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Abstract

The goal of this paper is to identify novel methods for detecting anomalies in network
IP data. The data is comprised of four continuous features (source bytes, destination
bytes, source packets, destination packets) divided by their respective source port
and destination port combinations. Thus, the data is represented as a 3-dimensional
tensor T œ Rm◊n◊4, where m is the number of source ports, n is the number of
destination ports, and 4 is the number of numerical features. Each cell in T , tijk stores
the mean of the observations of continuous feature k between source port at index i
and destination port at index j. This paper proposes three techniques for generating
means to fill in the missing cells in T , thereby completing the tensor, so as to provide
reasonable estimates for new observations between every possible port combination.
In the context of anomaly detection, new observations between ports that do not
align closely with their corresponding estimate in T are considered anomalies. The
first technique uses a low-rank singular value decomposition algorithm for completing
individual matrix slices of the tensor. The second defines a statistical model for the
values in T and uses a Bayesian Gibbs sampling procedure to simulate missing cells
in individual matrix slices of T . Finally, the third approach extends the first and
second approaches to completing the tensor all at once, rather than with completing
individual matrices.





Chapter 1

Introduction

1.1 Anomaly Detection

Anomaly detection is the identification of unusual patterns or observations that do
not conform to expected behavior in a dataset. Anomalies can be broadly categorized
into three categories:

-Point anomalies: A single instance of data is anomalous if it’s too far o� from the
rest. For example detecting credit card fraud based on a single spending spree that
represents the credit card being stolen and used.

-Contextual anomalies: The abnormality is context specific. This type of anomaly is
common in time-series data. For instance, high spending on food and gifts every day
during the holiday season is normal, but may be considered unusual otherwise.

-Collective anomalies: A set of data observations that when collectively assessed helps
in detecting anomalies. For instance, repeated pings from a certain IP address to a
port connection on a hosted network may be classified as a port scanner, which often
preludes a network attack.

1.2 Network Attacks

Network security is becoming increasingly relevant as the flow of data, bandwith of
transactions, and user dependency on hosted networks increase. As entire networks
grow in nodes and complexity, attackers gain easier entry points of access to the
network. The most benign of attackers attempt to shutdown networks (e.g. causing a
website to shutdown with repeated pings to its server), while more malicious attempts
involve hijacking the server to publish the attacker’s own content or stealing unsecured
data from the server, thus compromising the privacy of the network’s users.
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Network attackers follow a specific three step strategy when gathering intelligence on
a network, the most important component of which is scanning. Network scanning
is a procedure for identifying active hosts on a network. An attacker uses two
particular types of scans, ping sweeps and port scans, to find information about the
specific IP addresses that can be accessed over the Internet, their target’s operating
systems, system architecture, and the services running on each node/computer in the
network.

These scanning methods leave digital signatures in the networks they evaluate because
they apply specific pings that are then stored in the host’s network logs. Thus,
identifying a scanner or scanners from the millions of observed pings available in the
network’s logs is an anomaly detection problem. In particular, because the data is
unlabeled, meaning it is unclear which observations are actually scanners and which
are just standard user behavior, unsupervised approaches are necessary for tackling
the problem.

The goal of this paper is to devise and evaluate techniques that use existing data to
define expected behavior between ports. New observations between port connections
that are far away from the defined expected behavior may be considered anomalies
and investigated for whether they are a form of network attack.

1.3 Network Dataset

This particular dataset is from Duke University’s O�ce of Information Technology
(OIT), and it includes 1048575 observations in their network tra�c during a five
minute period in February 2017.

Argus is the open source network security tool that was used to collect the dataset.
Argus focuses data collection on the interaction between di�erent network ports.
A network port is a number that identifies one side of a connection between two
computers. Computers use port numbers to determine to which process or application
a data message should be delivered. There exist 65,535 TCP (Transmission Control
Protocol) ports. Using TCP, the computer sending the data connects directly to the
computer it is sending data to, and stays connected for the duration of the transfer.
Both computers have their own port number to identify their connection. In this
dataset, the connections between two computers, known as sessions, are grouped
by the IP address of the sender (the source). The bytes and packet values that are
transmitted between two computers are accumulative over the set duration of the
session’s existence. Thus, each observation in the dataset contains data from a single
session between two computers (the source address and destination address), each on
their own source and destination port. Each session leaves a record with five numerical
features and eight categorical features, which are described below.
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1.3.1 Features

The networks dataset contains 13 features, 8 categorical and 5 numerical. The features
are:

Continuous:

• StartTime (Start Time): the time when the observation is logged.
• SrcBytes (Source Bytes): the total number of bytes sent in the session
• SrcPkts (Source Packets): the number of packets sent in the session
• DstBytes (Destination Bytes): the total number of bytes received in the session
• DstPkts (Destination Packets): the number of packets received in the session

Note, the destination packets and bytes features do not have the same values as their
source counterparts because the connections are compressed and decompressed into
di�erent forms and byte sizes when sent. For instance, it is possible for the number of
destination packets to be larger than source packets. It is also possible for information
to be lost during the connection.

Categorical:

• Flgs (connection flag): flow state flags seen in transaction between the two
addresses.

• Proto (network protocol): specifies the rules used for information exchange via
network addresses. Transmission Control Protocol (TCP) uses a set of rules to
exchange messages with other Internet points at the information packet level,
and Internet Protocol (IP) uses a set of rules to send and receive messages at
the Internet address level.

• SrcAddr (Source Address): the IP address of the connection’s source computer.
• DstAddr (Destination Address): the IP address of the connection’s destination

computer.
• Sport (Source Port): the network port number of the connection’s source

computer. A port numbers identifies the specific process to which a network
message is forwarded when it arrives at a server.

• Dport (Destination Port): the network port number of the connection’s destina-
tion.

• Dir (direction): the direction of the connection.
• State (connection state): a categorical assessment of the current phase in the

transaction when the timestamp is recorded.

The addresses have been anonymized for security reasons.

1.3.2 Removing Features

The Argus wiki and the OIT manual provide key insights into the structure and nature
of the data. Each session has its own start time but does not have a recorded end time.
Furthermore the protocol in this dataset is always TCP protocol and the direction is
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always to the right (i.e. Source to Destination). This information supports dropping
“Proto”, “StartTime”, and “Dir” from the dataset for future analysis because they do
not present any information regarding whether an observation can be considered an
anomaly. Furthermore, the “State” and “Flgs” features may not be reliable because
Argus occasionally resets the state data statistics and fails to assign connection flags
to many connections during monitoring, so “State” and “Flgs” are also dropped.

1.3.3 Status Quo Solution

OIT’s current solution for detecting scanners relies on specific domain knowledge
gathered from diagnostics programs and data analysis completed on existing data.
They prevent scanners by blocking IP addresses that violate certain rules. The specific
conditional checks in these rules are private for security reasons, but they are similar
to evaluating the size of transactions and detecting repeated connections between
particular ports.

In this solution, any observation that does not fit within the constraints specified
by the rules is classified as an anomaly and its source IP is blocked or investigated.
While this solution presents a methodical way for banning IP addresses, it is inflexible,
prone to detecting false negatives, and fails to detect observations that may be within
the parameter constraints of the rules. The solution lacks a way to detect anomalies
with respect to the parameters that are unspecified in the rules or combinations of
parameters.

1.4 Problem Formulation

Preliminary data analysis indicated that there may exist patterns and regularities
between di�erent port combinations. For instance, a particular source and destination
port may frequently contain large byte transactions in their connections. Devising
a systematic way to identify expected or “regular” interactions between particu-
lar combinations may present outliers that can be further investigated for scanner
behavior.

This approach to the anomaly detection problem reduces the dataset to the values of
the four continuous features, SrcBytes, SrcPkts, DstBytes, DstPkts, observed across
di�erent source port (SrcPort) and destination port (DstPort) combinations. The data
can be represented as a 3-dimensional tensor T œ Rm◊n◊4 where m represents the
number of source ports, n represents the number of destination ports, and 4 accounts
for the four continuous features in the dataset. Each cell, tijk, contains the mean of all
the observations observed between the source port at index i and destination port at
index j. In the cases where the combination of i and j is not observed in the dataset,
tijk is considered missing (NA). Note, the data is collected in a way where either all
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four continuous features are observed, or none are observed, i.e. a missing cell, tij1
indicates tij2, tij3, and tij4 are also missing.

The goal of this paper is to devise and assess techniques for calculating a reasonable
estimate for the missing cells in T to create the completed tensor T Õ œ Rm◊n◊4.
As new observations are observed for combinations of source ports at index i and
destination ports at index j, the tÕ

ijk values can be interpreted as an approximation
for the expected behavior for that particular port combination. Observations with
continuous features that are a certain threshold away from tÕ

ijk may be marked as
anomalies and investigated further.

1.5 Introduction of Methods

Chapters 3, 4, and 5 discuss three methods for completing the tensor T . The first
two techniques slice T into four matrices divided by the four continuous features:
Y (1), Y (2), Y (3), Y (4) œ Rm◊n. Because both techniques apply to each matrix sep-
arately, the techniques will refer to a general matrix Y , which represents any of
Y (1), Y (2), Y (3), Y (4). Each Y (k) has missingness because not every source port inter-
acts with every destination port. Chapter three considers an iterative approach using
an alternating least squares technique and the best low-rank approximation of Y to
calculate estimates for the missing values of the singular value decomposition of Y .
While the approach does not consider the variable sample sizes and variances for
each port combination, essentially treating each cell as a scalar value rather than a
mean of observations, it is the fastest technique of the three and provides reasonable
performance metrics. Chapter four shores up the weaknesses of chapter three by
defining an additive statistical model that accounts for the variable sample sizes and
variances of the observations in each port combination. This model is generalized
to a weighted least squares problem, and a Bayesian approach is used to create a
Gibbs Sampler to iteratively simulate the row factors and column factors with their
respective variances of the model. Each approach is validated on simulated data
where the ground truth is known to verify correctness before being applied to the
actual networks dataset. Finally, chapter five proposes a tensor completion technique
that simulates cells in T without slicing the tensor. This approach allows considers
correlation and collinearity between the di�erent continuous features and relies on the
PARAFAC tensor decomposition (as opposed to the two-dimensional matrix singular
value decomposition).



Chapter 2

Modeling Port Relationships

The following properties of T inform the matrix and tensor completion strategies in
chapters 3, 4, and 5.
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2.1 Missingness

Missingness in Port Interactions
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The above plot represents the missingness in the port combinations for pairings of
the top 20 most used source ports and destination ports. The black cells represent
missingness; of the 400 cells in the matrix, 295 (73.75%) of cells are missing observations.
This single matrix slice can be extrapolated to missingness in ports throughout the
entire tensor because the dataset is collected in a way such that either all four
continuous features are observed, or none are observed. It is important to note that
missingness is not uniform across source and destination port combinations. In the
event that an entire row or column of port combinations is missing, the port at that
respective index will need to be discarded because all three completion techniques
depend on the row and column e�ects when simulating a value for a missing cell.
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2.2 Port Connections
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The above ports network graph displays the pairings between the top twenty source
ports (red circles) and the top destination ports (blue squares). When a square and
circle are connected it indicates that there exist observations for this particular port
combination in the dataset. The size of each node reflects the number of paired
observations that were observed using that particular port. Clearly, not every source
port is paired with every destination port and vice versa (not every node is connected
to every other node). These missing combinations reflect missing cells in the T tensor,
and consequently they correspond to the combinations that require values to be
estimated
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2.3 Varied Sample Sizes

Sample Sizes of Port Combinations (Log Scale)
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To better visualize the sample sizes first displayed in the network graph, the above
heat plot represents the sample sizes for each source-destination port combination on
a log scale for clarity. It is again clear there are certain combinations that have many
observations (range of 35000 on the original scale), while most of the observations are
0, indicating no observations were observed and the corresponding cell in T is missing,
or near 0, indicating few observations were observed. The large variation in sample
sizes again suggests a simulation technique that accounts for sample size of a missing
cell’s related row and column cells is necessary.
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2.4 Row and Column Properties
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Row Means of SrcBytes Matrix
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Row Means of SrcPkts Matrix
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Row Means of DstBytes Matrix

Source Port

0

5000

10000

15000

23 80 44
3

32
81

9 25
35

00
8

17
13

7
17

14
5

30
85

0
29

78
4

44
5 22

34
25

0
63

6
35

90
4

34
10

5
38

9
34

09
7

99
3

30
76

2

Column Means of DstBytes Matrix

Destination Port

0
5000

10000
15000
20000
25000
30000

33
46

1
42

63 80
41

65
48

46
8

19
25

9
36

96
1

32
51

0
53

02
6

19
60

1
13

45
5

47
65

2
10

74
4

36
55

1
44

3
41

85
4

21
18

8
43

10
3

32
58

9
58

06

Row Means of DstPkts Matrix

Source Port

0

5

10

15

20

23 80 44
3

32
81

9 25
35

00
8

17
13

7
17

14
5

30
85

0
29

78
4

44
5 22

34
25

0
63

6
35

90
4

34
10

5
38

9
34

09
7

99
3

30
76

2

Column Means of DstPkts Matrix

Destination Port

0

10

20

30



2.4. Row and Column Properties 15

The bar plots above represent the row and column means of the continuous features
for each slice of the tensor. These row means and column means inform simulation
techniques for the missing cells within those respective rows and columns. There
exist clear outliers in the means for certain rows and columns. This outlier behavior
is undoubtedly caused by outliers existing within the cells in that particular row or
column. These outliers exist because each cell represents the mean of all observations
that occured within a particular port combination, regardless of sample size (i.e. some
cells may have a few large observations, resulting in a large mean that skews the cell’s
row and column mean). Thus, cells that only have a few observed observations have a
disproportionately large e�ect on their respective row and column mean.

These outliers may cause problems with simulating missing values in that row or
column because the outliers will have a disproportionately large e�ect on the simulated
value than the other observations, which are more close to the median in the missing
value’s row or column. This behavior suggests that the completion techniques that
take into account variances among the row and column means and the number of
samples observed for each port combination will result in higher quality estimations
for the missing port combinations. In particular, least squares methods fail to take
into account the ddiferent amounts of information available in each cell. If a cell
only has one observation, it should not be treated with equal weight to a cell that is
actually the mean of 1000 observations.
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2.5 Correlations
Kendall Correlations Between Continuous 

          Features
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The matrix above describes the Kendall rank correlations (commonly referred to as
Kendall’s tau coe�cent) between the four continuous features in the dataset. Intuitively,
the Kendall correlation between two features will be high when observations have a
similar rank (i.e. relative position label of observations within the variable: 1st, 2nd,
3rd, etc.) between the two variables, and low when observations have a dissimilar rank
between the two variables. The range of correlations is [-1, 1]. Kendall correlation was
selected as a measure because it evaluates ranks between observations, as opposed to
Pearson, which is more susceptible to outliers in the dataset (large byte and packet
observations in the continuous features skewed the Pearson measures).

It is clear there exist strong correlations between the four continuous features, DstBytes
and DstPkts in particular. This behavior suggests a technique that produces estimates
for the missing cells with all four features considered at once (i.e. a technique that
simulates the entire tensor as a whole rather than in slices) will also be valuable.



Chapter 3

Alternating Least Squares for
Matrix Completion

This approach determines the best low-rank approximation for Y using the Eckart-
Young-Mirsky Theorem to repeatedly generate the orthonormal matrices U and V of
the singular value decomposition of Y (Y = UDV T ) in an alternating pattern. The
technique is proven to correctly determine a low rank approximation on simulated
matrices where the true rank is known. Once the optimal low rank is determined
from the actual dataset the optimal low rank is used in the technique to generate
estimates for the missing cells of Y . The technique’s fit is assessed by comparing the
fitted versus the observed values.

3.1 Related Work

A common approach to matrix completion revolves around the underlying assumption
that there exists a low rank approximation for the data matrix, particularly in the case
of high dimensional data. Hastie, Mazumder, Lee, and Zadeh (2014) devised a similar
approach to the one presented in this chapter that fuses nuclear-norm-regularized
matrix approximation (Candes and Tao, 2009, Mazumder, Hastie and Tibshirani,
2010) and maximum-margin matrix factorization (Srebro, Rennie and Jaakkola, 2005),
resulting in a fast alternating least squares that relies on a low rank singular value
decomposition to drive an e�cient algorithm for large matrix factorization.

Similar techniques for matrix completion were employed heavily in the Netflix Challenge
where competitors predicted ratings for movies by users that had not watched the
movie based on the other ratings in the matrix of users and movies. The winning
team, BellKor’s Pragmatic Chaos, employed a low rank decomposition technique to
reduce the incredibly large dataset, so that other algorithms could be applied without
too much computational overhead (Andreas Toscher, Michael Jahrer, Robert M. Bell
2009).
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Network datasets can range up to billions of observations (recall this particular dataset
with 1 million observations was collected in just five minutes). Furthermore, there are
up to 65000 possible network source and destination ports, so the resulting network
tensor has large dimensions. Given the nature of the dataset and prior work in
matrix completion, the technique in this chapter assumes a low rank decomposition
to implement an alternating least squares completion technique.

3.2 Matrix Completion Algorithm

Let F œ Rm◊n be a sparse matrix that represents the frequencies of combinations,
i.e F [i, j] represents the number of observations for the ith jth port combination Let
M œ Rm◊n represents a boolean matrix of whether the corresponding Y values are
missing. Y [!M ] represents all of the missing values in Y , so mij = 0 if fiJ = 0.

The objective is
min

r

ÿ

i,j:Fi,j>0
(yi,j ≠ uiDvT

j )2

where UDV (k)T represents the singular value decomposition of Y and r is the low rank
approximation for Y . There are multiple steps to the matrix completion process:

3.2.1 ANOVA Initial Imputation

An analysis of variance (ANOVA) imputation is used to fill in the initial values
for yij. This yields an additive model dependent upon the means of the present
observations:

yij = ai + bj ≠ µ

whereµ is the overall mean of Y , ai is the row mean, and bj is column mean of yij.

3.2.2 Repeated Simulation

The repeated imputation procedure solves Y (s)[!M ] = Rr(Y (s≠1))[!M ] where Rr(·) is
the best rank r approximation for the s-th step. For each step (s) the singular value
decomposition decomposes

Y (s) = U (s)D(s)V T (s)

where D is a diagonal matrix of the singular values, U is the left singular vectors of Y
and V is the right singular vectors of Y .

The Eckart-Young-Mirsky Theorem provides the best rank r approximation for the
missing values in Y (s+1). Recall Y [M ] represents all of the missing values of Y .
Applying the EYM theorem:

Y (s+1)[M ] = (U [, 1 : r](s)D[, 1 : r](s)V [, 1 : r]T (s))[M ]
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Where U [, 1 : r] represents the first r columns of U and the same for D and V .

3.2.3 Convergence Criterion

The Eckart-Young-Mirsky rank approximation step is repeated until the relative
di�erence between Y (s+1) and Y (s) falls below a set threshold, H. The relative
di�erence threshold is expressed:

ÎY (s+1) ≠ Y (s)Î2
ÎY (s)Î2

< H

where ÎY Î2 is the Frobenius norm for matrices. The denominator of the expression
ensures the convergence criterion is invariate to a scale change in the matrix itself.

3.3 Best Rank Approximation

To determine the best rank for approximating Y , Leave-One-Out Cross Validation
(LOOCV) is used to generate prediction errors for each possible rank. LOOCV cycles
through the observed values, setting each to NA (missing), and then performs the
described matrix completion process. The prediction error is then calculated as some
function of the di�erence between the imputed value and the true value. In this case,
the algorithm records root mean square error

Ûq(ŷij ≠ yij)2

z

where z is the number of observations not missing.

3.4 Validation Against Simulated Data

Before applying the algorithm on the real data it is useful to validate the algorithmic
approach against simulated data where the true rank is already known.

3.4.1 Simulating a Low Rank Matrix

Taking the matrix product of two lower dimension matrices yields a higher dimension
matrix with low rank. Explicitly, given matrix A œ Rm◊r and B œ Rr◊n, A ◊ B = C
where C œ Rm◊n has rank r. Thus, when r < m, r < n the matrix C has an optimal
low rank that minimizes the root mean square error from the leave one out cross
validation procedure. To add noise to the simulated matrix, C, simply add an error
matrix, E œ Rm◊n sampled from a normal distribution.
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This procedure provides a computationally e�cient way to simulate many random low
rank matrices to use as inputs for the validation procedure. In the case of simulated
matrices, there are no missing entries, so the leave one out cross validation procedure
sequentially removes each cell in the matrix, imputes its value using the rank being
investigated, and considers the individual cell error as the di�erence between the true
value and the imputed value. The overall root mean square error for the technique is
then calculated with the aggregate each of these individual cell errors.

3.4.2 Approximating Optimal Rank
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The above plots represent the accuracy of the matrix completion technique for matrices
with true rank r = 1, 2, ...8. The accuracy is measured by simulating 10 random
matrices (dimensions ranging from 74 to 100 values) with low rank of r for each value
of r (80 simulated matrices total), and then running the leave one out cross validation
procedure described above on the matrix C to generate a root mean square error for
each possible rank. The accuracy is the calculated using the number of times the rank
with the lowest error matches the true simulated rank divided by 10 (the number of
trials with rank r). Note as the true rank becomes larger, the technique performs far
worse at determining the true rank. This behavior is due to the fact that LOOCV
attempts to find the rank that minimizes the root mean square error, not necessarily
the true low rank approximation for a matrix. Higher true ranks tend to give higher
out-of-sample validation error, so LOOCV will still select a low rank approximation
for simulated matrices that have relatively high true ranks. For instance, a simulated
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data matrix may have a true rank of 8, but it may also be very close to rank 2,
which results in LOOCV selecting rank 2 as the optimal low rank approximation for
minimizing error.

Furthermore, when noise is applied to each simulated matrix, C, (through the addition
of a noise matrix E), the algorithm tends to perform worse at a majority of the
attempted ranks. This is expected because the addition of noise to every cell in the
matrix may obscure the true rank from the LOOCV procedure.

3.5 Results on Real Data
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The above plot displays the root mean square errors from the leave one out cross
validation process across di�erent rank inputs into the algorithm. It’s clear that rank
2 provides the best low-rank approximation for estimating missing values in Y using
the alternating least squares algorithm. Thus, the dataset is fitted with the algorithm
using rank 2 to estimate the missing values in Y .
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The two plots above display the true values of the Y matrix (i.e. the non-missing
values) versus their corresponding fitted values using the alternating least squares
algorithm with an input of rank 2. The first plot displays all values and shows a
somewhat positive linear trend (an ideal fit of the true values would be a scatter of
points following a linear relationship, represented in red). However, several outliers
with large true values skew this dataset and cause the plot to appear linear. Closer
examination of the true and fitted values smaller than 1000 (the plot on the right)
reveals the relationship is far from the linear pattern.

3.5.1 Scale Transformations

The poorly fitted results motivates a consideration of the scale of the data. The
present algorithm uses the sample averages of the overall matrix as well as the row
and column means when imputing each missing cell value. This reliance upon sample
means leads to susceptiblity to outliers. Moreover exploratory data analysis reveals
the dataset contains outliers, particularly in the SrcBytes and DstBytes measurements.
Because outliers drive the sum of squares for the alternating least squares procedure,
the poor fit on the data is unsurprising. Thus, a transformation of features in the
dataset may be appropriate for improving the fit of the algorithm.

When a natural logarithm transformation is applied to the raw dataset before any
simulation steps are taken, the alternating least squares imputation algorithm yields
the following root mean square errors varied by rank.
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Now the optimal rank from the LOOCV procedure is 1. The algorithm is run on the
log transformed dataset with a low rank approximation of 1 and the fitted versus
observed values are again compared.
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The values above have been retransformed (exponentiated) to the dataset’s original
scale after the procedure was completed. The fit still appears to be quite poor and
there is not much di�erence between the log transformed output versus the original
non-transformed output.

This poor performance may largely be due to the fact the algorithm does not account
for the variability in the sample size and variance in the observed interactions for
each cell. Unlike the Netflix Competition, in which each cell of the matrix being
completed contained only a single user rating of a movie, the matrix in this problem
contains the mean of a variable number of observations corresponding to particular
port combinations.



Chapter 4

A Bayesian Approach to Matrix
Completion

The previous section’s results reflected the need for a completion strategy that accounts
for the variability in the number of observations observed for each port combination
when imputing that particular combination’s cell. The previous technique fails to
take into account the di�ering sample size and variance in each cell’s observations, so
the algorithm treated each yij as a single value rather than the mean and variance
of a vector of observations. The following section constructs a statistical model that
takes the sample size of observations and their variances for each cell into account and
repeatedly simulates values for the missing cells using a Gibbs Sampling procedure.
The sampling procedure relies upon first building a general model for simulating the
row and column facors with their respective standard deviations. After calculating
the full conditionals for the parameters of this general model, the overall procedure
repeatedly simulates values from these full conditional distributions, alternating
between simulating the matrix of row factors and the matrix of column factors along
with their respective standard deviations. Note, this technique again slices the tensor
into the four separate matrices, Y (1), Y (2), Y (3), Y (4) œ Rm◊n (referred to as Y in
general), and the model can be applied to each matrix Y (k) separately.

4.1 Related Work

Bayesian methods are becoming increasingly popular as a matrix completion technique
for large scale datasets. Work by Zhou, Wang, Chen, Paisley, Dunson and Carin (2010)
indicate Gibbs Sampling provides an e�cient solution to large scale problems and
yields “predictions as well as a measure of confidence in each prediction.” Their paper
considers algorithm performance in several datasets of varying scale and relationship
between variables, and the results indicate strong performance compared to other
common approaches. Granted, this approach considers non-parametric Bayesian matrix
completion, while the Gibbs Sampler in this chapter relies upon constructing the full



26 Chapter 4. A Bayesian Approach to Matrix Completion

conditional distributions for parameters in a defined statistical model. Nevertheless,
the hypothesis remains that Gibbs Sampling provides an e�cient and e�ective solution
for matrix completion. Mai and Alquier also support this claim in their paper “A
Bayesian Approach for Noisy Matrix Completion: Optimal Rate under General
Sampling Distribution” (2014), in which they construct a Bayesian estimator that
relies upon the premise that “Bayesian methods for low-rank matrix completion with
noise have been shown to be very e�cient computationally.” They apply this technique
to the Netflix competition dataset as a case study.

4.2 Statistical Model for Port Relationships

The following statistical model is defined for the cells in Y :

yij = uT
i vj + ‡i·jÔ

sij
‘ij

where ui represents the row factors, vj represents the column factors, ‡i represents the
standard deviation of each row in the matrix, ·j represents the standard deviations
of each column in the matrix, sij represents the sample size of observations observed
for source port i and destination port j, and ‘ij ≥ N(0, 1). Fixing the j values in the
analysis (i.e. vj and ·j are known) enables the model to be rewritten in the form of
a weighted least squares model for estimating ui and ‡i. Similarly, when i is fixed,
the model can be rewritten to estimate vj and ·j. To demonstrate this property, the
procedure for estimating ui and ·j given known values for vj and ·j is described below.
The same procedure is possible for vj and ·j when ui and ‡i are known.

4.3 General Linear Model for Simulating Row and
Column Factors

Varying j = 1...n the model above yields the following cell values:

yi1 = uT
i v1 + ‡i·1Ô

si1
‘i1

...

yin = uT
i vn + ‡i·nÔ

sin
‘in

Vectorizing all of these equations varied across j = 1...n yields:

y̨i = V ui + ‡iW
1/2‘̨
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where V œ Rn◊p is the matrix of column factors (p is the dimension of the latent
factors), and W œ Rn◊n is the diagonal matrix of weights, such that

V =

S

WWWU

vT
1 ≠

vT
2 ≠
...

vT
n ≠

T

XXXV , W =

S

WWU

w1
. . .

wn

T

XXV =

S

WWWU

·2
1

s11 . . .
·2

n
snn

T

XXXV

Note · 2 refers to the variance, variance being the square of the standard deviation.

This model can be rewritten in a general form:

y̨ = X— + ‡W 1/2‘

where X represents V , — represents ui and ‡ represents ‡i.

This is a modified form of the Generalized Least Squares Model (GLS), which gives
a weighted least squares estimate of —, and it is appropriate when the error terms
are not independent and identically distributed. Bayesian analysis of this problem
provides similar parameter estimates to GLS, and both ordinary least squares and
GLS provide unbiased parameter estimates of — with the latter giving estimates
with a lower variance because the non-Bayes estimator serves as a limit of the Bayes
estimator.

The full conditional distributions of the random variables — and ‡2 (note ‡ is squared
in the model) for this case are described below:

{— | X, y̨, ‡2} ≥ MV N(—n, �n)

{‡2 | X, y̨, —} ≥ IG(‹0 + n

2 ,
v0‡

2
0 + SSRW

2 )

where MVN represents the Multivariate Normal Distribution, and IG represents the
Inverse Gamma distribution.

Y
]

[
�n = (XT W ≠1X/‡2 + �≠1

0 )≠1

—n = �n(XT W ≠1y/‡2 + �≠1
0 —0)

SSRW = (y ≠ X—)T W ≠1(y ≠ X—)

The formulation for the closed form full conditional distributions for the — and ‡2

parameters are based upon the general full conditionals established for a regression
model with correlated errors (Ho� 2009). These particular full conditional formulations
are a special case of this model where W is a diagonal matrix and so the covariance
matrix is diagonal. This general regression model formulation also conveniently
specifies the prior distributions.

The remaining variables in the closed form full conditionals come from the parameter’s
prior distributions, which are defined as follows:
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— ≥ MV N(—0, �0)

‡2 ≥ IG(‹0
2 ,

v0
2 ‡2

0)

The initial values for the prior distributions are set as: —0 = 0, �0 = “2I where “2

is a large number and I is the m ◊ n identity matrix, ‹0 = 2, ‡2
0 = 1. This results

in a di�use prior for — that spreads out the density, and a noninformative prior for
‡2.

Work by Alquier, Cottet, Chopin, Rousseau (2014) reveal that a standard approach to
assigning priors in Bayesian Matrix completion “is to assign an inverse gamma prior to
the singular values of a certain singular value decomposition of the matrix of interest;
this prior is conjugate. However, [they] show that two other types of priors (again for
the singular values) may be conjugate for this model: a gamma prior, and a discrete
prior. Conjugacy is very convenient, as it makes it possible to implement either Gibbs
sampling or Variational Bayes.” In the case of this problem, the distributions of the
priors are defined to be di�use (—) and noninformative (‡2), so that the e�ects of
the priors on the posteriors are limited when compared to the e�ects of the observed
data.

4.3.1 Gibbs sampler for the General Linear Model

Following the formulation of the model and the definition of the priors, a general
Gibbs sampler function is created to simulate samples from the full conditional of each
parameter in the statistical model, which iteratively creates an approximate value for
each cell.

The Gibbs sampler algorithm progresses as follows:

Let the parameters at step s be:

„(s) = {—(s), ‡2(s)}

Sample —(s+1) ≥ P (— | X, y̨, ‡2(k))

Sample ‡2 ≥ P (‡2 | X, y̨, —(s+1))

Set „(s+1) = {—(s+1), ‡2(k+1)}

This Gibbs sampler serves as a general technique that can be used to simulate both
the values of ui and ‡i or vj and ·j depending on the inputs it is given because the
formulation of both models are identical; they only di�er by the the inputs, X and
W , which are calculated, and y which is sliced directly from Y . In the context of the
problem, this function can first be called repeatedly to simulate all of the rows in the
matrix Y , then called repeatedly with updated inputs to simulate all of the columns
of the matrix.
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4.3.2 Validation on Simulated Data

Before using the general Gibbs sampler function in the overall procedure for simulating
missing values in Y , it is necessary to validate the procedure’s e�ectiveness on simulated
data where the ground truth is known. As the algorithm runs, it stores a matrix of —
vectors and a vector of ‡2 scalars. Thus, if S = 50, i.e. the algorithm samples 50 —
and 50 ‡, the final returned output will be

— =

S

WWWU

—T
1 ≠

—T
2 ≠
...

—T
50≠

T

XXXV , ‡̨2 =

S

WWWU

‡2
1
.
.

‡2
50

T

XXXV

Using random sampled values from the normal distribution for X and random sampled
values from the exponential distribution for W (exponential distribution is used to
ensure �n is positive definite), it is possible to calculate values of y̨ using a predefined
—ú and ‡ú, which are known as the ground truth values for comparison:

y̨ = X— ú +‡ ú W 1/2‘

This y̨, W , and X are used as inputs to the general Gibbs Sampler Function to
generate a distribution of —’s and a distribution ‡2’s. The posterior means of these
distributions are then computed and compared to recover the original values, —ú and
‡ú.

In particular, the posterior mean of ‡2 is calculated by taking the mean of the function’s
output of ‡2. This posterior mean is compared to the original ‡ú used to generate y̨.
Repeatedly performing this procedure reveals the posterior mean only di�ers from the
ground truth value by 1-2% in almost every single trial.

Recovering the original —ú provides a much more defined procedure for evaluating the
performance of the Gibbs Sampler. First, the Bayes estimator (the posterior mean of
generated —s) should be close to the GLS estimator and theoretical results state the
GLS estimator serves as a good approximation for the true value. Furthermore, the
variance matrix of the GLS estimator around the true value is

V ar(—̂GLS) = E[(—̂GLS ≠ —ú)(—̂GLS ≠ —ú)T ] = (XT W ≠1X/‡2)≠1

Thus, after simulating many data sets and solving for the posterior mean estima-
tor, —̂, the variance of these simulated posterior means, V ar(—̂) should be close to
(XT W ≠1X/‡2)≠1. Moreover, the standard errors are calculated

SE(—̂GLS) =
Ò

diag((XT W ≠1X/‡2)≠1)

This provides a nominal 95% confidence interval for which to assess the performance
of the model for recovering the original —ú.
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4.4 Full Sampling Procedure

The complete sampling procedure for imputing missing values uses the generalized
Gibbs Sampler defined above to iteratively simulate missing values for the entire
matrix Y . The procedure is described below:

Initialize ‡i for i = 1...m and ·j for j = 1...n as the overall standard deviation of the
Y (k) matrix. Initialize missing values of Y using the ANOVA imputation described in
the previous section. Initialize the matrix of row factors U œ Rm◊p and the matrix of
column factors V œ Rn◊p.

Repeat the following:

1. For i = 1...m: Estimate ui and ‡i using the generalized Gibbs Sampler. For
the first iteration of the sampler, set X to the V matrix in the singular value
decomposition of Y (truncated to be n ◊ p). For all future iterations, the use
the stored V from the previous iteration as X. For the first iteration, use the
initialized ·j for j = 1...n to calculate the diagonals for the W matrix. For
all future iterations use the stored ·j values from the previous iteratioWn to
calculate W . Take the corresponding yi directly from the Y matrix. Store the
resulting sampled ui’s as rows of a matrix U , and the ‡i in a vector to use for
simulating vj and ·j.

2. For j = 1...n: Estimate vj and ·j using the generalized Gibbs Sampler. Use
the stored U from the previous step as the X input and use the stored ·j to
calculate the W input. Take the corresponding yj directly from the Y matrix.
Store the resulting sampled vj’s in a matrix V , and the ·j in a vector, to use for
simulating ui and ‡j.

3. Estimate values for yij in Y that were missing in the original dataset by sampling
from the normal distribution

yij ≥ N(uT
i vj,

‡2
i · 2

j

sij
)

4.4.1 Selecting the Dimension of Latent Factors

The dimension of the latent factors, p, is used to define the dimension of — œ Rp◊1

and consequently defines the dimensions of the row and column factor matrices U and
V . Selecting p is a model selection choice similar to determining the optimal low rank
approximation r in the previous section. Once again, Leave One Out Cross Validation
may be used to detemine the optimal p given the observed data. In this technique, it
is more computationally expensive than the previous technique to perform Leave One
Out Cross Validation on the entire dataset, so K-Fold cross validation or randomly
selecting a set number of observed cells to set to missing for determining p is also
valid.
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4.5 Results on Real Data
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The above plots show the original matrix (left) and the completed matrix (right) using
the full estimation procedure. The white cells in the left plot indicate missingness.
The estimated means all fall within the range of the existing means (approximately
50000-400000). There exist several apparent patterns in the rows and columns of the
estimated matrix, but these patterns are most likely the result of the full estimation
procedure estimating U (matrix of row factors), V (matrix of column factors), then
the missing values of Y . Because the model is made up of the product row and column
e�ects, a large row e�ect is propagated throughout all entries in a row and similarly
for column e�ects, resulting in the checkerboard pattern displayed. In terms of the
networks data domain, it makes sense for certain ports to have more tra�c (so the
entire row/column is darker in the estimated matrix).

4.5.1 Scale Transformations

Like in ALS, large outlier values in the row and column means may skew the row
e�ects and column e�ects for this Gibbs sampling procedure, so the entire procedure is
performed again with the initial values in the dataset log transformed. The below plots
represent the results of feeding the log transformed dataset into the full estimation
procedure and then exponentiating the completed matrix to return it to the same
scale as the original data.
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Taking the log transform reduces the e�ects of the large row and column means on
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the estimation procedure for the row and column e�ects. Thus, the row and column
e�ects are less pronounced, resulting in the checkerboard pattern being muted in the
results on the right. The sampled once again fall within a reasonable range of the
existing means (approximately 50000-400000).

The fit still stands to improve using improved model selection, but in this case achieving
the optimal sampling procedure is limited by available computational resources. For
instance, using cross validation to select the optimal dimension of latent factors,
p, would likely improve the fit of the model. However, running LOOCV using the
sampling technique is computationally expensive. Moreover, increasing the overall
number of iterations of the full estimation procedure (it is currently at S = 100)
may also improve the model fit. Work done by Raftery and Lewis (1992) suggests
that “reasonable accuracy [with a Gibbs Sampler] may often be achieved with 5,000
iterations or less; this can frequently be reduced to less than 1,000 if the posterior
tails are known to be light.”
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Tensor Completion

Recall the analysis of correlations between the continuous features in T in chapter
2.

Kendall Correlations Between Continuous 
          Features
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The strong correlations between the individual continuous features suggests imputing
the tensor T all at once may yield closer estimates than the previous two techniques,
which sliced the matrices. By imputing the tensor as a whole, techniques that include
e�ects that capture the relationships between features can take advantage of possible
collinearity between the features.

The following section describes the way techniques in the previous sections may be
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extended to full 3-dimensional tensor completion.

5.1 PARAFAC Decomposition

The PARAFAC decomposition expresses the tensor as:

T =
Rÿ

r=1
ur· vr· wr

where r represents the rank approximation, · denotes the outer product of tensors,
and U œ Rm◊r, V œ Rn◊r, and W œ R4◊r. Each individual cell is expressed:

tijk =
Rÿ

r=1
Uri· Vrj· Wrk

Applying this decomposition yields the objective

min
T Õ

ÎT ≠ T ÕÎ

where
T Õ =

Rÿ

r=1
⁄r(ur· vr· wr)

and ⁄r is the regularization penalty.

The PARAFAC Decomposition also operates under several limiting assumptions.
PARAFAC assumes the low rank matrix slices of the tensor are multiples of one
another, which puts strong constraints on the similarity between the slices. There
exists more flexibility with the model in chapter 4 because each matrix can be a
di�erent rank.

5.2 Statistical Model

The following model is proposed:

tijk ≥ N(µijk,
‡2

ijk

sijk
)

where µijk is the sample mean, sijk is the sample size of observations, and ‡2
ijk is the

sample variance of observations for source port i, destination port j, and continuous
feature k.

Substituting these values into the Gaussian probability density function yields the
likelihood:

sijk

‡2
ijk

ÿ
(t̄ijk ≠ µijk)2
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Applying the PARAFAC decomposition, µijk is re-expressed:

µijk =
Rÿ

r=1
airbjrckr

Vectorizing the inputs in the likelihood yields:
ÿ

j

ÿ

k

[t̄ijk ≠ aT
i (bj· ck)] sijk

‡2
ijk

where ai œ Rm◊r, bj œ Rn◊r, and ck œ R4◊r. Summing across j and k in this case
solves for the ith row slice of the tensor.

5.3 Future Work

Future work will use the PARAFAC decomposition and the Gaussian statistical
model described above to extend the techniques described in chapters 3 and 4 to
completing the tensor as a whole. The PARAFAC decomposition allows for low
rank tensor completion on data with high degrees of missingness. Recent work by
Yokota, Zhao, and Cichocki (2016) propose a “Smooth PARAFAC Decomposition
for Tensor Completion” that “consider ‘smoothness’ constraints as well as low-rank
approximations, and propose an e�cient algorithm for performing tensor completion
that is particularly powerful regarding visual data. The proposed method admits
significant advantages, owing to the integration of smooth PARAFAC decomposition
for incomplete tensors and the e�cient selection of models in order to minimize the
tensor rank.” The statistical model for tensor completion mimics Chapter four’s
technique more closely. The full conditionals for the parameters being estimated in the
model are constructed, and a Gibbs Sampler is created using these full conditionals to
iteratively sample the three factor variables and their respective standard deviations
described in the model. Like the previous techniques, each of these technique’s validity
will first be tested on simulated data where the ground truth is known before being
applied to the real dataset.

T œ Rm◊n◊l, Q œ Rm◊n◊l



Discussion

This paper has developed two techniques for matrix completion that can then be
used to complete individual slices of a tensor. The first technique, an alternating
least squares procedure relies upon the Eckart-Young-Mirsky theorem to implement
low-rank singular value decomposition. Determining the optimal low rank is a model
selection problem that is solved using leave one out cross validation to assess the
quality of possible ranks on given datasets. The validity of this technique is tested
using simulated datasets where a true low rank is known before it is applied to
the actual dataset. Finally, the procedure is applied to the real networks dataset
and its performance is evaluated by comparing the fitted values versus the true
observed values. Upon noticing certain trends due to outliers in the comparison,
a log transformation is conducted on the original dataset and the matrix is once
again completed. The second technique addresses matrix completion in the presence
of heteroscedasticity. It constructs a statistical model and uses Gibbs Sampling to
iteratively sample values from the parameter’s full distributions. It acknowledges
the weaknesses of the first technique by including both the sample size and the
standard deviation of the observations in each matrix cell in the model. This model
ends up being very close to a Generalized Least Squares model and so the sampling
procedure for the row and the column factors in the matrix is validated by examining
the proximity of the variance of the — posterior means in many simulated datasets
compared to the variance of the GLS estimator. The paper finally also proposes a
solution to extend the two techniques to imputing the tensor iteratively as a whole,
rather than individual slices.

For the empirical results throughout this paper T œ R100◊74◊4: the most used 100
source ports and their combinations with the most used 74 destination ports are
considered. This was constructed by first taking the most used 100 source and
destination ports, creating a 100 ◊ 100 ◊ 4 tensor, and then removing the rows and
columns where all values were completely missing because those rows and columns
would not provide row means and column means respectively to inform the completion
techniques. All of the modeling techniques are informed by the exploratory data
analysis conducted on the original dataset prior to completion steps.

Application of these completion techniques to the networks dataset provides a reason-
able estimate for the four continuous features at every possible port combination in
the matrix. This completed tensor provides a basis for detecting anomalies in future



42 Chapter 5. Tensor Completion

data. For instance, new observations for a certain port combination that fall outside
a threshold of error for the estimated value in the tensor can be marked as as an
anomaly and the source and destination IP may be flagged for further investigation.
There are two major limitations of these techniques:

1. The sheer size of existing and future network data makes the computational
e�ciency of the techniques a large concern. The techniques would need to
provide a reasonable estimate for every cell in a tensor that may extend up to
65535 ◊ 65535 ◊ 4 (65535 is the number of overall ports). Furthermore, billions
of observations may eventually become available, so recalculating initial means
and standard deviations for the observations of each cell would need to be done
carefully and to be completed in a reasonable amount of time. While Gibbs
Sampling and alternating least squares have both been shown to be very e�cient
and are often employed for handling high dimensional and large scale datasets,
the potential size of the networks datasets that may be fed into these techniques
enforce the absolute need for computational e�ciency.

2. The techniques do not consider the specific domain context with which each
port is used. For instance, in TCP protocol, port number 22 is Secure Shell
(SSH), which is one of the most popular ports for everyday users. Previous
domain knowledge could perhaps inform reasonable estimates for each port
combination. Some port combinations may be expected to have large byte and
packet transfers, while others may be expected to have few transfers overall.
Constructing additional models or features that incorporate domain knowledge
regarding the particular port combinations will be useful for improving the
model’s e�ectiveness in detecting anomalies.
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