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Abstract

Human gut microbiome data from the Memorial Sloan Kettering Cancer Center
was statistically analyzed in an effort to characterize potential associations between
patient traits and their bacterial compositions. Principal Coordinates Analysis was
conducted to create ordination plots from processed ASV tables generated for the
sequencing data. Interactive visualizations were developed in Tableau to visualize
trends in the microbiome dynamics of patients. Phylogenetic Tree Decomposition was
applied to create a transformation of bacterial abundance data that would provide
contextual insight into links between patient traits and their microbiomes. Ultimately,
our methodology shows much promise for the identification of connections between
patient recovery from leukemia and their microbiomes.
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Introduction

A large variety of microorganisms live within the human body, constituting the “human
microbiome.” Despite representing on average just 2% of the human body’s mass,
these microbes play an important role in human health, outnumbering human cells
at a ratio of almost ten to one (NIH 2012). While they often serve mutualistic roles,
many microorganisms are also associated with various kinds of disease.

In collaboration with Dr. Tony Sung and Alex Sibley in the Duke University School
of Medicine, we made use of data collected from the Memorial Sloan Kettering Cancer
Center on patients recovering from blood cancer. These individuals had all been
diagnosed with some form of leukemia, and had then been provided with stem cell
transplants in an effort to combat the cancerous blood cells. These individuals also
recovered after their transplants in different locations, including houses, apartments,
and clinics.

Throughout the treatment process, stool samples were supplied by the patients.
These samples were then sequenced by Memorial Sloan Kettering. The goal of this
study, using these microbial sequencing data, was threefold: 1) better understand the
filtration process that goes into the processing, filtration, and cleaning of microbiome
sequencing data. 2) devise effective, interactive visualizations for the dynamics of
microbiome compositions. 3) apply statistical methodology to identify potential
associations between factors in recovery from leukemia and the microbiome.





Chapter 1

Pre-processing of Microbiome
Sequencing Data

Microbiome data can be procured from a multitude of sample types, including skin,
the vagina, and the gut. Taken immediately from a wet-lab experiment, microbiome
data starts off simply as a collection of FASTQ reads, each representing different
bacterial sequences identified within the sample.

Identification and clustering of these reads is required to produce a representation
of microbiome data that can be effectively used for data analysis.The classic format of
these processed data is known as the Operational Taxonomic Unit (OTU) table. These
tables group DNA sequences into “molecular operational taxonomic units, clusters of
sequencing reads that differ by less than a fixed dissimilarity threshold” (Callahan
2017). Each row in the table represents a sample, and each column represents a
different OTU. In the past couple of years, new methods have allowed researchers
to work with amplicon sequence variants (ASVs) instead of OTUs. ASV groupings
can be “resolved exactly, down to the level of single-nucleotide differences over the
sequenced gene region,” allowing for improved resolution of processed data (Callahan
2017). The DADA2 pipeline in R can be used to process microbiome sequence data
and create an ASV table, yielding “more real variants and output[ting] fewer spurious
sequences than other methods” (Callahan 2016).

As an exploration of the use of the DADA2 pipeline for the processing of micro-
biome sequencing data, we used the European Nucleotide Archive (Harrison 2018)
to download raw read data from Catherine Lozupone’s 2013 study on gut-linked
diseases prevalent in HIV (Lozupone 2013). With these data, we applied Benjamin
Callahan’s 2016 paper, “Bioconductor Workflow for Microbiome Analysis: from raw
reads to community analyses,” to manipulate the Lozupone sequencing data. With
this pipeline, we visualized the fastq quality scores of our read files (Figure 1.1) to
trim our input reads at ideal positions. We also filtered reads through the enforcement
of a maximum of 2 expected errors per read.
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Figure 1.1: Fastq quality scores for a sample read file

Following the filtration of input reads, we used DADA2 to infer ASVs. Demulti-
plexed, dereplicated fastq files were selected for each sample. A sufficiently large subset
of our data was taken, and then the DADA2 iterative sequence inference algorithm
was run to estimate error rates. We inspected the fit between observed error rates
and fitted error rates to verify that our estimations were reasonable (Figure 1.2)
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Figure 1.2: Comparison of observed and fitted error rates from the
DADA2 iterative sequence inference algorithm

Using inference on pooled sequencing reads from all samples, DADA2 then removed
nearly all substition and indel errors from our data. Finally, a sequence table was
constructed from our sequences.

Just as processing of sequencing data was completed for the Lozupone dataset,
Alex Sibley, a bioinformatician working with the Sung lab in the Duke School of
Medicine, created an ASV table using the Memorial Sloan Kettering leukemia data.
Given these data, we continued through the Callahan workflow to further filter and
process our data.





Chapter 2

Post-processing and Filtration of
the Sequence Table

The ASV table produced by Alex Sibley consisted of seven different bathces of stool
samples produced by MSK. These distinct tables were merged into a single ASV table,
with columns representing different ASVs, rows representing sampling, and counts in
the table representing the abundance of each ASV in each of our samples.

DADA2 was used to remove chimeric sequences from the sequence table by com-
paring each inferred sequence to others in the table, and removing those that could
be reproduced by stitching together two more abundant sequences. The DADA2
naive Bayesian classifier was then used to compare sequence variants to the RDP
v14 training set of classified sequences (Cole 2013). Through this process, each ASV
column is assigned a full taxonomy, including Kingdom, Phylum, Class, Order, Family,
and Genus.

In addition to assigning taxonomies, we associated deidentified metadata to our
stool samples, also provided to us by Memorial Sloan Kettering. The metadata were
imported, cleaned, and subsetted to match our ASV table. Finally, the R “phyloseq”
package was applied to combine our ASV feature table, our metadata, and our sequence
taxonomies of our amplicon sequencing experiment into a single object (McMurdle
2013).

With our full phyloseq object, we then used our assigned taxonomies as a filtering
criterion on our data. This filtration process helps us to avoid spending unneeded
time on taxa that are seen too infrequently and eliminates extra noise by deleting
taxa that are simply artifacts of data collection.

We created a table of read counts for each Phylum present in our dataset.

Table 2.1: Correlation of Inheritance Factors for Parents and Child

Phyla Read Counts
Actinobacteria 3864

Armatimonadetes 1
Bacteroidetes 3375
Chlamydiae 3
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Phyla Read Counts
Cyanobacteria/Chloroplast 15

Deferribacteres 1
Deinococcus-Thermus 3

Euryarchaeota 2
Firmicutes 155578
Fusobacteria 19
Proteobacteria 3481
Spirochaetes 4
Synergistetes 84
Tenericutes 3

Verrumicrobia 8823
Woesearchaeota 1578

211134

Many of our features are annotated with a phylum of “NA,” potentially indicating
that they are artifacts. However, due to the fact that databases such as the RDP are
often far from complete, filtering out all of these datapoints was considered to be too
stringent. As a result, they were kept in our dataset.

We also explored feature prevalence in our dataset. Feature prevalence is defined
to be the number of samples in which a taxum appears at least once. We computed
the average and total prevalences of the features in each phylum to determine if there
were any phyla that consisted mostly of low-prevalence features.

Table 2.2: Feature Prevalence of Phyla in our Dataset

Phylum Average Abundance Total Abundance
Actinobacteria 2.612319 10094

Armatimonadetes 1.000000 1
Bacteroidetes 3.135111 10581
Chlamydiae 1.000000 3

Cyanobacteria/Chloroplast 3.133333 47
Deferribacteres 7.000000 7

Deinococcus-Thermus 2.333333 7
Euryarchaeota 25.000000 50
Firmicutes 1.952770 303808
Fusobacteria 4.473684 85
Proteobacteria 3.381212 11770
Spirochaetes 1.500000 6
Synergistetes 1.880952 158
Tenericutes 2.333333 7

Verrucomicrobia 1.706562 15057
Woesearchaeota 3.147022 4966

1.977450 417507
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Through this process, we dropped the following phyla from our dataset: Armati-
monadetes, Chlamydiae, Deferribacteres, Deinococcus-Thermus, Spirochaetes, and
Tenericutes

The previous filtration steps required our taxonomic annotations to properly
work. Without taxonomies, we can use prevalence filtering as a form of unsupervised
filtration to further streamline our data. We plotted graphs of prevalence against
total abundance for each phylum in an effort to identify an appropriate prevalence
threshold (Figure 2.1).

Figure 2.1: Feature Prevalence of Phyla against Total Abundance in
our Dataset
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We failed to see see any real separation in our plots, so we established an arbitrary
prevalence threshold of 1%.

In order to account for differences in library size, variance, and scale, we had to
use relative abundances instead of total abundances. We transformed our data from
counts to frequencies, and also applied a log transformation. We then applied Principal
Coordinates Analysis (PCoA) with Bray-Curtis dissimilarity to our transformed data.

We visualized ordination plots of the samples in our dataset, as well as of the
distribution of taxa present in each sample (Figure 2.2).

Figure 2.2: Ordination Plots of Samples and of Phyla

In addition to looking at the specific distribution of phyla for our samples, we can
color-code the different datapoints representing each of our samples to determine if
there are any obvious clustering patterns based upon the covariates in our metadata.
In the following two plots, we visualize vital status and graft source for our patients
across all time points (Figures 2.3 and 2.4).
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Figure 2.3: Ordination Plot of Samples, colored by Vital Status
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Figure 2.4: Ordination Plot of Samples, colored by Graft Source

While these visualizations revealed some information into the distributions of
bacteria in our samples, we failed to see any obvious trends across our categories.
Another key issue with our plots is that we were unable to clearly identify how
a single patient’s sample would change over time. To quantify the dynamics of
a patient’s microbiome in our ordination plot, we devised two different summary
statistics: maximum distance and last distance.

We began by creating a Scree plot to determine the contributions of our different
principal coordinate axes (Figure 2.5).
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Figure 2.5: Scree Plot of Contributions from PCoA Axes

Analyzing the plot and computing the contributions of our axes, we see that the
first 17 axes constitute the the majority of contributions from our 460 total axes. So,
we used these axes as part of our distance metrics; we calculated the distance from
one sample to another by taking the square root of the sum of the squared differences
of each of our seventeen components.

Given an individual patient in our dataset, maximum distance is defined as the
furthest distance in the ordination plot traveled from the patient’s earliest point. Last
distance is defined as the distance between the individual’s earliest and latest point
in the ordination plot. A potential future avenue to explore in this scenario is to
scale principal components relative to one another instead of simply using the first
seventeen, in an effort to get a better quantification of our two metrics. With our
processed dataset and ordination plot, and our new summary statistics, we turned to
the visualization application “Tableau.”





Chapter 3

Interactive Visualizations in
Tableau

Tableau is a user-friendly application helpful in the design of interactive visualizations.
We used this application to visualize the our data over time in our ordination plots and
determine if there were any noticeable associations between variables in our metadata
and the dynamics of our samples.

In each Tableau sheet created, hovering over a single point will cause that sample,
as well as all other samples corresponding to the same patient, to be highlighted. This
behavior allows us to specifically visualize how our samples’ distributions change on
an individual basis.

Figures 3.1, 3.2, and 3.3 include some examples of the plots designed in Tableau.
Figure 3.1 depicts an ordination plot, colored by Batch number, and connected by

patient ID. The thickness of lines connecting points to one another increases as time
progresses. Hovering over a point will also highlight other sample points and the path
representative of the selected patient.
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Figure 3.1: Ordination Plot colored by Batch Number and connected
by Patient ID

Figure 3.2 shows plots of the maximum distance travelled by different patients,
separated by whether or not their first sample date occurred before or after their
transplant. It appears roughly that patients with first time points occurring before
transplant date may have potentially higher maximum distances.
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Figure 3.2: Plots of Maximum Distance traveled by Patient Microbiome

Figure 3.3 depicts two ordination plots colored by presence of acute graft versus
host disease. The top plot depicts agvhd values taken within the twelve weeks prior to
transplants, and the second plot depicts agvhd values taken within the twelve weeks
after. Both plots can be manipulated to specify the desired time frame. This kind of
visualization allows us to more directly compare the distributions of our covariates at
different times.
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Figure 3.3: Ordination Plots colored by AGVHD, separated by Time

With all of these plots, we were better able to interact with our data and the
metrics that we had devised. However, while these visualizations were informative, we
were still unable to specifically quantify potential associations between our various
covariates and the dynamics of the gut microbiome.



Chapter 4

Linear Regression on Summary
Statistics

With the processing and filtration of our data, as well as its visualization in Tableau, we
turned to basic linear regressions as well as non-parametric statistical tests to attempt
to evaluate how our covariates may be linked to the dynamics of the microbiome.

Based upon exploratory data analysis, we kept all of our continuous variables
untransformed. There were no extremely concerning trends in any of our categorical
variables either, so we did not transform them. There was also no need to transform
the outcome variable of maximum distance.

We used lattice plots to search for interaction effects across our categorical variables,
as well as boxplots to search for connections between categorical and quantitatie
covariates. Identified interactions were included in our baseline model. Backwards
selection was then performed using AIC as a scoring criterion.

For maximum distance as the outcome, our final model with the lowest AIC based
on backward selection came out to be as follows:

maxDistancei = βtransplantAgetransplantAgei + βAlloDLII(transplantTypei =
AlloDLI) + βAutoI(transplantTypei = Auto) + βCordI(graftSourcei = Cord) +
βPBPCI(graftSourcei = PBPC)+βDeadI(vitalStatusi = Dead)+βCGVHDI(CGVHDi =
1) + βanc500anc500i + βcareEnv2I(careEnvi = 2) + βcareEnv3I(careEnvi =
3) + βtotalT imeSpantotalT imeSpani + βvitalStatus/careEnv2I(vitalStatus/careEnv2i =
1) + βvitalStatus/careEnv3I(vitalStatus/careEnv3i = 1)

This model had an AIC of -34.11267, and it identified the following covariates as
significant:

Table 4.1: Significant P-values from linear regression with max distance
as outcome

Covariate P-value
Age at Transplant 0.06975

Graft Source (Cord Blood) 0.00173
Vital Status (Dead) 0.07956
Total Time Span 0.09064
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Covariate P-value
Vital Status(Dead)/Care Environment(2) 0.06164

Our assumptions for equality of subpopulation standard deviations, as well as that
our samples came from a normally distributed population, are fulfilled by the residual
plot and normal QQ-plot for our data.

We repeated the same backward selection process as above, but this time, we used
last distance as our outcome variable.

Based on backward selection according to AIC, we came up with the following
model:

lastDistancei = βBlackI(racei = Black)+βMoreThanOneI(racei = MoreThanOne)+
βWhiteI(racei = White) + βhispanicUnkI(hispanici = Unk) + βhispanicY esI(hispanici =
Y es) + βCordI(graftSourcei = Cord) + βPBPCI(graftSourcei = PBPC) +
βDeadI(vitalStatusi = Dead)+βCGVHDI(CGVHDi = 1)+βtotalT imeSpantotalT imeSpani

Our model had an AIC of -32.37633, and identified the following variables as
significant.

Table 4.2: Significant P-values from linear regression with last distance
as outcome

Covariate P-value
Race (Black) 0.05396

Graft Source (Cord Blood) 0.00569
Vital Status (Dead) 0.03409
Total Time Span 0.04429

In addition to performing linear regressions for our two summary statistics, we
also applied various non-parametric tests, in the hope that they would provide further
insight into variables that may be significant for our two metrics. While these tests
are not necessarily as useful as regression analyses due to the fact that they do not
take into account the context from multiple variables, they can still be potentially
informative.

Performing these tests for our maximum distance metric, we see that graft source
appears to be significant.

Table 4.3: P-values from non-parametric statistical tests for maximum
distance as outcome

Covariate P-value
Chronic Graft vs Host Disease 0.3492
Acute Graft vs Host Disease 0.3611

Gender 0.6318
Vital Status 0.1448

initialNegative 0.6797
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Covariate P-value
Batch 0.4793
Race 0.3308

Hispanic 0.1481
Diagnosis 0.9087

Transplant Type 0.2799
Transplant Response 0.6978

Graft Source 0.0105
Care Environment 0.6004

When we perform these same tests for our last distance metric, we see that none
of our variables are significant.

Table 4.4: P-values from non-parametric statistical tests for last distance
as outcome

Covariate P-value
Chronic Graft vs Host Disease 0.5089
Acute Graft vs Host Disease 0.7019

Gender 0.6116
Vital Status 0.1732

initialNegative 0.4349
Batch 0.1426
Race 0.4292

Hispanic 0.4504
Diagnosis 0.7726

Transplant Type 0.7830
Transplant Response 0.6534

Graft Source 0.1529
Care Environment 0.7802

A major concern we had after these analyses was that our summary metrics could
potentially vary extensively based upon the addition and removal of samples from our
dataset. To deal with this possible high sensitivity to data, we decided to make use of
a more creative method for modeling the abundances of ASVs in our data.





Chapter 5

Phylogenetic Tree Decomposition

There are several aspects of microbiome data that make statistical analysis difficult.
Potential issues include high dimensionality with large numbers of OTUs, sparsity
due to small OTU counts, and potential correlations among counts of different OTUs.
These aspects can cause problems when attempting to perform inference on the
abundances of taxonomic units. Furthermore, simply analyzing regression results for
a single OTU at a time fails to take into account the dependencies between different
bacterial populations in the gut.

To address these concerns, we applied a Phylogenetic Tree Decomposition to our
microbiome data. This methodology replicates concepts introduced in PhyloScan
(Tang 2018) and DTM (Wang 2017). Using a phylogenetic tree can summarize the
evolutionary relationships amongst the OTUs, allowing us to have a better context of
their functional relationships and enriching the overall model fitting process.

With our completed filtration of our samples, we constructed a phylogenetic tree
to represent the relations between our samples. We used the DECIPHER package in
R to first perform multiple-alignment on the sequences in our ASV sequence table
(Wright 2016). We then used the R package “phangorn” to fit a UPGMA tree based
upon our sequences (Schliep 2018).

Our full tree was a binary tree with a single root node. There were a total of 11048
leaf nodes, and 11047 internal nodes. Our filtered ASV table has a total of 462 rows,
each corresponding to a distinct sample. Each column in our ASV table represents a
leaf in the phylogenetic tree. With these initial abundances for a given sample, we
propagated our way up through the phylogenetic tree, determining the counts going
left and right at each of our 11047 internal node. This process was repeated 462
times, once per sample. Figure 5.1 provides a smaller example of the phylogenetic tree
transformation process. The code to achieve this transformation was implemented in
Python, and took roughly two weeks to finish running.
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Figure 5.1: An example of bottom-up propagation of abundance counts

In addition to using calculating counts going left and right at each internal node,
code was also written in Python to determine the taxonomic rankings of each internal
node, based upon the assigned taxonomies from the RDP for each ASV column in the
sequence table. Figure 5.2 provides a smaller example of this propagation process.



27

Figure 5.2: An example of bottom-up propagation of Taxonomies

With calculated counts and taxonomies for each of the internal nodes of our
phylogenetic tree, we then applied a logit mixed-effect binomial model to each one,
using the “glmer” function of the R “lme4” package (Bates 2015). At each node, we
had 370 observations after filtration for missing values. There were a total of 129
different patients in our dataset. We incorporated a random effect for patient ID,
and a nested random effect within patientID for sampleDate. We also included fixed
effects for Batch number, transplant Age, gender, ethnicity, diagnosis, transplant type,
graft source, vital status, care environment, presence of acute graft v. host disease,
presence of chronic graft v. host disease, ANC500 level, and “preOrPost,” telling us if
the first sample was taken before or after the transplant date.

The general format of our mixed effects model is as follows:
logit(Pi(A)) = Xiβ

(A) + γ
(A)
i + ε

(A)
it

Pi(A) is the probability of picking the left child of node A for sample i at time t.
γ

(A)
i = N(0, σ2

γ)
ε

(A)
i = N(0, σ2

ε )
for i = 1, ..., 370
In most cases, the regression model would fail to converge and provide meaningful

results. However, there were twenty-two different internal nodes for which our model
finished running and identified different variables to be significant. There were also
several instances where Batch effects were noticed, including four nodes where the only
significant variable was Batch number. The eighteen nodes that identified significant
variables other than Batch are detailed in the table below, providing their taxonomy,
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the taxonomies of their children, and the significant covariates at their node.

Table 5.1: Significant Variables from Regression on Internal Nodes

Taxonomy Children’s Taxonomies
Significant
Variables

None/NA Kingdom/Woesearchaeota, None/NA Diagnosis(MDS,
Other), Graft
Source(Cord,
PBPC), Care

Environment(2),
ANC500

Domain/Bacteria Domain/Bacteria, Domain/Bacteria Gender(M),
Hispanic(Yes),
Transplant

Type(Auto), Care
Environment(2),
preOrPost(pre)

Phylum/Firmicutes Class/Selenomonadales,
Kingdom/Firmicutes

Gender(M),
Hispanic(Unk),

Care
Environment(2),
preOrPost(pre)

Domain/Bacteria Species/Gemella, Domain/Bacteria Transplant Age,
Gender(M),

Hispanic(Unk),
Diagnosis(MDS),

Transplant
Type(Auto),

preOrPost(pre),
CGVHD

Order/Ruminococcaceae Order/Ruminococcaceae,
Order/Ruminococcaceae

Hispanic(Yes),
Graft

Source(BM/PBPC)
Domain/Bacteria Domain/Bacteria,

Kingdom/Firmicutes
Hispanic(Yes),

AGVHD
Kingdom/Firmicutes Kingdom/Firmicutes,

Order/Erysipelotrichaceae
Graft Source(Cord

Blood), Care
Environment(2),

ANC500
Order/Erysipelotrichaceae Order/Erysipelotrichaceae,

Order/Erysipelotrichaceae
Care

Environment(3)
Class/Lactobacillales Class/Lactobacillales,

Class/Lactobacillales
Hispanic(Yes),
preOrPost(pre)
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Taxonomy Children’s Taxonomies
Significant
Variables

Kingdom/Firmicutes Order/Erysipelotrichaceae,
Kingdom/Firmicutes

preOrPost(pre)

Order/Lactobacillaceae Family/Lactobacillus,
Order/Lactobacillaceae

Transplant
Type(Auto),
ANC500

Family/Streptococcus Family/Streptococcus,
Family/Streptococcus

Diagnosis(Other),
CGVHD

Family/Streptococcus Family/Streptococcus,
Family/Streptococcus

Transplant Age,
Gender(M),

Diagnosis(MDS,
Other), Graft
Source(Cord

Blood)
Family/Bacteroides Family/Bacteroides,

Family/Bacteroides
Transplant Age,

His-
panic(Unknown),

Transplant
Type(Allo-DLI)

Family/Streptococcus Family/Streptococcus,
Family/Streptococcus

Graft
Source(BM/PBPC,
PBPC), CGVHD

Family/Bifidobacterium Family/Bifidobacterium,
Family/Bifidobacterium

Gender(M),
Hispanic(Yes),
Transplant

Type(Auto), Graft
Source(Cord

Blood, PBPC),
AGVHD

Family/Streptococcus Family/Streptococcus,
Family/Streptococcus

AGVHD

Family/Bacteroides Family/Bacteroides,
Family/Bacteroides

Diagnosis(Other),
Transplant

Type(Auto), Care
Environment(2)

Common variables identified across taxonomic rankings include ethnicity, graft
source, care environment, diagnosis, transplant type, and presence of acute and chronic
graft vs. host disease.





Conclusion

Overall, our work from this year gave us much insight into the methodology required
to understand and process microbiome data, as well as revealed the potential behind
new methodologies for the visualization and analysis of associations between patient
information and microbiome compositions.

In terms of future directions for our project, there are many avenues that we can
take. With respect to processing, we can investigate the use of different filtration
parameters in our initial generation of our ASV table.

For visualizations and simple linear regressions, we could also try to determine
new summary statistics that still effectively represent the dynamics of the microbiome
over time, but are less resistant to the addition and deletion of data.

With respect to our phylogenetic tree decomposition, it would be useful to repeat
our procedure with either fewer variables in our mixed effects model, or with more
data. We see that our results are relatively sparse, particularly at nodes that occur
lower in our phylogenetic tree. With more data, our counts would be higher at a
larger number of internal nodes, thus giving us the ability to fit regression models for
more than just twenty-two of them. With more results, we could also analyze the
output of our regression along chains of related nodes, thus controlling for inter-node
variation. There is also potential that functionality instead of phylogeny might be a
better way to characterize the relations between microbiota. Instead of building a tree
solely based upon taxonomies, it would also be interesting to use a tree based upon
microbial functional groups instead, to have a clearer indication of the relationship
between microbiome functions.

Ultimately, our methodology shows much promise for the identification of connec-
tions between patient recovery from leukemia and their microbiomes.
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