)g(θ(i−1)|θc)

q(θ(i−1)|D, f)g(θc|θ(i−1))
=

q(θc|D, f)

q(θ(i−1)|D, f)
,

where the distribution g(·|µ) represents a normal distribution centered at µ and

cancels out of the ratio since it is a symmetric distribution. The necessary condi-

tional distribution q(θ|D, f) for this acceptance probability follows as

q(θ|D, f) =
q(D, f |θ)p(θ)

q(f |D)p(D)

=

∑K
k=1 p(D, tk|θ)p(θ)

q(f |D)p(D)
,

which is known up to the distributions q(f |D) and p(D), where

q(f |D) ∝
∫

θ

q(D, f |θ)p(θ)dθ.

This integral is difficult to compute, since we must integrate all the parameter

dimensions from any arbitrary tree. Fortunately, at each iteration q(f |D) is a

constant within each block parameter draw, so these terms cancel in (6.7).

For updating the forest, we update the jth tree, where tj ∼ Unif(f (i−1)). Since

a tree can exist in the forest with multiplicity, the probability of proposing f (c)
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from f (i−1) is

M(tj, f
(i−1))

K
g(t(c)|θ(i), D), (6.9)

where g(t|θ, D) is the proposal distribution on trees (see section 4.2). Note that

the full conditional forest distribution

q(f |D, θ) =
q(f, D|θ)

q(D|θ)

=

∑K
i=1 p(ti, D|θ)

q(D|θ)
(6.10)

is known up to the distribution p(D|θ), which is constant for fixed θ. Combin-

ing equation (6.10) and equation (6.9) yields the importance ratio used in the

Metropolis-Hastings acceptance probability, given by equation (6.8).

6.4 Relationship To Parallel Tempering

Methods where multiple chains are run simultaneously (Geyer, 1991) can often

increase sampling performance. In parallel tempering, a transformation of the

probability distribution through an energy function is performed, such that the

distribution is flattened, so that movement between regions of high posterior den-

sity (or mass) is increased and mixing is improved. Typically, a temperature ladder

is specified in parallel tempering and sampling efficiency in the chain is maximal

when the temperature is hot. However, samples drawn from this high temperature

chain do not reflect samples that would be drawn from the target chain. There-

fore, in order to to retain samples from the distribution of interest, the chain must

be cooled. The EF algorithm mimics the basic principle in parallel tempering of

flattening the space of trees. By increasing the number of trees in the forest space,
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the relative probability contribution of each individual tree is diminished, result-

ing in a distribution on forest space that looks like a flattened tree space. A key

advantage of EF over tempering is that the margins in the space of population

parameters is retained (see Theorem 1), so there is no need for the additional

complexity of multiple chains. Computational complexity is increased only very

slightly since K evaluations of tree probabilities must be evaluated in order to

determine the probability of each forest. Hence, in the EF algorithm, sampling

efficiency is increased with relatively little computational overhead.

6.5 Results and Discussion

A simulation study was performed to assess the convergence of the EF algorithm.

In this study, population parameters were uniformly generated with Λ ∈ (0, 5]

and θi ∈ (0, 30] for i = {0, 1, 2}. Under the simulated parameters, the coalescence

process was simulated, starting with 5 samples in each deme, and counts for the

7 joint summary statistics were collected. This process was repeated 100 times,

so that each run produced a collection of summary statistics for which we could

estimate the population driving values using the EF algorithm. We excluded gen-

erated data sets in which fewer than 15 segregating mutations were counted, since

data generally has more than 15 segregating mutations. For estimation, prior

distributions for the population parameters were chosen to be: Λ ∼ Unif(0, 5] and

θi ∼ Unif(0, 30] for i = {1, 2, 3}, which are the same as the simulated values. Es-

timation of the joint posterior distribution was performed using the EF algorithm

with K = 50. In all data sets, convergence of the posterior distribution required

fewer than 100,000 MCMC iterations, as determined by trace plots. We computed

95% credible intervals for each of the parameters and calculated the frequency of
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times each of the intervals covered it’s known parameter value. Coverage proba-

bilities for each of the marginal distributions are shown in Table 6.2.

parameter coverage probability

Λ 0.93
θ0 0.96
θ1 0.96
θ2 0.96

Table 6.2: Coverage probabilities for the 0.95 level credible intervals under sim-
ulation.

We found the 95% credible intervals covered the known parameter values with the

appropriate frequency, which is indicative that the EF algorithm converges to the

correct target distribution.

6.5.1 Comparison To Exact Posterior Calcuations

Using the data set provided by Machado et al. (2002), for the Dpe/Dpb groups,

we compare exact marginal distributions, as determined by our exact recursion

(see appendix A), to those obtained using EF. We first compare the likelihood

curves for the divergence rate Λ conditional on θ0 = 2.31, θ1 = 2.91, θ2 = 3.51,

the pre-calculated maximum likelihood values found in chapter 5 (table 5.2). For

the EF simulations, we have chosen to examine forests of sizes K = {1, 10, 25}.

For this comparison, we specify the diffuse prior distribution p(Λ) ∼ N(.1, 502),

truncated at zero. Solid curves are computed under exact posterior computation,

while histograms were constructed using 120, 000 posterior samples with the EF-

algorithm. Prior distributions are shown by dashed curves.

Figure 6.1 shows, as the forest size increases, close agreement between exact cal-

culations and those obtained by simulation. Under the single tree case, the EF
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Figure 6.1: Comparison for conditional Λ posteriors on the data set for D. Per-
similis and D. Bogotona (13 samples, 13 samples), with n = (16, 6, 8, 2, 0, 0, 0).
(θ0, θ1, N2) are evaluated at their maximum likelihood values which were found
under simulation. The histogram represents draws from the posterior distribution
using the EF algorithm, where the forest size has been set to K = (1, 10, 25) re-
spectively. Imposed on the simulated posteriors are the exact conditional posterior
distributions. Prior distributions are denoted by dashed curves.

algorithm fails to converge after 120,000 MCMC iterations, and both the modal

estimate and overall shape deviate from the true distribution. This is due to the

fact that, with a single tree in the forest, tree updates occur infrequently. This

irregular updating limits the exploration of the space and ultimately impedes con-

vergence in the parameter space.

For the θ2 parameter, we have computed the posterior distribution using the data

set consisting of 13 sequences from D. Persimilis and 19 samples from D. Psue-

doobscura, with n = (16, 5, 65, 0, 0, 1, 0). Figure 6.2 shows a comparison using the
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EF algorithm with K = {1, 5, 50, 100}. The trend depicted, by increasing forest

Figure 6.2: Comparison For conditional θ2 posteriors on the data set
for D. Persimilis and D. Psuedoobscura (13 samples, 19 samples), with
n = (16, 5, 65, 0, 0, 1, 0). (θ0, θ1, Λ) are evaluated at their maximum likelihood
values which were found under simulation. The histogram represents draws from
the posterior distribution using the EF algorithm, where the forest size has been
set to K = (1, 50, 50, 100) respectively. Imposed on the simulated posteriors are
the exact conditional posterior distributions. Prior distributions are denoted by
dashed curves.

size, shows similar patterns as the study on the smaller data set. That is, by using

1 tree, the simulation performs quite poorly. As we increase the forest size to 100

tress, we closely approximate the exact posterior distribution. Computation time

for the exact curve took over 4 months, while the simulated curve using 50 trees

took approximately 4 hours. Unfortunately, using the exact recursion to perform

inference on the full joint posterior is not permissible since computation time for

all 4-dimensions will require approximately 44/12 = 21.33 years. However, sam-
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pling the entire θ vector using the EF framework requires only marginal increases

in computation time as the number of estimated parameters increases, and for

this case study still only requires approximately 4 hours for convergence on the

full joint posterior.

We notice in a comparison of marginal posterior distributions for Λ and θ2 in

figures 6.1 and 6.2, that when the parameter reflects a high level of uncertainty,

increasing the number of trees in the forest is essential for convergence to the

correct target distribution. This is due to the fact that the number of trees with

substantial probability weights increases as the parameters variability increases.

Performance using few trees is hindered by the low acceptance rate and slows the

exploration of the tree space. As a result, the parameter values proposed will only

reflect those trees which are sampled. Hence, it is necessary to have the Markov

chain mix efficiently in all dimensions for convergence to the correct distribution.

6.6 Computational Performance

Both figures 6.1 and 6.2, based on 120,000 sample iterations, show an increasing

agreement between the exact and estimated posterior distribution, as the forest

size increases. For both examples, we see that the single tree forests do not con-

verge to the exact marginal distribution in the alloted time. This is due to the

slow exploration of tree space, which contributes to the fact that small forests

will require more sample iterations for convergence. For the Dpe/Dpp data set,

using a forest size of (K = 100), posterior draws converged to the exact marginal

distribution in only 120,000 iterations; however, for the single tree case (K = 1),

we require about 50 million sample draws for convergence (approximately 416
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times more iterations). While, the increase in the rate of convergence is problem

specific, as the landscape of tree space becomes more irregular, then it is expected

that the increase in forest size will be more advantageous.

For θ2, the parameter with the widest posterior distribution, computation of the

exact posterior (solid curve in figure 6.2) took over four months using the exact

recursion (Uyenoyama and Takebayashi, 2004). Using forests of 50 trees, the EF

results required approximately four hours (as computed using a Macintosh Dual

2.5 GHz PowerPC G5). Using the exact recursion to compute the posterior distri-

bution for all four parameters would require on the order of 44/12 = 21.33 years

(as computed on a uniform grid). In contrast, using the EF algorithm, computa-

tion time remains approximately constant (4 hours) as the number the parameter

space increases in dimensionality.

As the forest size increases, the only additional time penalty is in the evaluation

of the posterior probability. This increases linearly as the forest size increases,

since a forest size of K will require K posterior evaluations at the tree level.

6.6.1 Comparison to a previously studied importance sam-

pling procedure

Previously, we analyzed the data set in table 5.1 using an importance sampling

(IS) approach for constructing the probability of the data at a fixed parameter set

θ. Although results are comparable under both the EF and IS algorithms, the EF

algorithm obviates much of the preprocessing involved in the IS algorithm. The

forms of the proposal distributions under both methods are the same, however
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the IS method uses static driving parameters which require substantial tuning.

The optimal driving set in the IS method is the maximum likelihood set but, a

priori, the MLE is unknown. To address this problem, we required a two phase

mode searching procedure. The first phase uses a random searching procedure

for finding seeding values, for which a second phase gradient-descent algorithm

is initialized. This procedure typically requires about 1-2 weeks for convergence.

After this proposal tuning phase, the IS method gives the likelihood values for θ

on a grid and interpolating splines are then used in constructing a smooth likeli-

hood surface. The results shown in figure 6.1 are comparable to those shown in

figures 5.3 and 5.4. For these examples, the EF method required approximately 4

hours for convergence, while the IS method required 9 hours for convergence, in

addition to a 2 week tuning period.

While this importance sampling algorithm requires many preprocessing steps, the

EF method is almost fully automatic. Since the EF algorithm constantly updates

the parameter values θ, the EF algorithm is not subject to the sensitivity of initial

static driving values. Therefore, pre-tuning steps on the driving values are not

needed. Also, the EF algorithm constructs samples from the posterior distribu-

tion p(θ|D), so the additional burden of using interpolating splines is unnecessary.

We have found that the EF algorithm scales better to larger problems, since

the memory (RAM) demands are much smaller than in our IS application. This

is due to the fact that the EF algorithm only stores a small number of trees at

each step of the procedure, whereas in our implementation of the IS method we

must store an enormous number of trees for reliable likelihood evaluation.
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6.6.2 Comparisons to IM

The IM software package (Hey and Nielsen, 2004) encompasses a closely related

method to ours for parameter estimation, although one major difference is the sim-

ulation mechanism. While our method relies on the evolutionary forest for moving

through the space of genealogies, IM uses parallel tempering (Geyer, 1991) to aid

moves through this space. A comparison of the EF method to IM was performed

on the two data sets included in Table 3.1. Parameter estimates between the two

models are comparable, however our model relates the speciation event through

the rate paramter Λ, where as, IM explicitly estimates the speciation time τ . We

correspond their parameter uτ to our parameter u/λ = Λ−1, since E[τ ] = λ−1.

Credible intervals for their τ parameter should not be compared to those of our

Λ parameter, since the relationship can only be made in expectation under our

modeling assumptions, which IM does not share. All the remaining parameters

are immediately comparable.

We ran the IM software with 3 parallel tempering chains to aid mixing, while

other input values were set to their default values. IM relies on the specifica-

tion of bounded uniform prior distributions, where we defined the support on

the regions as τ ∈ (0, 100] and θi ∈ (0, 300] (i = 0, 1, 2). For the EF method

we set K = 50 and specified the diffused prior distribution Λ ∼ N(.1, 302) and

θi ∼ N(10, 1002) (i = 0, 1, 2). Convergence for both methods were assessed by

visual inspection of trace plots.

For the smaller data set Dpe/Dpb in Table 5.1, IM required 4 days for con-

vergence, however, convergence was somewhat weak. Although the trace plots
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suggest that convergence had been obtained, analysis of subsets of the posterior

samples showed clear differences in the marginal distributions. Running the chain

for 7 additional days did not resolve these differences, so we finally determined

that convergence had been obtained to the maximum degree that the software

would allow for. The EF algorithm required approximately 4 hours for conver-

gence, where random walk proposal standard deviations were set to (1, 3, 3, 3)

for updating (Λ, θ0, θ1, θ2), respectively. Table 6.3 shows the estimated parameter

values under both the EF and IM methods. Estimates for the θ parameters under

both methods appear to agree closely. However, our estimate for Λ is slightly

higher than that of IM, though the marginal deviation in these estimates are not

significant.

Λ θ0 θ1 θ2

posterior mode (EF) 0.19 2.5 3.4 4.0
95% credible intervals (EF) (0.05,1.2 ) (0.5, 51.3) (1.7, 10.0) (2.0, 11.0)
poserior mode (IM) .14 2.4 2.8 5.6
95% credible intervals (IM) (0.39, 44.7 ) (1.4, 8.4 ) (3.0, 21.5)

Table 6.3: Parameter estimates for the D. persimilis and D. pseudoobscura bo-
gotana data set under the EF and IM methods. Posterior inferences based on
1,000,000 samples.

For the larger data set Dpe/Dpp, we ran the IM software for three weeks and

were unable to obtain convergence. Two related issues appear to be behind the

inability to estimate the posterior distribution within the time permitted. The

first of these is that the acceptance rate on various parameters, namely τ and the

genealogy itself, tended to be low. Tree updates, at times, occurred at rates of

less that 1 in 10,000 (and up to 11%), which is quite low and requires that the

algorithm must run for an extremely long time before convergence is obtained.

Also, parameters with a large degree of uncertainty (θ2, see figure 6.2) require a
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large portion of tree space for estimation, so if tree space is explored slowly, then

convergence in these parameters will suffer. Unfortunately, all of the parameters

in the model are highly dependent and should not be reported if a single parame-

ter fails to converge. Previously, Hey and Nielsen (2004) reported point estimates

(scaled to our units) as (Λ = 0.15, θ0 = 1.1, θ1 = 2.4, θ2 = 21.6). A marginal

assessment of these values show non statistically significant departures from our

estimates (Table 6.4), which were obtained in approximately 5 hours with the EF

algorithm.

Λ θ0 θ1 θ2

Posterior Modes (EF) 0.21 5.4 4.2 15.4
95% CIs (EF) (0.05, 1.4) (0.9, 27.9) (2.3, 11.1) (9.4, 54.4)

Table 6.4: Parameter estimates and credible intervals for the D. persimilis and
D. pseudoobscura pseudoobscura data set under the EF. Posterior inferences based
on 1,000,000 samples.

6.7 Acceptance probability

To investigate further the implications of forest size, we examined the acceptance

probability of moves in tree space. For the D. persimilis and D. pseudoobscura

pseudoobscura data set (Dpe/Dpp column in Table 5.1), we fixed the population

parameter values at their maximum likelihood values (Λ = 0.12, θ0 = 0.81, θ1 =

2.71, θ2 = 18.21) so that MCMC moves are limited to the forest space. Figure 6.3

shows an increase in the acceptance rate with forest size, confirming that larger

forests promote more rapid exploration of the tree space and convergence of the

full joint posterior distribution over both trees and parameters. Expansion of

forest size reduces the effect of the substitution of a single tree, permitting moves
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Figure 6.3: Acceptance rate increases with forest size. Black line: mean accep-
tance rate from six MCMC runs, each comprising 10,000 iterations for each point.
Grey region: 95% pointwise confidence interval around the mean for the six runs.

to occur more frequently. For arbitrarily large forests,

lim
K→∞

q(D, f (c)|θ(i))

q(D, f (i−1)|θ(i))
= 1, (6.11)

indicating that in the ratio of the proposal distributions

q(f (c)|D, θ(i))M(tc, f (c))g(tj|θ(i), D)

q(f (i−1)|D, θ(i))M(tj, f (i−1))g(tc|θ(i), D)
,

M(t, f)g(t|θ, D) will dominate the Metropolis-Hastings ratio (6.8). The rate of

updates in the space of histories is usually a limiting factor in evolutionary infer-

ence, so being able to increase this rate by simply changing the size of the forest

space greatly increases the overall convergence rate for all the parameters in the

model. Therefore, increasing the acceptance rate in forest space will ultimately
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have the effect of increasing the convergence rate in the population parameter

space.

6.8 Conclusion And Discussion

In this study, we have developed a novel approach to efficiently sample from the

joint posterior distribution of population parameters in the coalescence frame-

work. While, a natural sampling technique is to sample from the space where

the coalescence tree is one of the marginal parameters of interest, these methods

must make use of cumbersome proposal distributions, where convergence can of-

ten times be a limiting factor. The Evolutionary Forest algorithm makes use of

augmenting the population parameters with a forest of possible genealogical his-

tories. Through this construction, proposal distributions on the individual trees

may be constructed in an independent manner, while maintaining efficient mixing

in both parameter space and forest space. The EF method constructs credible in-

tervals within several minutes, obviating the need for computationally demanding

methods in which profile likelihood intervals are considered.

6.8.1 Decoupling The Parameter Space From The Geneal-

ogy

In appendix A we placed some importance on being able to separate the parameter

space θ from the genealogy it self. That is, all demographic parameters of interest

were not to be explicitly rooted within the tree, but rather were to be expressed

in terms of rates that drive the stochastic process. It is due to this modeling
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feature that we are able to apply the EF algorithm and still perform inference in

all the parameters of interest. If, for example, the speciation event were rooted

within the tree, then under the EF framework, only the margins for {θ0, θ1, θ2}

would converge to the correct distribution. However, the divergence time will not

converge since it is inherently coupled with the tree. Since the instrumental trees

within the marginal forests do not converge to the same distribution as under

the original p(θ, t|D) distribution, inference cannot be performed on the trees

resulting from EF. However, by separating out all of the parameters of interest,

we can apply EF, which converges rapidly and still retains all the inferential ability

as specified under the single tree distribution.
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Chapter 7

Conclusions and Future Work

In this thesis we have introduced a new sampling tool called the Evolutionary

Forest (EF) algorithm. This algorithm is a powerful device for searching around

complicated spaces and ultimately yields the population parameters that drive

the coalescence process. While, we have chosen in this thesis to only focus on evo-

lutionary models, where the stochastic realizations are bifurcating trees, we can

apply this algorithm to any arbitrary process and retain the driving parameters

of the process.

Since the EF algorithm has shown dramatic speed gains over traditional methods,

more complex models can be developed.

Coalescence models in which more that two species are of interest will be de-

veloped. This development will provide a bridge between the phylogenetic and

population biology communities, since we will be able to reconstruct species level

phylogenetic trees from gene level stochastic processes. To date, we are unaware
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of any groups successfully achieving this goal.

Multi locus analyses are often desired since multiple regions of the genome can

provide more information about the population parameters than a single locus.

While, these parameters are generally common to each locus in the genome, the

genealogy is not the same. Hence a full multi locus analysis demands that mul-

tiple dependent genealogies are modeled simultaneously. Even though the EF

algorithm greatly reduces the computational burden induced by the coalescence

framework, multi locus analyses over a hand full of loci will be troublesome. For

this reason, we envision deploying the EF algorithm with a resampling approach

to building multiple joint posterior distributions from only subsets of the data.

Averaging over large quantities of sub-sampled posterior distributions will even-

tually yield the overall posterior distribution. The key to this procedure is that

each sub-posterior must be generated quickly, which the EF algorithm already

accomplishes.

In the future, we will extend the EF algorithm to more arbitrary processes and

develop it as a general sampling tool. In particular, we will show how this method-

ology can be used for sampling from multidimensional multi modal distributions

in which only the simple margins are of interest. After which, we will extend the

theory to cases in which all margins are of interest.

In model selection problems, the reversible jump algorithm has often been employ

with moderate success. It has been our experience, that in large model spaces,

proposing model jumps so that between high probability models is often problem-

atic. Again proposal distributions are at the heart of the sampling difficulty in
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model selection problems. In future applications, we will extend the EF algorithm

to problems in which finding the best model (or set of models) is of interest. In

the model selection context, the EF algorithm will rely on making moves between

forests of models in conjunction with intermediate reversible jump moves.

Future applications will also include time series models for modeling the spread of

infectious disease. These models will show by inclusion of genetic (haplotype) data

from the pathogen, detection of the infection rate will be massively amplified. This

approach will use hierarchical branching processes for modeling the birth death

process of the disease. For controlling for seasonal effects and the frequency of

the haplotypes in the population fourier harmonics and dirichlet mixtures will be

invoved.
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Appendix A

Recursion In Probability Generating

Functions

A.1 Recursion In Probability Generation Func-

tions

We begin by describing the basic structure of all of the speciation models that will

be studied in this thesis. We will derive the likelihood of the observed mutational

data given in table 3.1 from the probability generating function (pgf) of the model.

Letting gl(a) be the pgf for the coalescence process at level l of the genealogy,

where a = (a1, a2, a3, a4, a5, a6, a7) are the pgf parameters corresponding to the

seven types of segregating sites (3.1), we can write a recursion in pgfs from level

l − 1 to level l as

gl(a) = F l(a)(U lgl(a) + V lgl−1(a)). (A.1)

U l is a square matrix which reflects within level transitions, which change the

structure on the tree but preserve the level of the tree. These within level tran-

sitions can reflect any biological process of interest which doesn’t reduce the tree

level, for example: speciation, migration, and recombination are within level tran-
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sitions. V l is a rectangular matrix which reflects coalescence, taking the level from

l to l − 1. This gives the fundamental structure for all the coalescence models

which we explore in this thesis. That is a within level transition or coalescence

transition may occur, with mutational events occurring in between. F l(a) is a

square matrix consisting of pgfs for the mutational process of mutation counts a

on level l.

Since either a within level transition of a coalescence event occurs with muta-

tional events in between transitions, we have

U l,α + V l,α = 1,

where U l,α and V l,α denote the α row sums of the matrices U l andV l respectively.

The recursion in pgfs given by equation (A.1) factors into the components F l(a)

and (U lgl(a) + V lgl−1(a)) since given the level l, the mutational process and the

transition process are independent processes, and pgfs of independent processes

factor into their respective pgfs.

Since mutations from the most recent common ancestor don’t segregate in the

sample, we have the initial condition as

g1(0) = 1.

Rearranging terms, we can rewrite recursion (A.1) as

gl(a) = [I − F l(a)U l]
−1F l(a)V lgl−1(a). (A.2)

154



which more simply describes how transitions are made from level l − 1 to l.

On each level of the tree a maximum of three mutational types may coexist.

We write the counts of these mutations as (c1, c2, c3), where

c1 =

{
a1 if l1 > 1 or l3 > 0

a2 if l1 = 1 and l3 = 0

c2 =

{
a3 if l2 > 1 or l3 > 0

a4 if l2 = 1 and l3 = 0

c3 =


a5 if l1, l2 > 0 or l3 > 1

a6 if l1 = 0, l2 > 0, and l3 = 1

a7 if l1 > 0, l2 = 0, and l3 = 1.

(A.3)

Hence, if the mutation type a1 (segregation/absent) is placed at level l, it is not

possible to place an a2 (fixed/absent) mutation type on the same level. From this,

it maybe useful to only discuss to map the seven mutation types to the 3-vector

of mutations (c1, c2, c3) on level l Note however that the state space on level l, Sl

must be know to distinguish the types of the mutations (c1, c2, c3).

In general, a coalescence model can be viewed as a structured Poisson process

(cite something, maybe chapter 1). The waiting times until jth event type, where

the event types are: mutations, within level transitions, or coalescence events,

are competing exponential distributions. The probability that the first event to

happen is of type j is γj/
∑

i γi, where γj is the exponential parameter for the cor-

responding event. Hence the only components that actually appear in the model

are the rates the components in the Poisson process. We can re-parameterize

equation (A.2) in terms of the rate parameters from the competing exponential
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terms by considering the rate matrices

P l and Ql,

where P l is a square matrix with elements pi,j being the within level transition

rate of moving from the ith state to the jth state. Ql is a rectangular matrix with

elements qi,j representing the rate of coalescing from state i to state j. Letting

C l be a diagonal matrix with diagonal entries

C l,α = P l,α + Ql,α,

we have

U l = C−1
l P l

V l = C−1
l Ql.

A.1.1 Mutational Process

The probability that a transition event occurs before a mutation event follows as

pl,α =
C l,α

C l,α + µl
,

since there are l branches on level l and a mutation can fall with equal probability

on each branch. It follows that the number of mutations (Nl,α) accumulated in

state α follows a geometric distribution with parameter pl,α, so that

P (Nl,α = k) = (1− pl,α)kpl,α.
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These k mutational types can occur on any of the 3 available branch type i ∈

(1, 2, 3) with probabilities

p1 = l1/l

p2 = l2/l

p3 = l3/l

where li denotes the number of branches on level l of type i. Therefore, given

Nl,α = k, the number of segregating sites accumulated in state α, the distribu-

tion of number of mutations that arose on type 1,2, and 3 branches (x,y,and z

respectively) occurs with probability

k!

x!y!z!
px

1p
y
2p

z
3. (A.4)

From this, we can derive the pgf for the configuration of mutations a = (a1, a2, a3, a4, a5, a6, a7)

occurring on level l corresponding to the elements fl,α(a) of the matrix F l(a),

where F l(a) is the diagonal matrix mutation matrix and fl,α(a) are its diagonal

entries.

Since the joint distribution for the total number of mutational events Nl,α = k

is distributed geometrically, and the arrangement of the k mutations on type 1,2,

and 3 branches has a multinomial distribution, the joint probability distribution

follows as (
k!

x!y!z!
px

1p
y
2p

z
3

)(
(1− pl,α)kpl,α

)
. (A.5)

Since only 3 possible mutation types can arise on each level, corresponding to type

1,2, and 3 branches, the joint probability generating function, for the sampling
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distribution in (A.5), follows as

fl,α(a) =
C l,α

C l,α + u[l1(1− c1) + l2(1− c2) + l3(1− c3)]
,

where the type assignment of (c1, c2, c3) depends on the branch types and can be

determined from (A.3). Therefore, depending on the state configuration Sl, the

full matrix of pgfs for the mutational process F l(a) can be constructed with fl,α(a)

as the diagonal entries. All the others entries remain zero since the mutational

process doesn’t change the state configuration.

A.1.2 Complete Tree PGF

It is often convenient to think about the recursion in pgfs through the rate matrices

P l and Ql instead of the transition matrices U l and V l, so rewriting the recursion

in pgfs given by equation (A.2) with the corresponding rate matrices gives the

recursion

gl(a) = [I −Dl(a)P l]
−1Dl(a)Qlgl−1(a), (A.6)

where

Dl(a) = F l(a)C−1
l .

Given the initial boundary condition gl(0) = 1, the total probability generating

function for the entire tree results from the product across all levels of the tree

gL(a) =
L∏

l=2

[I −Dl(a)P l]
−1Dl(a)Ql, (A.7)

where L is the total number of samples in the data.

We note that the size of the matrices in the product given by equation (A.7) vary
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in size, depending on the level l. This is since the size of the state space in the

middle of the tree have the largest number of possible attainable states, which is

determined by the initial sample. On levels near the boundaries of the tree (top or

bottom), the number of attainable states decrease, and the size of the transition

matrices decreases (see figure A.1). The line moving through the state space

Figure A.1: The circles represent the size of the attainable state space on the
corresponding level. The line moving through the levels represents the within level
and between level transitions

.

represents a possible path taken by transitioning within levels and between levels.

From equation (A.2), we can see by ignoring the mutational process (F l(a) = I),

the transition probability is governed by the term

(I −U l)
−1V l = (

∞∑
i=0

U i
l)V l (A.8)
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which reflects that as many within level transitions may occur between coalescence

transitions, so long as the powers of U l remain positive.

A.1.3 Computing The Exact Likelihood

Given the observed mutations in the sample n = (n1, n2, n3, n4, n5, n6, n7), in order

to compute the likelihood function of the data as a function of the rate parameters

controlling the transition processes, we need to take the 7-fold derivative of the

product of pgfs given in equation (A.7). This creates a recursion in the 7-fold

derivatives as well as level numbers, which is massively computationally intensive

for even relatively small data sets. We derive the recursive form of the exact

likelihood function in only the simplest classes of models, where the matrix P l is

nilpotent. That is, we have

P k
l = 0 for k ≥ 2.

This simplification directly addresses the computational burden of dealing with

that matrix inversions in equation (A.7), since

[I −Dl(a)P l]
−1 = I + Dl(a)P l. (A.9)

In this specific case, we allow for only one possible within level transition between

coalescence events. While this may seem like an artificial constraint, there is one

very important class of models where this assumption is justified. That is the case

when the only within level transition event is a speciation event. Since a species

split can only occur once, for the two species problem, in the entire history of

genes, P l is in fact nilpotent since only one within level transition is permitted

between coalescence events.
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Now writing equation (A.6) as

gl(a) = Rl(a)gl−1(a), (A.10)

where

Rl(a) = [I + Dl(a)P l]Dl(a)Ql,

we find the probability of observing the mutation array p = (p1, p2, p3, p4, p5, p6, p7)

by recursively applying the product rule for derivatives to equation (A.10) and

obtain

g
(p)
l (0)∏7
i=1 pi!

=
∑

q

R
(q)
l (0)∏7
i=1 qi!

g
(p−q)
l−1 (0)∏7

i=1(pi − qi)!
. (A.11)

This expression in derivatives represents the q = (q1, q2, q3, q4, q5, q6, q7) mutations

that occur on level l and the p − q mutations that occurred previous to level

l (see figure A.2), where the sum over q runs over all possible arrangements of

mutations on level l, and p − q mutations on older branches in the history (see

figure A.2).

A.1.4 Recursion Derivatives

Differentiating Rl(a) = [I + Dl(a)P l]Dl(a)Ql requires differentiation of the

Dl(a) matrix only, since this is the only matrix dependent on a. An analysis

of the element by element differentiation of this matrix yields

dDl(a)

dai

= Dl(a)2El,i,

where El,i is a diagonal matrix with diagonal elements being one of (µl1, µl2, µl3).

Determination of the diagonal elements in El,i depends on the level configuration

given by (A.3) and the index i. For example if the index i ∈ 1, 2 and the state
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Figure A.2: Equation (A.11) represents the q mutations that occur on level l
and the p − q mutations that occurred previous to level l

.

satisfies either of the first two conditions given by (A.3), the diagonal entry for

that state is µl1, otherwise it is 0. For i ∈ 3, 4, the diagonal elements of El,i will

either be µl2 or 0, and similarly for i ∈ 5, 6, 7, the diagonal elements of El,i will

either be µl3 or 0. We have that

(Dl(a)El,i)
k = Dl(a)kEk

l,i

= Ek
l,iDl(a)k,

since Dl(a) and El,i are diagonal matrices. Also, the following relationship holds

P lEl,i = El,iP l.
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The first derivative of Rl(0) follows as

∂Rl(0)

∂ai

= [I + Dl(0)P l]Dl(0)2El,iQl + Dl(0)2El,iP lDl(0)Ql

= Dl(0)El,i[I + Dl(0)P l + P lDl(0)]Dl(0)Ql.

From this calculation, the second derivative follows as

∂2Rl(0)

∂a2
i

= Dl(0)2E2
l,i[I + Dl(0)P l + P lDl(0)]Dl(0)Ql

+ Dl(0)El,i[El,iDl(0)2P l + El,iP lDl(0)2]Dl(0)Ql

+ Dl(0)El,i[I + Dl(0)P l + P lDl(0)]El,iDl(0)2Ql

= 2E2
l,i[Dl(0)3 + Dl(0)2P lDl(0) + Dl(0)P lDl(0)2 + Dl(0)3P l]Dl(0)Ql

By induction, we can show for q =
∑7

i=1 qi being the total number of accumulated

mutations on level l, the higher order derivatives follow as

R
(q)
l (0) = q!

(
7∏

i=1

Eqi

l,i

)(
Dl(0)q +

q∑
j=0

Dl(0)j+1P lDl(0)q−j

)
Dl(0)Ql.

Therefore, in the case where P l is nilpotent, we have a relatively simple expression

to evaluate at each step in recursion (A.11).

By iterating over all over all mutation configurations on level l, we can built

up the probability of observing every configuration of mutations at the next level

in the tree l + 1. Hence by iterating equation (A.2) over mutations followed by

iterating over level number and repeating, we will eventually reach the probability

of the array of mutations observed in our sample n = (n1, n2, n3, n4, n5, n5, n6, n7)

on level L, where L is the number of of samples. The state configuration of the
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observed data is (L1, 0, 0|0, L2, 0|0, 0, 0), for L1 + L2 = L, so the entry of
g
(n)
L (0)Q7
i=1 ni!

corresponding to this state gives us the likelihood of our sample.

A.2 Conveniences And Limitations

The coalescence models studied within this thesis all have the structural form in

pgfs

gl(a) = [I − F l(a)U l]
−1F l(a)V lgl−1(a).

We immediately see that the state space Sl does not depend on the mutation

process. This provides us with the relatively compact state space representation

Sl = (l1,1, l1,2, l1,3|l2,1, l2,2, l2,3|l0,1, l0,2, l0,3),

on level l of the genealogy. Since the matrix size is a limiting component of

computability, taking the mutational events out of the state space greatly increases

computational feasibility. However, even with the states representing only the

tree topology, the number of possible tree topologies is massive. As figure A.1

shows, the number of attainable states from the observed sample grows through

the middle of the tree. Hence computation on the midlevels of the genealogy can

take arbitrarily large amounts of time, depending on the number of samples.

The model formulation given is also independent of branch length. The like-

lihood is only dependent on the relative orderings of events. While the branch

length can easily be imputed for a complete resolution of the tree structure, the

number of mutational events between transition events is the only real informa-

tion that can be provided about the event times in the tree. Hence, for inferential

purposes, models without branch lengths are sufficient for parameter estimation

and reduce computational burden.
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The parameters within the model, controlling within level and between level

transitions, are the driving components of the evolutionary process. None of the

parameters of interest are actually rooted in the tree. It is conceivable to imagine

the speciation event as a node fixed in the coalescent, however we model this

purely as a rate parameter controlling the within level process. If any parameters

were modeled as nodes within the tree, it would not be the case that branch

lengths case could be ignored, since the age at these nodes would be needed. The

gene tree in this context would no longer serve as a purely latent process since we

would need to examine it in order to obtain the values of the rooted parameters.

We will leverage the fact that under our model, the gene tree is purely a latent and

discardable process and apply a particular data augmentation to the tree space

which preserves the marginal distributions of the desired parameters (see chapter

6).
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