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Abstract

This dissertation presents the statistical framework of Bayesian analysis of tree

models with various applications. Prior specification for such models and de-

velopment of algorithms for sampling from the posterior distributions are both

challenging problems. This thesis addresses each of these issues and extends the

Bayesian tree model in several ways, including data resampling (Dirichlet process

prior), random threshold in the splitting rules, and autoregressive processes for

modeling nonlinear structure in time series data. We also demonstrate various

numerical techniques to reduce computational burden.

This thesis is divided into two parts. The first part, including the first three

chapters, mainly describes the general framework of our Bayesian tree model.

Chapter 1 introduces the formal definition of binary tree models. Several key

aspects, including tree structure, splitting rules and leaf node distributions, are

discussed, setting the foundation for the discussion of prior specification and pos-

terior exploration.

Chapter 2 discusses the prior specification for tree models in detail. A Pinball

prior for the tree generating process is defined; this allows for the combination

of an explicit specification of a distribution for both the tree size and the tree

shape. Both the data-dependent and data-independent prior for splitting rules

are discussed. Comparisons are made with existing prior specifications.

Chapter 3 develops an efficient method for simulation from the posterior tree

model space. The core computational innovations involve a novel Metropolis–

Hastings method that can dramatically improve the convergence and mixing prop-

erties of MCMC methods for Bayesian tree analysis. Existing MCMC methods
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simulate Bayesian tree models using very local MCMC moves, proposing only

small changes. Our new Metropolis–Hastings move makes large changes in the

tree, but is at the same time local in that it leaves unchanged the partition of

observations into leaf nodes.

The second part of this thesis gives several examples. Chapter 4 presents a

synthetic data example, illustrating basic proposals and restructure proposal in

detail. By exploring this simple example, we illustrate the convergence of our

MCMC method. Chapter 5 provides a more complicated example. We present

exploratory tools to diagnose the convergence problem, make comparisons with

existing MCMC methods, and introduce an importance sampling method to re-

duce the computational burden in assessing prediction validity.

The remaining chapters present extensions of Bayesian tree models. Chapter

6 presents a resampling method inspired by a study in proteomics. A Dirichlet

process prior for resampling is introduced and discussed. Chapter 7 introduces the

idea and methods of random thresholds in tree models, leading to a novel class

of “smooth threshold” trees. Chapter 8 develops an autoregressive tree model,

aiming to model nonlinear structure in time series data, with some illuminating

examples.

Appendix A describes the implementation of Bayesian tree models and demon-

strates the usage of C++ code, developed as part of this research.
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Chapter 1

CART Model Structure and Notation

Tree models partition the predictor space into sub-regions in which the distribu-

tion of the response variable is more homogeneous. When the linear assumption

does not hold, the expected mean level of the response may be a highly non-linear

function of the covariates. Tree models aim to reduce the complexity by approx-

imating that function locally in each sub-region. In each sub-region, a simple

distribution (Normal, Bernoulli, etc.) is assumed for the observations belonging

to this region.

As discussed in Breiman et al. (1984), we do not claim that tree models are

always better than other regression methods. But tree models do give an interest-

ing and illuminating way to look at the data. In this chapter, we will first study

a breast cancer dataset with generalized linear models. The linear relationship

between the logit of expected mean of the response and the covariate is question-

able. From there, we introduce the idea of tree models. The classical method of

tree finding and its weakness are discussed.

The formal definition of a binary tree is introduced along with the notation

for the numbering, subtree, and recursive partitioning. Tree modeling is a very

1



flexible method, partly due to various distribution specifications in the leaf node.

Different leaf node distributions are reviewed in this chapter, including normal dis-

tribution (regression tree), binomial distribution (classification tree) and Weibull

distribution (survival tree). We also introduce new tree models in later chapters,

including tree models with random thresholds and the Autoregressive tree models.

1.1 Introduction

1.1.1 Illustrative example

In this section, we attempt to analyze the breast cancer dataset used in Chipman

et al. (1998) using a generalized linear model. The data will be revisited and

studied in detail using our Bayesian tree model in Chapter 5. The data set has

nine predictors and one binary response, indicating benign (0) and malign (1). A

generalized linear model with logit as the link function is used:

logit(E(Yi)) = β0 +

9∑

j=1

βjXij (1.1)

for i = 1, 2, . . . , n. We run the function glm in R to obtain the estimates for the

parameters. Results are displayed in Table 1.1. At the 0.1 significance level, this

model indicates that the predictors x2, x3, x5 and x9 are not significant; however,

this may not be true. If we take a look at the observations with x2 ≤ 0.25

and x2 > 0.25, we find that the responses in the first set are mostly 0 (12 out

of 418 are 1) and the responses the second set are mostly 1 (38 out of 265 are

0). This indicates x2 has great predictive power in distinguishing between the

benign and malign state. So the assumption that logit(E(y)) is a linear function

of x1, x2, . . . , x9 may be questionable.

2



Call:

glm(formula = Y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9,

family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.1039 1.1749 -8.600 < 2e-16 ***

x1 5.3501 1.4202 3.767 0.000165 ***

x2 -0.0628 2.0908 -0.030 0.976039

x3 3.2271 2.3060 1.399 0.161688

x4 3.3064 1.2345 2.678 0.007400 **

x5 0.9664 1.5659 0.617 0.537159

x6 3.8302 0.9384 4.082 4.47e-05 ***

x7 4.4719 1.7138 2.609 0.009073 **

x8 2.1303 1.1287 1.887 0.059115 .

x9 5.3484 3.2877 1.627 0.103788

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 884.35 on 682 degrees of freedom

Residual deviance: 102.89 on 673 degrees of freedom

AIC: 122.89

Number of Fisher Scoring iterations: 8

Table 1.1: Summary of the GLM parameter estimates from the breast cancer
dataset.
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Figure 1.1: The fitted values of y by GLM. The red diamond points and the
green square points indicate malign and benign observations respectively.

Further, Figure 1.1 displays the fitted values of y using GLM. The malign and

benign observations are marked with red diamonds and green squares respectively.

There are 11 red diamonds below the 0.5 threshold and 10 green squares above

the 0.5 threshold. Therefore we have 21/683 = 0.031 misclassified observations.

Can we do better by relaxing the linear assumption? We will give the answer in

Chapter 5 after our Bayesian tree model is introduced.

Generally, when the linear model is not appropriate as in this breast cancer

example, we may want to use a non-linear model:

E(y) = f(x1, x2, . . . , xp) (1.2)

where f(·) is non-linear function. There are different choices for f , such as non-

parametric regression, neural network or tree models. A tree model recursively
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partitions the predictor space into sub-regions in which the distribution of y is

more homogeneous. The partition is defined by splitting rules. We choose to

study tree models for the following reasons:

• Logical statement and interpretable rules. A tree model is very easy to

understand. One only need to browse from the top node to the bottom. At

each visited node, answer the question (splitting rule) and then go to the

directed child node. The meaning of each splitting rule is therefore straight

forward. For example, one may encounter questions such as, “Is the cell size

greater than 0.24?”, and, “Is the marginal adhesion greater than 0.3?”, in

order to determine if the tumor is malign or benign.

• Clear indication of important predictors. By looking at the results from

tree model analysis, it is easy to determine the important predictors. For

example, a predictor that is used in the splitting rule at the top node may be

more informative than the other predictors. A predictor that is used more

than once may also be very important.

• Correlated structure between predictors. A correlation structure that is

hierarchically defined can be well visualized by tree model.

1.1.2 Greedy algorithm

In classical methods, a cost function is first defined for the tree in order to do

model selection. Some examples of the cost function include the residual sum of

squares for regression trees and deviance for classification trees. Then a set of trees

are evaluated and the one with the lowest cost is selected. Each tree corresponds

to a partition of the predictor space, so in the classic method one starts with the
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whole predictor space, which corresponds to the single node tree, and then uses

the recursive partitioning algorithm to find a good tree.

Suppose now we want to find a regression tree for a dataset with n observations

and each observation has p predictors. The partitioning algorithm is as follows:

1. Consider all partitions that split one region into two regions where the di-

vision is made at one of the predictors.

2. Compute the residual sum of square (RSS) for the new partitions.

3. Choose the partition that minimize the RSS.

4. Sub-partition the partitions recursively until the decrease in RSS is no more

than some pre-specified value ε.

At each step, the partition that minimizes the cost function is chosen; however,

this choice is not necessarily the optimal solution. Hence this procedure is called

the “greedy” algorithm.

While the choice of ε is not clear, this algorithm may stop too quickly as

discussed by Faraway (2005). An example is given in Figure 1.2. The red star

and the blue circle points are draws from N(µ1, 1) and N(µ2, 1) respectively. It

is easy to show that if the difference between µ1 and µ2 is much greater than 1

(variance), the decrease in the cost function by any split on just one predictor is

very small. A better fit can be achieved only by making the splits on both x1 and

x2. Therefore, the greedy algorithm may stop immediately with one single node

and fail to find the partition that is defined by the lines x1 = 0 and x2 = 0, which

is the optimal solution.

One could enumerate and evaluate all the possible trees in order to find the

optimal solution; however, this is feasible only in the case of very small trees. Let
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Figure 1.2: Extreme example data. There are only four data points. The red
stars have the response value of 1 while the blue circle have the response value of
2.

C(i) denote the total number of possible trees, ignoring the difference in splitting

rules, with i terminal nodes (the size of tree). Table 1.2 shows the values of C(i)

for different values of i. The formal definitions of splitting rules, size of tree and

the tree will be introduced in Section 1.2. We can see that the number of trees

given the size grows very quickly. Actually the number of trees is an increasing

function in the tree size with, if not faster than, an exponential rate of growth.

First, we notice that C(n) =
∑n−1

i=1 C(i) · C(n − i). Then we have:

C(n) =
∑n−1

i=1 C(i) · C(n − i)
≥ C(1) · C(n − 1) + C(n − 1) · C(1)
= 2C(n − 1)

(1.3)

for every n > 1. Noting that C(2) = C(1) = 1, we have C(n) ≥ 2n−1 for every
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n > 1. Furthermore, for each tree there are many choices of splitting rules for

each node, so it is infeasible to enumerate all the trees.

i 1 2 3 4 5 6
C(i) 1 1 2 5 14 42

Table 1.2: The number of trees for different sizes of the trees.

1.1.3 Cost-complexity for trees

Most cost functions, e.g. residual sum of squares for regression tree, are decreasing

functions of the size of the tree. There will be overfitting is there if no restriction

on the size of tree. Cross validation can be used to assess the prediction validity;

however, there may be too many trees to choose from and cross validation would

be too expensive. Pruning can be used to reduce the set of trees to be considered.

Usually a cost-complexity function for the tree is defined as:

CC(Tree) = fit of the tree + λ · size of the tree. (1.4)

Large λ encourages small trees and vice versa. In the greedy algorithm, a large tree

will be grown and then pruned back according to the cost-complexity function.

In the Bayesian tree model, which will be formally defined and discussed in

later sections, an analogy to the cost-complexity function is the negative log pos-

terior probability, which is:

−log(Posterior probability) = constant − log(Likelihood) − log(Prior). (1.5)

The log likelihood function is similar to the fit at the nodes. The prior for the

tree includes the prior for the size and the shape of the tree. Usually we specify a

prior for the tree so that a simple tree model is encouraged, i.e. extremely large
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(complicated) trees should have relatively low prior probabilities. This is more

flexible by choosing appropriate prior. Not only the size but also the shape of the

tree are under control according to our prior preference.

1.2 Binary tree: notations, node numbering and

subtree

In this section, we introduce the notation that will be used to describe the tree

models and the numbering of nodes. The example tree in Figure 1.3 illustrates

the unique numbering of nodes, from the root (0) to the set of terminal nodes

(or leaves). Each internal node (non-terminal) u in a tree has two children, a left

child and a right child. We let l(u) and r(u) denote the left and right child of

node u, respectively. Then

l(u) = 2u + 1 and r(u) = 2u + 2. (1.6)

Except for the root, u = 0, all nodes has exactly one parent node and one sister

node. The parent node of u is

p(u) =
⌈u

2

⌉
− 1 for u ≥ 1, (1.7)

where dxe is the smallest integer larger or equal to x. The sister node of u ≥ 1 is

s(u) =

{
u + 1 if u is odd,
u − 1 if u is even.

(1.8)

Each node belongs to a certain level, or floor, in the tree: the root node is at level

0; each node u is in level

f(u) = blog2(u + 1)c , (1.9)
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Figure 1.3: A (recursively defined, binary) tree with unique numbering of nodes

where bxc is the largest integer smaller or equal to x.

Letting N = {0, 1, 2, . . .}, we can now give a formal definition of a finite binary

tree. For a set A we let |A| denote the number of elements in A.

Definition 1. A set T ⊂ N is a (finite) binary tree if (i) |T | < ∞, (ii) 0 ∈ T ,

and (iii) for any u ∈ T \ {0} also p(u), s(u) ∈ T .

We let T denote the set of all possible finite binary trees. The nodes in T ∈ T

are naturally divided into two groups, the internal nodes and the terminal nodes

or leaves. We denote the two subsets of nodes by a(T ) and b(T ), respectively, i.e.,

a(T ) = {u ∈ T |l(u) ∈ T} and b(T ) = T \ a(T ). (1.10)

We let m(T ) = |b(T )| denote the number of leaves in T . Notice that |T | is the

number of elements in T , which is different from the number of leaves in T . In

this thesis, the size of tree T refers to m(T ).

For any tree T , the subtree from node u ∈ T is just the tree from (inclusively)

u on downward to the leaves of T below u, which we denote by

Su(T ) = {v|v + u2f(v) ∈ T}. (1.11)
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We sometimes write mu(T ) for the number of leaves in the subtree from u, i.e.

mu(T ) = m(Su(T )). Evidently, S0(T ) = T and m0(T ) = m(T ).

For the example tree shown in Figure 1.3, we have T = {0, 1, 2, 3, 4, 5, 6, 9, 10},

a(T ) = {0, 1, 2, 4}, and b(T ) = {3, 5, 6, 9, 10}. The subtree of node 1 is S1(T ) =

{0, 1, 2, 5, 6}.

1.3 Splitting rules

We let Y denote the space over which the response variable is defined. We are

interested in using a tree model to predict variable y ∈ Y based on a set of can-

didate covariates (or predictor variables) x = (x1, . . . , xp)′. With sample spaces

xj ∈ Xj we have x ∈ X = X1 × . . . × Xp. A tree partitions X into regions by

assigning a splitting rule to each internal node of a binary tree T . An internal

node u ∈ a(T ) will be split as follows:

• Choose a predictor variable index kT (u) ∈ P = {1, . . . , p} and a splitting

threshold for that variable τT (u) ∈ XkT (u);

• Variables (y, x) are assigned to the left child l(u) of u if xkT (u) ≤ τT (u),

otherwise to the right child r(u).

The left panel in Figure 1.4 displays an example tree with splitting rules in its

internal nodes. Note that some of the predictor variables may be categorical.

In this case, the splitting threshold (or more accurately, splitting set) becomes

τT (u) ⊂ χkT (u) and the variable (y, x) are assigned to the left child l(u) of u if

xkT (u) ∈ τT (u), otherwise to the right child r(u). In the following text if the split-

ting variable is categorical, we still write the splitting rules as “xkT (u) ≤ τT (u)”,
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which actually means xkT (u) ∈ τT (u). There are only a finite number of splitting

sets for a categorical splitting variable. In contrast, there are an infinite number

of splitting thresholds for the continuous predictor variable, in which case we al-

low the splitting threshold, τT (u), to take any value, including unobserved values;

in contrast, Chipman et al. (1998) restrict τT (u) at the observed values of xkT (u).

Such assignment of splitting rules will depend on XkT (u). This dependence and

its potential advantages was discussed by Buntine (1992). Another explanation of

data-dependent priors based on the Dirichlet process will be discussed in Section

2.2.2 when we specify the prior for the splitting threshold.

The splitting rules defined above are said to be deterministic because in each

internal node, variables (y, x) are assigned either to the left or to the right ac-

cording to the specified values. An alternative to deterministic splitting rules are

random splitting rules, where (y, x) are assigned the child nodes randomly. This

will be discussed in Chapter 7.

Writing T = (T, kT , τ T ), where kT = {kT (u), u ∈ a(T )} and τ T = {τT (u), u ∈

a(T )}, recursively induces regions RT(u) to each node u ∈ T , where

RT(u) =





X if u = 0,
RT(p(u)) ∩ {x ∈ X |xkT (u) ≤ τT (u)} if u odd,
RT(p(u)) ∩ {x ∈ X |xkT (u) > τT (u)} if u > 0 and even.

(1.12)

In particular, the regions in the leaves {RT(u), u ∈ b(T )} are disjoint and form a

partition of X . The right panel in Figure 1.4 displays the regions in the leaves of

the tree in the left panel.

Corresponding to the definition of subtrees Su(T ) above, we let Su(kT ) and

Su(τ T ) denote the splitting variables and splitting thresholds in the subtree Su(T ).

More precisely, for u ∈ T we have Su(kT ) = {kSu(T )(v) : kSu(T )(v) = kT (v +
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Figure 1.4: An example tree with splitting rules and the induced regions in its
leaves.

u2f(v)), v ∈ a(Su(T ))} and Su(τ T ) = {τSu(T )(v) : τSu(T )(v) = τT (v + u2f(v)), v ∈

a(Su(T ))}. For T = (T, kT , τ T ) and u ∈ T we will also use the notation Su(T) =

(Su(T ), Su(kT ), Su(τ T )).

1.4 Recursive partitioning

Suppose we have observations (yi, xi), i ∈ I, where I denotes the index set

{1, . . . , n}. The tree model specification (above) recursively partitions the data,

assigning subsets of I to each node corresponding to the regions RT(u) defined

above. Starting with the full data set at the root, NT(0, I) = I, the subset at

any node u is NT(u, I) = {i ∈ I|xi ∈ RT(u)}. The subsets in the leaves define

a partition of the full data set, denoted by LT(I) = {NT(u), u ∈ b(T )}. One

may express the partition of I in terms of partitions induced by subtrees. As an

example, for the tree in Figure 1.5 we list the partition of I in Table 1.3. This

notation will be helpful for illustrating the changes in the leaves when describing

the proposals in Chapter 3.
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Subtree Su(T) Partition of the full data set LSu(T)(NT(u, I))
T {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}
S1(T) {{1, 2, 3}, {4, 5, 6}}
S2(T) {{7, 8, 9}, {10, 11, 12}}
S3(T) {{1, 2, 3}}
S4(T) {{4, 5, 6}}

Table 1.3: The partition of I in terms of partitions induced by subtrees

Figure 1.5: An example tree. The subsets in the leaves define a partition of the
full data set

1.5 Statistical model in leaves

We focus on tree models in which the subset of y outcomes in any leaf u is viewed

as a random sample from a distribution with density φ(·|θu) (Chipman et al.,

1998). Key examples that will be discussed in later chapters are normal and

Bernoulli distributions for y.

Let {y}u denote all the outcomes that belong to node u, where u is a leaf node
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in b(T ). In the case of Bernoulli distributions, we assume

y =

{
1 w.p. pu,
0 w.p. 1 − pu,

(1.13)

for every y ∈ {y}u. In the case of normal distributions, we assume

y ∼ N(µu, σ
2
u) (1.14)

for every y ∈ {y}u. These two specifications indicate that the parameters defining

the distributions differ across leaves. This allows us to specify the prior for the

leaves parameters independently across leaves. A variation is to assume

y ∼ N(µu, σ
2) (1.15)

for every y ∈ {y}u. This differs from equation (1.14) that we assume a single

variance parameter for all the possible leaves in the tree. This specification is im-

portant when we consider the Autoregressive Tree model, which will be discussed

in Chapter 8. Aside from this application, we restrict attention to random sample

models within leaves in the remaining chapters in this thesis, although the new

tree priors and MCMC innovations are applicable more generally.

Another key example is the Weibull distribution for y. In this case, we assume

y ∼ Weibull(αu, βu) (1.16)

for every y ∈ {y}u, where αu and βu are the shape parameter and scale param-

eter respectively. The density of the Weibull distribution is defined as f(y) =

αβyα−1e−βyα

. When the survival data is right-censored, there are two types of

data. If yi is censored (ci = 1), it means at time yi the corresponding subject is

still alive. If yi is observed (ci = 0), yi is the death time of the corresponding
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subject. Define a function S(yi) = P (Y > yi|α, β) =

∫ ∞

yi

f(y)dy = e−βyα
i . Thus

the likelihood function is given by

L(αu, βu; {y, c}u, )

=
∏

j∈NT(u,I)

(f(yj)(1 − cj) + S(yi)cj)

= αn−ncβn−nc

∏

j∈NT(u,I)&cj=0

yα−1
j e−β

P

j∈N
T
(u,I) yα

j

(1.17)

where nc =
∑

j∈NT(u,I) cj is the number of censored observations in leaf node u

and n = |NT(u, I)| is the total number of observations in leaf node u, including

both censored and observed data.

In the above models, the terminal node distribution of Y does not depend

on x, which is mainly for constructing the partition. One further extension is

to define the conditional distribution of Y given x in each terminal node. Such

specification enriches the model structure in the terminal node. For example, as

an extension to equation (1.14) we can assume

y|x ∼ N(xβu, σ
2
u) (1.18)

for every {y, x} ∈ {y, x}u, where {y, x}u denotes all the observations belonging

to terminal node u. Such treed models are discussed in Chipman et al. (2002);

they can be used to describe a wider range of distributions. A special example,

Autoregressive tree models, will be discussed in Chapter 8, where y is time series

data and in each leaf node we regress the current value of y on the past values of

y.
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Chapter 2

Prior Model

For a complicated tree model T = {T, kT , τ T}, as specified in Chapter 1, model

selection is a challenge. Even considering only the tree structures without splitting

rules in the internal nodes, the number of trees increases rapidly with the size of

tree, as discussed in Section 1.1. Therefore it is difficult to enumerate and evaluate

all the tree models so as to find the “best” model. For example, suppose the data

has n observations and each observation has p predictors. Even if we restrict our

interest to all the trees with size of 5, there are 14 possible trees to choose from.

For each tree, we need to specify four splitting rules. In the limited case that all

splitting thresholds are restricted to the observed values, there are (n−2)p different

splitting rules that can be used in each internal node, resulting in about 56(n−2)p

trees to be evaluated. Furthermore, not every tree will be equivalently favored.

A very large tree leads to overfitting, while a very small tree, in the extreme case

a single node tree, does not have much predictive power. Therefore, instead of

listing all possible trees, we specify a prior distribution for T = {T, kT , τ T}. Then

we will explore the posterior distribution of the tree model given the data. The

prior specification can reflect our prior belief on tree size, tree shape, the choice
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of splitting rules, and the leaf node distribution.

A closed form prior specification is not very feasible, so we define a tree gen-

erating process described as follows:

1. Tree structure. Tree structure refers to the binary tree as defined in Section

1.2. This includes the size of the tree and the shape of the tree, which could

be balanced or skewed. Other than that, tree structure alone does not define

any partition.

2. Splitting rules. In step 1, tree structure defines internal nodes and terminal

nodes. In each internal node, we need to specify a splitting rule. Then the

partition of the predictor space is defined.

3. Leaf node distribution. Step 1 and step 2 define a partition of the predictor

space. In each sub-region, a distribution is specified in association with the

leaf.

In short, we define the “skeleton” of the tree first and then fill in splitting rules

so as to define the partition. This is different from the tree generating process

in Bayesian CART discussed in Chipman et al. (1998) and Denison et al. (1998).

Chipman et al. (1998) starts with a single node tree and then at each leaf node

makes a split with some probability. This is repeated until no split is made. In this

case, the size of tree depends on the choice of the splitting probability. Further-

more, a more sophisticated splitting probability, depending on the depth (level)

of the node, is introduced for controlling the tree shape. However, how the tree

shape, balanced or skewed, depends on that splitting probability is obscure, being

defined implicitly by the construction rather than explicitly. Denison et al. (1998)

claims that the tree shape (topology) is unimportant. Trees with the same size
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are considered to be from the same “class”. This specification does not consider

the hierarchically dependent structure of splitting rules when splitting rules are

filled in the tree. In our model, the prior distribution is specified hierarchically so

that the prior for each component in the tree model is clear. Furthermore, as we

will see in Chapter 3, this prior specification makes it easier to design proposals

in the Metropolis-Hastings algorithm.

2.1 Pinball prior for tree generation

The tree structure is determined by two factors: the size of the tree (the number of

terminal nodes) and the shape of the tree (the structure of nodes). Denison et al.

(1998) specified a prior on the number of leaves, and then a uniform prior over

trees with that number of leaves because trees with the same size are considered

to come from the same “class”. Note that this gives high prior probability to

unbalanced trees. Chipman et al. (1998) defined a tree-generating process where

the prior on the number of nodes and the shape of the tree is implicit, but make

it relatively difficult to incorporate a prior on the number of leaves. We would

like a prior distribution that can well control the size and the shape of the tree.

The novel pinball prior here overcomes this and extends both earlier approaches.

It is implemented by first specifying the size of the tree and then, given the size,

specifying the tree layout (balanced or skewed).

The construction is simple and intuitive: the prior generates a number of

terminal leaves m(T ), and then these leaves are cascaded down from the root

node, randomly splitting into left/right nodes at any node, according to a defined

probability distribution at that node until they define individual leaves - the leaves

fall down the tree as pinballs. This process is formally described as follows:

19



• Specify a prior density for tree size (number of terminal nodes) m(T ) ∼

α(m(T )) with support on a subset of {1, 2, · · · }.

• Noting m0(T ) = m(T ), recall that mu(T ) is the number of leaves in the

subtree Su(T ) below node u. At this node, these leaves are distributed to

either the left or the right according to some prior. Take β(ml(u)(T )|mu(T ))

as a prior density governing the generation of this split, where ml(u)(T ) is the

number of leaves, of the current total mu(T ), sent to the left child node l(u),

the remainder going to r(u). Note that the support of β(ml(u)(T )|mu(T )) is

on {1, 2, · · · , mu(T )−1} so that both the left child node and the right child

node has at least one leaf. Therefore the process ends when mu(T ) = 1 at

node u.

Then a full specification for T is given by

π(T ) = α(m0(T ))
∏

u∈a(T )

β(ml(u)(T )|mu(T )) for T ∈ T (2.1)

An obvious candidate for the prior distribution of tree size is a Poisson with

restriction that tree size is not 0, say m(T ) = 1 + Pois(λ) for specified λ. Prac-

tically, λ is specified according to some prior knowledge on the problem and/or

the size of data. An alternative candidate is a discrete uniform distribution on

{1, 2, · · · , Nmax} for some Nmax. The size of tree cannot be larger than the size

of data; therefore, we can specify a sufficient large Nmax, e.g. the number of

observations in the data.

Different choices are possible for function β(i|m). Recall that C(i) denotes

the number of possible tree structures with i leaves. Taking β(i|m) = C(i)·C(m−i)
C(m)

gives the uniform distribution over all trees of size m adopted in Denison et al.
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i 1 2 3 4 5 6
β(i|7) 0.34 0.09 0.07 0.07 0.09 0.34

Table 2.1: β(i|7) for different i, where β(·|m) is the one gives uniform distribution
over all trees of size m.

(1998) and in Chipman et al. (1998) as the one of the prior choices for splitting

probability. Except for very small tree sizes, the number of unbalanced trees of a

given size is much larger than the number of balanced trees of the same size, so this

choice of β(i|m) assigns a high prior probability to unbalanced trees. Table 2.1

shows the values of β(i|m) for different values of i when m is 7. The probability

of generating an unbalanced tree β(1|7) is about five times the probability of

generating a balanced tree β(3|7). A natural alternative is a uniform distribution

for β(i|m), i.e. β(i|m) = 1
m−1

for i = 1, · · · , m − 1, or β(i|m) = 1
2
[Bin(i −

1; m − 2, p) + Bin(i − 1; m − 2, 1 − p)], where Bin(·; n, p) denotes the binomial

mass function with parameters n and p, where p is specified so as to represent

the prior knowledge on the shape of the tree. With p = 1/2, the latter gives a

balanced tree with high probability, whereas with p close to zero, the unbalanced

trees get higher prior probabilities. When this prior is used, we call the prior for

this tree generating process a pinball prior. Each leaf falling down as a pinball

has 1/2 probability of going to the left child node independently. So the number

of pinballs sent to the left child node, assuming there is at least one, follows a

truncated binomial distribution. Table 2.2 shows the case when p = 1/2.

Simulation from this symmetric prior is direct from its definition: see examples

in Figure 2.1. Note that asymmetric prior could be used to encourage trees that

are more skewed in overall shape.

21



0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

21 22 25 26 27 28

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

21 22 25 26 27 28 29 30

53 54 57 58

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

17 18 21 22 23 24 25 26 27 28 29 30

47 48

0

1 2

3 4 5 6

7 8 9 10 13 14

17 18 19 20 27 28 29 30

37 38 39 40 59 60

77 78

Figure 2.1: Four samples from the pinball prior with α(m) = 1+Pois(m−1; 15)
and β(i; m) = 1 + Bin(i − 1; m − 1, 0.5).
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i 1 2 3 4 5 6
β(i|7) 0.03 0.16 0.31 0.31 0.16 0.03

Table 2.2: β(i|7) for different i, where β(·|m) is used in pinball prior for p = 0.5.

2.2 Prior for splitting rules

In Section 2.1, we specified the prior for the tree structure. Given the tree struc-

ture, we need to specify splitting rules to each internal node so as to define a

partition in the predictor space. For each internal node, we will first specify the

prior for selection of the splitting variable, and then, given the selected splitting

variable, we specify the prior for the splitting threshold.

2.2.1 Prior for selection of splitting variables

A simple approach to specify the prior for selection of splitting variables is to

assume each kt(u) is independently generated from a fixed discrete distribution

over the p predictor variables and then choose variable xi with probability γ(i),

i ∈ P. Thus

π(kT |T ) =
∏

u∈a(T )

γ(kT (u)). (2.2)

The independence between priors for each internal node can simplify the computa-

tion of the acceptance probability in Metropolis-Hastings algorithm. Furthermore,

this specification can also help circumvent Reversible Jump MCMC (Green, 1995)

in the case that the new splitting rules in the proposal are sampled from the prior,

as discussed in Chapter 3. Note that the same predictor may be used as a splitting

variable in several internal nodes.

A common choice of γ(·) is the probability mass function of the discrete uni-
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form distribution. Alternatively, higher prior weight can be assigned to predictors

that are thought to be more important. For this purpose, the correlation between

predictors in the data can be used to specify γ(·). A more sophisticated way of

specifying γ(·) is to redistribute the prior weight dynamically depending on the

splitting variables in “ancestor nodes”, assuming that the splitting rules are filled

in top-down order. For example, higher prior weight can be assigned to predictors

that have been already used in an ancestor node, which reflects the belief that

the predictors in ancestor nodes have some explaining power and we would like to

continue exploring their explanatory ability rather than randomly selecting one

of the other unknown predictors. The ancestor nodes of any node u are all the

nodes from which the subtree contains u. Let Au(T ) denote such a set. Formally

Au(T ) = {v|u ∈ Sv(T ), v ∈ T}. (2.3)

For example, for the tree shown in Figure 1.3, A9(T ) = {0, 1, 4} and A5(T ) =

{0, 2}. Given the ancestor set, γ(·) for the current node u depends on Au(T ). And

therefore this probability is no longer independent of the others and is denoted as

γAu(T )(kT (u)). Thus

π(kT |T ) =
∏

u∈a(T )

γAu(T )(kT (u)). (2.4)

The dependence in prior specification for the selection of splitting variables can

be used to give preference to some “important” predictors in choosing the split-

ting variable. This variable selection idea is discussed in Chipman et al. (1998),

where they choose to put more mass on variables already used in the ancestor set.

However, the use of ith predictor should be restricted if it has been used for quite

a few times so that the other predictors can be visited as well. The introduction

of ancestor sets makes it possible to incorporate this restriction.

24



One obvious drawback of such prior specification is the complex computa-

tion. If a splitting rule in the top level node (close to the root node) of the tree

is changed, all the prior probabilities associated with the nodes in the subtree

need to be updated. Obviously, this increases the computation time significantly.

Furthermore, this specification requires the use of the reversible jump MCMC.

2.2.2 Prior for splitting threshold

There are two different types of splitting variables: categorical and continuous.

Different prior distributions are specified for these two cases.

When the chosen splitting variable (kT (u)) in node u is a categorical variable,

the splitting threshold τT (u) (more precisely, splitting set) is a subset of the space

χkT (u). As discussed in Section 1.3, the splitting rule is written as “xkT (u) ≤

τT (u)”, indicating that xkT (u) ∈ τT (u). There are a total of 2|χkT (u)| − 2 possible

splitting rules, where |χkT (u)| denotes the number of possible outcomes of splitting

variable kT (u). A natural choice for the prior distribution of such splitting rules

is the discrete uniform distribution, that is, each possible subset is chosen with

probability 1/(2|χkT (u)| − 2).

When the chosen splitting variable (kT (u)) is continuous, there are two ways

to choose the values for the splitting threshold. In the first approach, some grid

points, e.g. quantiles, within the range of the predictor are chosen as the possible

splitting thresholds (Chipman et al., 1998; Denison et al., 1998). In the second

approach, this restriction is relaxed by allowing the splitting threshold to take any

value from the space χkT (u).

If the size of a tree is greater than the number of observations, the posterior

probability of such tree, as discussed in Chapter 3, is 0, so there are only a
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finite number of trees (without considering splitting rules) with positive posterior

probability. In the first approach when our interest is restricted to finite possible

splitting rules, the number of trees in the state space to be explored is finite as

well. Therefore, when new splitting rules are proposed in the Metropolis-Hastings

algorithm, the proposal can be considered as a transition from one state to the

other in a finite tree space. Then there is no dimensional change in the parameter

and reversible jump MCMC can be avoided. While this prior specification relies

on the data, however, it can be interpreted as an approximation to the distribution

of τT (u) given the underlying unknown distribution of xkT (u), FkT (u).

Suppose we observe XkT (u) = {xkT (u)
1 , x

kT (u)
2 , . . . , x

kT (u)
r } for the splitting vari-

able kT (u) in node u. These r values are random samples from an unknown

distribution F kT (u)(·). We assume a Dirichlet process prior on F kT (u)(·)

F ∼ D(αF0) (2.5)

where D(αF0) denotes a Dirichlet process with parameter αF0. Then the posterior

distribution of F kT (u) given XkT (u) is also a Dirichlet process

p(F kT (u)|XkT (u)) ∝ D(αF0 +

r∑

j=1

δ
x

kT (u)
j

). (2.6)

Therefore a data-dependent prior for the splitting threshold τT (u) can be explained

as

p(τT (u)|XkT (u)) =

∫
p(τT (u)|F kT (u))dp(F kT (u)|XkT (u))

≈ p(τT (u)|F̂ kT (u))
(2.7)

where F̂i is (αF0+

r∑

j=1

δ
x

kT (u)
j

)/(α+r), just the empirical CDF for XkT (u) as α goes

to 0. Therefore the data-dependent prior is an approximation to p(τT (u)|F̂ kT (u))
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and p(τT (u)|F̂ kT (u)) is used when it is hard to find a data-independent prior

p(τT (u)|F kT (u)).

In the case that the splitting threshold can take any value from χkT (u) given

that the splitting variable kT (u) is chosen for node u, the support of the prior

distribution for this splitting threshold must contain χkT (u). We denote its density

function as δkT (u)(τ). Usually, χkT (u) varies greatly with kT (u), so the data are pre-

processed so that there exists a χ such that χkT (u) ⊆ χ and the prior distribution

for the splitting threshold is defined on χ. For this purpose, there are two natural

choices. The first one is

x̃i =
xi − bi

ai − bi
(2.8)

for i = 1, 2, . . . , p, where ai, bi ∈ χi such that x̃i is within [0, 1]. Given the data,

we can simply take ai = max(X i) and bi = min(X i). In this case a uniform

distribution on [0, 1] is specified as the prior for the splitting threshold.

Another way to pre-process the data is

x̃i =
xi − X̄ i

ŝd(X i)
(2.9)

for i = 1, 2, . . . , p, where X̄ i and ŝd(X i) are the mean and the standard devia-

tion estimated from the data. A normal distribution with mean 0 and standard

deviation 1 is a natural choice for the prior.

In our tree model there are two parameters kT (u) and τT (u) associated with

each internal node. So adding or deleting nodes in the tree will lead to a change

in the number of splitting rules and hence the dimension of parameters. Green

(1995) designed a reversible jump MCMC algorithm for such situation. We will

discuss this problem in detail in Section 3.2.
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Usually we take τT (u) to be conditionally independent. Thus the prior for

splitting thresholds given the selection of splitting variables is

π(τ T |T, kT ) =
∏

u∈a(T )

δkT (u)(τT (u)). (2.10)

As in the selection of splitting variables, this conditional independence simplifies

the computation of the acceptance probability in the Metropolis-Hastings algo-

rithm. Similarly, we can also specify the prior distribution for splitting threshold

conditional on the ancestor nodes. In some cases this can reduce the computa-

tional cost. For example, if a categorical predictor is already used in one of the

ancestor nodes, then the size of the possible splitting rules will be reduced when

we consider the splitting rules with this predictor. This is because some splitting

rules will lead to an empty node. Thus we do not need to consider these “invalid”

splitting rules and a discrete uniform distribution over all the “valid” splitting

sets is used instead. Conditioning on the ancestor nodes, the size of these “valid”

splitting rules is usually small.

2.3 Prior for leaf parameters

Denote the observed response data as y = {yi}n
i=1. We note that, given T and

θ, the likelihood function depends on T only through the induced partition of

observations to the leaves, LT(I). If we assume that the leaf parameters are

independent of each other across leaves, e.g. equations (1.13), (1.14), (1.16) and

(1.18), then the data within leaves are independent random samples.

f(y|θT , T) =
∏

u∈b(T )

f({y}u|θu, T) (2.11)
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where {y}u denotes all the outcomes that belong to node u and θu is the cor-

responding parameters. If the observations across leaves share some common

parameter as in equation (1.15), we have

f(y|θT , T) =
∏

u∈b(T )

f({y}u|θu, θ, T) (2.12)

where θ is the common parameter shared by the leaves. Our focus is to explore the

space of the tree model, more specifically the induced partition of observations.

In other words, we are interested in π(T|y), which is

π(T|y) ∝
∫

f(y|T, θT )π(θT |T)π(T)dθT

= π(T)

∫
f(y|T, θT )π(θT |T)dθT

= π(T)f(y|T).

(2.13)

In exploring the space of the tree model, we do not need to specify the leaf

parameters explicitly. The leaf parameters are specified after the partition is

formed. Therefore we only need to compute the implied marginal likelihood

f(y|T) =

∫
f(y|θT , T)π(θT )dθT . (2.14)

In the case that the leaf parameters are independent of each other across leaves,

the computation of the marginal likelihood is reduced to the multiplication of the

marginal likelihoods in each leaf

f(y|T) =
∏

u∈b(T )

f({y}u|T). (2.15)

However, in the case of equation (2.12), we do not have such separation of the
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marginal likelihood across leaves. Instead we have

f(y|T) =

∫ ∏

u∈b(T )

f({y}u|θ, T)dθ (2.16)

which brings in more complexities in leave-one-out cross validation, as discussed

in Chapter 5 and Chapter 7.

In most cases, we assume that the prior ρ(θu) is such that we can analytically

compute the implied marginal likelihood, yielding the overall marginal likelihood

via tree structures, so the analytical form of the marginal likelihood is available.

In the case that there is no conjugate prior, we need numerical approximation of

the implied marginal likelihood.

2.3.1 Parameter priors for classification trees

For the leaf distribution specified in equation (1.13), a natural choice for the prior

is the beta distribution

pu ∼ Beta(a, b) (2.17)

where a and b are the pre-specified hyperparameters. Under this prior, the

marginal likelihood for leaf node u is given by

f({y}u|T) =

B

(
∑

j∈NT(u,I)

yj + a, nu −
∑

j∈NT(u,I)

yj + b

)

B(a, b)
(2.18)

where B(·, ·) is the beta function, NT(u, I) is all the observations in leaf node u,

and nu = |NT(u, I)| is the number of observations in leaf node u. Therefore the
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Figure 2.2: The probability density function of the beta distributions for different
parameters.

overall marginal likelihood is

f(y|T)

=
∏

u∈b(T )

f({y}u|T)

=
∏

u∈b(T )

B(
∑

j∈NT(u,I) yj + a, nu −
∑

j∈NT(u,I) yj + b)

B(a, b)
.

(2.19)

Without any prior knowledge on p, we can choose a = 1 and b = 1. In this case

the beta prior in equation (2.17) is uniformly distributed. Alternatively, we can

assign small values for both a and b to give prior preference to “clean” leaf nodes.

Figure 2.2 displays the probability density function of the Beta distribution for

(a = 5, b = 5), (a = 1, b = 1) and (a = 0.01, b = 0.01). The red solid line,

corresponding to (a = 0.01, b = 0.01), assigns most of the probability mass to

small p and large p.
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It is easy to show that for a given tree, the overall marginal likelihood f(y|T)

will be larger if the distributions of {y}u at each node are more homogeneous. If

the outcome has more than two possible values, a Dirichlet prior is used and the

computation of overall marginal likelihood is similar.

2.3.2 Parameter priors for regression trees

For the leaf distribution specified in equation (1.14), we choose the inverse gamma

distribution as the prior for σ2
u and normal distribution as the prior for µu given

σ2
u, namely

µu|σ2
u ∼ N(µ0, σ

2
u/n),

σ2
u ∼ IG(α, β),

(2.20)

where µ0, n, α and β are pre-specified hyperparameters. A random variable x

following a IG(α, β) is defined by its density function

f(x) =
1

Γ(α)βα

1

xα+1
e−

1
βx , x > 0. (2.21)

Under this prior, the marginal likelihood for leaf node u is given by

f({y}u|T) =

(
1√
2π

)nu Γ(α + nu

2
)

Γ(α)βα

√
n

nu + n

(
1

Bu

)α+2nu

(2.22)

where

Bu =
nµ2

0 +
∑

j∈NT(u,I) y
2
j −

(nµ0+
P

j∈N
T
(u,I) yj)

2

nu+n

2
+

1

β
. (2.23)

Then the overall marginal likelihood is just the multiplication of f({y}u|T) over

all the leaf nodes. We can use the observed y to guide the choice of the hyperpa-

rameters (µ0, n, α, β). For example, we may want to choose a small n so that the

prior for µu is flat.
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For the distribution specified in equation (1.15), the prior for (µu, σ
2) is given

by

µu|σ2 ∼ N(µ0, σ
2/n),

σ2 ∼ IG(α, β).
(2.24)

Under this prior, for each leaf node u we can compute

f({y}u|σ2, T)

=

√
n

nu + n
(

1√
2πσ2

)nue−
nµ2

0+
P

j∈NT(u,I) y2
j −

(nµ0+
P

j∈NT(u,I) yj)2

nu+n

2σ2

(2.25)

Therefore the overall marginal likelihood is

f(y|T) =

∫ ∏

u∈b(T )

f({y}u|σ2, T)π(σ2)dσ2

= Γ(A)

(
1

B

)A
1

Γ(α)βα

∏

u∈b(T )

√
n

nu + n

(
1

2π

)nu (2.26)

where

A =
∑

u∈b(T )

(α +
nu

2
+ 1) − 1 (2.27)

and

B =
1

β
+
∑

u∈b(T )

nµ2
0 +

∑
j∈NT(u,I) y2

j −
(nµ0+

P

j∈NT(u,I) yj)2

nu+n

2
(2.28)

Note that f(y|T) 6= ∏
u∈b(T )

f({y}u|T).

2.3.3 Parameter priors for survival trees

If the leaf distribution is Weibull as specified in equation (1.16), no conjugate

prior is available. We have to compute the marginal likelihood approximately for
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some prior. The prior we use is

βu|αu ∼ Γ(a, b),
αu ∼ Unif(L, U),

(2.29)

where L and U represent prior knowledge on the lower bound and the upper bound

of αu, and a and b are pre-specified hyper-parameters. Generally (a, b) cannot be

arbitrarily determined. We know that, given (αu, βu), the median survival time

m satisfies

βum
αu = log2 (2.30)

Therefore the choice of (a, b) should change with αu so that the median survival

time from the prior will be consistent with the data. Suppose from observing the

data we have prior “guesses” on the median survival time as (m1, m2, . . . , mk).

For each imaginary “observation” on the survival time mi, we want f(βu|αu) ∝

βue
−βu

m
αu
i

log 2 so that the prior mean of βu satisfies E(βu|αu)m
αu

i = log 2. With the

k guesses (m1, m2, . . . , mk), we want f(βu|αu) ∝ βk
ue−βu

Pk
i=1 m

αu
i

log 2 . Therefore an

appropriate choice for (a, b) is a = k and b =
Pk

i=1 mαu
i

log 2
.

Under this prior, we can compute f({y, c}u|αu, T) analytically

f({y, c}u|αu, T)

= αn−nc

u

∏

j∈NT(u,I)&cj=0

yα−1
j

ba

Γ(a)

Γ(n − nc + a)

(b +
∑

j∈NT(u,I) y
α
j )n−nc+1

(2.31)

The further marginalization

∫
f({y, c}u|αu, T)f(αu|T)dαu can not be computed

analytically. Instead we will compute the integral approximately by Riemann

summation. Suppose (α1, α2, . . . , αN) are K uniform grid points from [L, U ]. The
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Riemann sum

K∑

j=1

f({y, c}u|αj, T)f(αj|T)∆ (2.32)

is an approximation to the integral

∫
f({y, c}u|αu, T)f(αu|T)dαu, where ∆ =

(U − L)/K.

2.4 Discussion

In this chapter, we discussed the prior selections for tree model T = {T, kT , τ T}

at length. This is the foundation of our Bayesian tree model. The pinball prior for

tree generation allows us to represent our preference for tree size and tree shape.

This prior does not involve the specification of the splitting rules. This feature

is key to the design of the innovative Restructure proposal, to be introduced in

Chapter 3. Moreover, the basic proposals, introduced by Chipman et al. (1998)

and Denison et al. (1998), also benefit from this pinball prior as the computation

cost can be greatly reduced.

We also discussed the choice of prior for splitting rules. We will use the inde-

pendent prior for both the choice of splitting variable and the splitting threshold;

this has the advantage of simplifying the calculation of acceptance probabilities

in the Metropolis-Hastings algorithm. Further, we also propose other prior speci-

fications. At each level, the prior for the choice of splitting variable and splitting

threshold depends on the status of the ancestor nodes. The advantage of this

prior specification is discussed. We do not cover the comparison of these two

prior specifications, which is an area for future research. Using the Dirichlet pro-

cess prior, we interpret one special choice of the prior for splitting threshold, where
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the splitting threshold only takes values from some grid points from the data.

In the last part of this chapter, we argue that the likelihood function depends

on T only through the induced partition of observations to the leaves. In this

case, we do not need to specify the leaf node parameters explicitly. This feature

reduces the size of the tree model and makes it easier to design the proposals in

the Metropolis-Hastings algorithm in Chapter 3.

With the well-defined prior for tree model and the Metropolis Algorithm in

Chapter 3, we will be able to explore the posterior distribution. Several examples

will be studied in later chapters.
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Chapter 3

Posterior Analysis

With the prior π(T) = π(T )π(kT |T )π(τ T |T, kT ) defined in Chapter 2, we have

the posterior on tree model space given by

π(T|y) ∝ π(T)f(y|T), (3.1)

In this specification, there is no restriction on the number of data points in the

leaf. In this case, a tree with an empty leaf might be sampled. Such trees are

not desirable in terms of computation and inference. A technical point is that we

actually need to restrict the choice to trees with non-empty leaves; more generally,

we may decide to require a minimum of say, h data points in leaf, and thus we

aim to sample from

π̃(T|y) ∝ π(T|y)
∏

u∈b(T )

I[|NT(u, I)| ≥ h]. (3.2)

In the following text, if not otherwise explicitly stated we use π(T|y) to denote

the posterior on the tree model space with the restriction (h = 1) to simplify the

notation.
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If we further restrict the splitting threshold on some discrete values, there will

be only a finite number of trees of interest since any tree with the size greater

than the number of observation has a posterior probability of 0. However, even

though in this special case the number of trees is finite, there will be too many

trees to evaluate, as discussed in Chapter 1 and Chapter 2, and therefore a direct

sampling is not feasible. For such huge spaces, a Metropolis-Hastings algorithm

is used to explore the posterior tree space.

3.1 Metropolis-Hastings algorithm

For an arbitrary tree T
0, a chain (Tn) is generated using the Metropolis-Hastings

algorithm. A conditional density q(y|x), the support of which is larger than our

objective density π(T|y), is then defined. Under mild conditions, such algorithms,

as described in Figure 3.1, produce a chain with limiting distribution π(T|y).

Thus, for a large enough n, T
n is considered to have distribution from π(T|y). In

practice we usually generate dependent samples T
n, Tn+d, Tn+2d, . . . for some d.

Metropolis-Hastings Algorithm
Starting from T

0, iteratively simulate from T
i to T

i+1 by
Generate T

′ ∼ q(T′|Ti)
Take T

i+1 = T
′ with probability ρ(Ti, T′) and T

i+1 = T
i otherwise

where ρ(Ti, T′) = min

{
π(T′|y)

π(Ti|y)

q(Ti|T′)

q(T′|Ti)
, 1

}
.

End.

Figure 3.1: Metropolis-Hastings algorithm for generating trees.

Note that the normalizing constant is not needed to calculate the acceptance

probability ρ(Ti, T′). To implement this algorithm, we need to specify the con-

ditional density proposal q(T′|T). The Metropolis-Hastings methods in Chipman
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et al. (1998) and Denison et al. (1998) are quite similar and form our starting

points. These two key articles also share the same honest conclusion: their MCMC

methods, based on “local moves” around the tree space, are extraordinarily slow

to converge. They recommend restarts of the MCMC algorithm combined with

ad-hoc weighting of the generated trees. Because the calculation of the weights is

not clear, inferences based on model averaging does not seem appropriate. Our

major contribution here is to introduce novel MCMC moves that seem to solve

the convergence problem, without restarts or weighting of the realizations. All

trees (after convergence) should be assigned the same weight for model averaging.

Moreover, if the distribution has multiple modes, the probability mass contained

in a specific mode can be easily estimated by the fraction of time that the Markov

chain spends in the mode.

Our MCMC method uses four Metropolis-Hastings proposals, namely “change”,

“grow/prune”, “swap” and “(radical) restructure”. The first three proposals are

those of Chipman et al. (1998) and Denison et al. (1998). In the notation, we use

primes to indicate proposal/potential new values so that, for example, T and T
′

are the current and the proposed/candidate new trees, respectively. At each step,

one of the four proposals is used with some probability. For example, the three

basic moves may be chosen with probability 0.33 respectively and the restructure

move may be chosen with probability 0.01. Alternatively, one can take one itera-

tion to mean a series of basic moves and restructure moves, for example, 50 change

moves, 50 grow/prune moves, 50 swap moves and 1 restructure move. In this text,

we use the latter approach since it is easier to compare between algorithms with

restructure move and without restructure move.

To illustrate these four proposals, we construct a data set as shown in Table 3.1.
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Obs 1 2 3 4 5 6
x1 0.00 0.10 0.20 0.30 0.40 0.50
x2 0.10 0.30 0.40 0.48 0.56 0.57

Obs 7 8 9 10 11 12
x1 0.55 0.60 0.65 0.70 0.80 0.90
x2 0.00 0.20 0.40 0.60 0.80 1.00

Table 3.1: Example data, with n = 12, used to illustrate the Metropolis–Hastings
proposals.

There are twelve observations and two predictors in this dataset. Both predictors

are continuous variables. The proposals are described as follows:

3.2 Basic moves

The three basic moves, namely “change”, “grow/prune” and “swap”, propose a

small change to the tree structure and/or the splitting rules, and thus are called

local moves.

3.2.1 Change proposal

For the dataset in Table 3.1, an illustration of the move is shown in Figure 3.2.

The tree in the left panel is the current one. The splitting rule X2 < 0.5 in node

u = 2 is chosen to be changed. The proposed new splitting rule is X2 < 0.3. As

a result, the 9th observation is moved to leaf L4. Note that this change proposal

does not change the tree structure or other splitting rules. So in the case that

the new splitting rule is drawn independently of the other splitting rules in the

tree and the independent prior for splitting rules is used, the calculation of the

posterior probability ratio involves only the change in the likelihood and in the

prior probability associated with the chosen splitting rule. The calculation can
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then be much simplified, as

ρ(T, T′) = min

{
π(T′|y)

π(T|y)

q(T|T′)

q(T′|T)
, 1

}

= min

{
f(y|T ′)π(k′(u)|T ′)π(τ ′(u)|k′, T ′)

f(y|T )π(k(u)|T )π(τ(u)|k, T )

q(T|T′)

q(T′|T)
, 1

}
.

(3.3)

It is easy to see that the change move is reversible. In practice, we usually choose

q(T′|Ti) to be symmetric so that the ratio
q(Ti|T′)

q(T′|Ti)
= 1.

Figure 3.2: Illustration of the change proposal. The tree on the left is the current
one in the chain. The splitting rule in node 2 is changed and the tree on the right
is proposed.

Figure 3.3 contains pseudo-code for the change proposal mechanism. In propos-

ing the new splitting variable and the corresponding splitting rule, we usually draw

them from the prior. In most cases, the independent prior for splitting rules is

used.
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Function ProposeChange(T,I)
Set T ′ = T .
Draw u from a uniform distribution on a(T ′).
Draw kT ′(u) from γ(·).
Draw τT ′(u) from δkT ′ (u)(·).
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for v ∈ a(T ) \ {u}.
Return T

′

End.

Figure 3.3: Change Proposal: pseudo-code for generating a potential new tree
in the change move. Notation from Chapter 1 is used.

3.2.2 Grow/prune proposal

Grow/prune proposals propose to split a randomly selected leaf into two, or to

prune the tree by merging two randomly selected sibling leaves. For the con-

structed data set shown in Table 3.1, an illustration of the move is shown in

Figure 3.4. If we propose a grow/prune move, we will perform a grow move with

probability 0.5 and a prune move otherwise. For example, suppose the tree shown

in the left panel of Figure 3.4 is the current one. If we decide to perform a grow

move, one of the leaf nodes will be chosen. In this example, L3 is chosen and we

assign a new splitting rule X2 < 0.5 to this node. This node is thus split into

two leaf nodes and itself becomes an internal node. The leaf L3, which contains

observations (7, 8, 9, 10, 11, 12), is then split into two, resulting new leaf nodes L3

and L4, which contains observations (7, 8, 9) and (10, 11, 12) respectively. Noting

that this grow move proposes a new splitting rule as well as a change in the tree

structure, the calculation of the posterior probability ratio involves not only a

change in the likelihood and splitting rules but also a change in tree structure.

However, in grow moves the change in likelihood involves only the chosen leaf in

the current tree. The calculation of acceptance probability can be simplified since
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Figure 3.4: Illustration of grow/prune proposal. From the tree on the left to the
one on the right, it is a grow move. In the reverse direction, it is a prune move.

the likelihood of the other leaves remains unchanged.

ρ(T, T′)

= min

{
π(T′|y)

π(T|y)

q(T|T′)

q(T′|T)
, 1

}

= min

{
f(ỹ|T ′)π(k′

1(u), k′
2(u)|T ′)π(τ ′

1(u), τ ′
2(u)|k′

1, k
′
2(u), T ′)π(T ′)

f(ỹ|T )π(k(u)|T )π(τ(u)|k, T )

q(T|T′)

q(T′|T)
, 1

}

(3.4)

It is easy to see that grow and prune moves are each reversible and comple-

mentary. For example, if the tree shown in the right panel of Figure 3.4 is the

current tree, one of the possible new trees after prune move is the one shown in

the left panel. The calculation of the acceptance probability is similar to equation

(3.4). Figure 3.5 gives pseudo-code for a grow/prune move. Similar to the change

move, the new splitting rule is usually drawn from the prior.

In the case that all the splitting thresholds for the corresponding splitting

variables are restricted to the grid points from the data, there will be only a finite
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Function ProposeGrowPrune(T,I)
With probability 1

2
I(m0(T ) > 1) set Igrow = 0, else set Igrow = 1.

If (Igrow = 1)
Draw u from a uniform distribution on b(T ).
Set T ′ = T ∪ {l(u), r(u)}.
Draw kT ′(u) from γ(·).
Draw τT ′(u) from δkT ′ (u)(·).
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for each v ∈ a(T ).

Else
Draw u from a uniform distribution on the set {u ∈ a(T )|l(u),
r(u) ∈ b(T )}.
Set T ′ = T \ {l(u), r(u)}.
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for each v ∈ a(T ′).

End.
Return T

′.
End.

Figure 3.5: Grow/Prune Proposal: pseudo-code for generating a potential new
tree in grow/prune move. Notation from Chapter 1 is used.

number of trees in the posterior space, as mentioned in Section 2.2.2. In this

case, the grow/prune proposal (and other proposals) just move the chain in a

finite discrete space. However, in the case that the splitting threshold can take

any value and the prior distribution for the splitting threshold is continuous, the

dimension of the parameters is changed when the grow/prune move is proposed.

Thus the grow/prune proposal is a reversible jump type of move. Green (1995)

shows that the appropriate acceptance probability for such move should be

ρ(T, T′) = min

{
π(T′|y)

π(T|y)

q(T|T′)

q(T′|T)

∣∣∣∣
∂T

′

∂T

∣∣∣∣ , 1
}

(3.5)

The only difference between equation (3.5) and (3.4) is the Jacobian; however, as

we propose the new splitting variables and splitting thresholds independently of

the other splitting rules, the associated Jacobian will always equal unity. This is
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true even a dependent prior for splitting rules is used, so in the following analysis,

we will simply refer to equation (3.4) instead of equation (3.5).

3.2.3 Swap proposal

The swap move proposes to swap the splitting rules in a randomly selected parent-

child pair that are both internal nodes. For the constructed data shown in table

3.1, an illustration of a swap move is shown in Figure 3.6. The left panel shows the

current tree. In this tree, the possible parent-child pairs to be selected are (0, 1)

and (0, 2). Suppose (0, 1) is chosen and thus the splitting rules associated with

node 0 and 1 are swapped. As a result, the leaf node L2, L3 and L4 have been

changed. More generally, after the swap move proposed to the parent-child pair

(u, l(u)) or (u, r(u)), all the leaf node LSu(T)(NT(u, I)) will be changed. Therefore

the calculation of the acceptance probability usually involves a big change in the

likelihood if the chosen parent node is in the upper level. But the swap move just

swaps the splitting rules in the chosen parent-child pair and does not change the

tree structure and the splitting rules. Therefore when the independent priors for

splitting rules are used, the swap move does not change the prior ratio and the

posterior ratio can be simplified to the likelihood ratio. The acceptance probability

is

ρ(T, T′) = min

{
π(T′|y)

π(T|y)

q(T|T′)

q(T′|T)
, 1

}

= min

{
f(y|T ′)

f(y|T )

q(T|T′)

q(T′|T)
, 1

}
.

(3.6)

However, if the dependent prior for splitting rules is used, the prior probability

is changed when the splitting rules are swapped. In this case, the calculation of

prior ratio cannot be simplified and the prior probability for the splitting rules in
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Figure 3.6: Illustration of a swap proposal. The parent-child pair (0, 1) of the
current tree in the left panel is chosen and swapped. The resulting tree is shown
in the right panel.

Su(T) need to be evaluated.

A swap move is reversible to itself. Figure 3.7 contains the pseudo-code for the

swap proposal mechanism. Out of all the possible parent-child pairs, we choose

one of them uniformly. Note that the resulting new tree after the swap proposal

could have an empty leaf. For example, if the parent-child pair (0, 2) in the tree

displayed in the right panel of Figure 3.6 is chosen to be swapped, that is, the

splitting rules x2 < 0.45 and x2 < 0.5 are swapped, the right child of node 2 in

the new tree is an empty leaf node. In this case, we just keep the current tree.

3.3 Restructure Moves

From Section 3.2, we can see that the three basic moves only change the tree model

(T = (T, k, τ )) locally and thus change the partition of observations into leaves.

In the huge tree space, one should expect there are many “good” trees with high
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Function ProposeSwap(T,I)
Set T ′ = T .
Draw (u1, u2) from a uniform distribution on a(T ′)

that (u1, u2) is a parent-child pair.
Set kT ′(u1) = kT (u2), and τT ′(u1) = τT (u2).
Set kT ′(u2) = kT (u1), and τT ′(u2) = τT (u1).
Set kT ′(v) = kT (v) and τT ′(v) = τT (v) for v ∈ a(T ) \ {u1, u2}.
Return T

′

End.

Figure 3.7: pseudo-code for the swap move.

probabilities. Using only basic moves, it may take a long time for the MCMC

methods to move from one such good tree to the others. The restructure move

is a new proposal which aims to propose large changes in T = (T, k, τ ) without

changing the number of leaves nor the partition of observations into leaves. In

this section we introduce the restructure move and its variations.

3.3.1 The restructure proposal

An illustration of the restructure move is shown in Figure 3.8 and Figure 3.9 for

the constructed data shown in Table 3.1. Suppose the tree shown in Figure 3.8(a)

is the current one. Then the restructure proposal for this tree consists of the

following steps:

1. For the tree model T shown in Figure 3.8(a), we first find the corresponding

partition of observations into leaves, LT(I). Then the tree model T will be

discarded and a new tree model T
′ = (T ′, k′, τ ′) with the same partition

LT(I) = LT′(I) will be proposed;

2. In order to propose a candidate T
′, we first identify all the possible pairs of

splitting variables and splitting thresholds for node 0. We require that there
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(c)
Figure 3.8: Illustration of a restructure move with the constructed data set in
Table 3.1. Note that the figure continues on the next page. (a) Current tree and
the corresponding partition of observations into leaves; (b) Possible splits for the
root node; (c) Choose the first splitting rule and make the split;
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Figure 3.9: (cont.) Restructure move: (d) Possible splits for node 1; (e) Choose
the splitting rule and make the split for node 1; (f) The candidate tree proposed
by the restructure move. 49



be at least one leaf in each of the two subtrees S1(T
′) and S2(T

′) of node 0. In

Figure 3.8(b) all the possible intervals for τ ′(0) for k′(0) = 1 and for k′(0) = 2

are shaded. Three possible intervals exist for k′(0) = 1, and two intervals

for k′(0) = 2. They are τ ′(0) ∈ (0.2, 0.3) ∪ (0.5, 0.55) ∪ (0.65, 0.75) when x1

is chosen and τ ′(0) ∈ (0.4, 0.5)∪ (0.57, 0.60) when x2 is chosen. We propose

values for (k′(0), τ ′(0)) by first sampling one of the five possible intervals

uniformly at random and thereby generating a value for τ ′(0) uniformly at

random within the chosen interval. For example, if the interval (0.57, 0.60)

corresponding to x2 is chosen, we therefore set k′(0) = 2. By proposing new

splitting threshold τ ′(0), say 0.58, we find the new splitting rule x2 < 0.58

for node 0 of the new tree.

3. After the splitting rule is proposed, T
′ is partly specified by (k′(0), τ ′(0)),

LS1(T′)(I) and LS2(T′)(I), as shown in Figure 3.8(c). More specifically, the

splitting rule x2 < 0.58 produces LS1(T′)(I) = {{1, 2, 3, }, {4, 5, 6}, {7, 8, 9}}

and LS2(T′)(I) = {{10, 11, 12}}. The right subtree S2(T
′) now contains only

one leaf LS2(T′)(I) (L4 in the figure). By the restriction that there is at

least one leaf in the subtree, the subtree from this node has been completely

specified and no further split will be made for this node.

4. The left subtree S1(T
′) contains three leaves and is split into two subtrees,

LS3(T′)(I) and LS4(T′)(I), by repeating the process just described. Figure

3.9(d) shows the possible intervals for τ ′(1) for k′(1) = 1 and k′(1) = 2. We

again follow the sampling method described in step 2 and a possible result

is shown in Figure 3.9(e). In Figure 3.9(e), the splitting rule x1 < 0.52 is

set for node 1 and thereby the right subtree S4(T
′) is completely specified.

50



Thus T
′ is now partially specified by {(k′(u), τ ′(u)), u = 1, 2}, LS2(T′)(I),

LS3(T′)(I) and LS4(T′)(I).

5. The subtree S3(T
′) still contains more than one leaf and must therefore

be split into two subtrees by repeating the above process once more. The

possible intervals for τ ′(3) are identified (this step is not shown in Figure

3.9) and used to produce values for (k′(3), τ ′(3)).

6. The resulting completely specified T
′ is shown in Figure 3.9(f).

Notice that the new tree shown in Figure 3.9(f) has the same leaf configuration

as in the old tree shown in Figure 3.8(a) after restructure proposal, but the tree

structure and the splitting rules are much different. Because the leaf configuration

remains unchanged, the likelihood will be the same, that is, f(y|T′) = f(y|T).

Therefore in calculating the posterior ratio, we only need to compute the prior

ratio, which generally is easy to compute.

Therefore the calculation of the acceptance probability can be simplified to

ρ(T, T′) = min

{
π(T′|y)

π(T|y)

q(T|T′)

q(T′|T)
, 1

}

= min

{
π(T′)

π(T)

q(T|T′)

q(T′|T)
, 1

}
.

(3.7)

Note that with the above proposal procedure there is a unique way to generate

T
′ from T, and a corresponding unique way to propose T from T

′. Computation

of the associated proposal probability q(T′|T), and the probability q(T|T′) for the

corresponding reverse move, follows directly from the generating procedure. The

proposal probability q(T′|T) is a product with two factors associated with each

internal node of T
′; correspondingly, q(T|T′) has two factors for each internal node
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of T. The first factor comes from drawing an interval and is one divided by the

number of possible intervals. The second factor, associated with drawing a value

for τ ′(u), is one divided by the length of the allowed interval.

Figure 3.10 gives the pseudo-code for the proposal mechanism. Note that in

the process of splitting LSu(T′)(I) into LSl(u)(T′)(I) and LSr(u)(T′)(I) there is a risk

that no possible values exist for the pair (k′(u), τ ′(u)). If this happens in any of the

splits we just set T
′ = T, i.e. keep the tree unchanged and increment the iteration

variable by one. One should note that even if the tree is kept unchanged in this

case, it is essential to count it as an iteration of the Metropolis–Hastings algorithm;

otherwise, it would be necessary to compute the probability, by simulation, for

this event to happen, which in practice would be impossible except for very small

trees.

3.3.2 Variations of the restructure proposal

In this section, we will briefly introduce two variations of the restructure proposal.

The first one is designed to reduce the computational cost, while the second one

explores a more flexible restructure proposal.

In the restructure move one needs to map all possible splitting variables and

the corresponding splitting intervals for each internal node in the new tree. The

computational cost is proportional to the number of candidate predictor variables

p. In Figure 3.8(b), there are five possible splitting intervals for just two predictors.

If p is very large, a complete mapping of possible splitting variables becomes

computationally expensive. One may therefore select only a randomly chosen

subset of the predictor variables. Letting C ⊆ P denote the subset of predictor
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variables mapped, a simple alternative is to let

P(i ∈ C|T) =

{
1 if i ∈ {kT (u) : u ∈ T},
α otherwise,

(3.8)

independently for each i ∈ P. The candidate splitting variables set C, from which

the restructure move will draw the new splitting variables, includes all the splitting

variables used in the current tree with probability 1 and the remaining splitting

variables with probability α. The parameter α ∈ (0, 1) can be used to control the

typical size of C. For example, if α is 1, this is just the basic restructure proposal.

If α is 0, only splitting variables in the current tree will be considered to be the

splitting variables in the new tree. This greatly reduces the computation time,

however, it may take a long time for the chain to converge, as discussed in the

synthetic example in Chapter 4.

With the definition of C, the restructure move can then be started by sampling

a set C. The Metropolis-Hastings acceptance probability (equation (3.7)) must

be modified by including the probability of sampling C.

ρ(T, T′) = min

{
π(T′|y)

π(T|y)

q(T|T′, C)P (C|T′)

q(T′|T, C)P (C|T)
, 1

}

= min

{
π(T ′)

π(T )

q(T|T′, C)P (C|T′)

q(T′|T, C)P (C|T)
, 1

}
.

(3.9)

A second possible modification allows for changes in the partition of observa-

tions in leaves. In the ProposeRestructure function (Figure 3.10) a new partition

L
′ can be proposed just after the leaves, L, have been picked. Different possibilities

exist for how to sample L
′ given L. An alternative based on the likelihood function

is given in Figure 3.11, where we use the fact that the likelihood function only

depends on the partition of observations into leaves. After the leaves are picked,
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we uniformly choose one of the leaves to be the “from” leaf and uniformly choose

one of the remaining leaf to be the “to” leaf. If the size of the “from” leaf is 1,

then we just propose an unchanged tree; however, if the size of the “from” leaf

is s, we will have s new leaf configurations by moving one leaf from the “from”

leaf to the “to” leaf. With the current leaf configurations we will have s + 1

different leaf configurations in total, among which one will be uniformly chosen.

This defines one iteration in this variation of the restructure move. Repeating this

process riter times will yield a shuffled leaf configurations. This variation further

increases the computational cost, but hopefully proposes a new tree with different

prior probability and likelihood. The behavior of such move is also more difficult

to describe.

3.3.3 Restructure move vs basic moves

Figure 3.12 illustrates the difference between restructure moves and basic moves.

In this figure, although it is not realistically possible, suppose we have an imagi-

nary way of indexing the tree models. If two trees are close to each other (denoted

as T and T + δT in this figure) using this index, then a basic move can be per-

formed to move from one tree to the other. So the basic moves described above

can move the Markov chain along the curve. We expect, in this complicated tree

model space, that there will be multiple modes, and it takes a long time for the

Metropolis-Hastings algorithm with only basic moves to move from one local mode

to another.

On the contrary, instead of moving the chain along the curve, the restructure

move tries to find trees with the same likelihood but with a significantly different

tree structure and associated splitting rules. This move is illustrated by the red
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Function ProposeRestructure(T,I)
Pick the leaves of the current tree, i.e. set L = LT(I).
[T′, err] = DrawTree(L).
If (err = 0)

Return T
′

Else
Return T

End.
End.

Function DrawTree(L)
Let m denote the number of leaves in L, i.e. m = |L|.
If (m > 1)

Find the set of all possible pairs of splitting variables
and splitting intervals for L. Denote the result
by {kj, (τ

lower
j , τ upper

j ), j = 1, . . . , nI}.
If (nI > 0)

Draw k(0) from a uniformly distribution on {1, . . . , nI}.
Draw τ(0) from a uniform distribution on

the interval (τ lower

k(0) , τ upper

k(0) ).

Set Ll and Lr equal to the subsets of L which have
xk(0) < τ(0) and xk(0) ≥ τ(0), respectively.

[S1(T), err1] = DrawTree(Ll); [S2(T), err2] = DrawTree(Lr).
If (err1 = 0 and err2 = 0)

Set err = 0.
Return [T, err].

End.
End.
Set T = ∅, T = [T, ·, ·] and err = 1.
Return [T, err].

Else /* Only one node in the tree */
Set T = {0}, T = [T, ·, ·] and err = 0.
Return [T, err].

End.
End.

Figure 3.10: Restructure Proposal: pseudo-code for generating a potential new
tree, and the DrawTree function used. Notation from Chapter 1 is used.
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Function ProposePartition(L,riter)

Set L̃
0 = L.

Let m denote the number of leaves in L̃
0 and let L̃

0
l denote

leaf number l, i.e. L̃
0 = (L̃0

1, . . . , L̃
0
m).

For (i = 1 : riter)
Draw lfrom from a uniform distribution on {1, . . . , m}.
Draw lto from a uniform distribution on {1, . . . , lfrom − 1,

lfrom + 1, . . . , m}.
Let s denote the number of elements (observations) in L̃

i−1
lfrom

.
If (s > 1)

Use L̃
i−1 to define s new leaf configurations by moving one

observation from leaf number lfrom to leaf number lto. Denote

these configurations by L̆
1, . . . , L̆s.

Set L̆
0 = L̃

i−1.

Draw an integer t ∈ {0, 1, . . . , s} where P(t = j) ∝ f(y|L̆j, θ).

Set L̃
i = L̆

t.
Else

Set L̃
i = L̃

i−1.
End.

End.

Return L̃
riter

End.

Figure 3.11: pseudo-code for generating a potential new leaf configuration to be
used in the restructure proposal.
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Figure 3.12: An illustration of restructure move and basic moves.

dash line in the figure. By performing such moves, we try to jump from one local

mode to another.

3.4 Diagnosis

Diagnosing the convergence of the chain, including convergence to the stationary

distribution, convergence of averages, and convergence to iid sampling, is generally

not easy even for simple models. A common technique is the graphical method.

The trace plot of the output of the chain is drawn in order to detect the lack of

convergence. However, even this simple method is not feasible in our analysis,

as it is hard to trace the tree graphically. Therefore, graphical exploration of

the chain relies on some statistics of the tree, such as the tree size, likelihood

and posterior probability. If any of these trace plots exhibits weird behavior, the
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chain will not be considered to have converged. Similarly, in applying the other

diagnosis methods, we only study some characteristics of the tree and not the tree

itself. We will further explore the convergence diagnosis in Chapter 5 when the

breast cancer data is examined.

3.5 Discussion

In this chapter, we designed a Metropolis-Hastings algorithm aiming to explore

the posterior tree space. We started from three basic proposals, introduced by

Chipman et al. (1998) and Denison et al. (1998), and introduced a new restructure

proposal. A simulated dataset was constructed to illustrate each proposal and the

pseudo-code was included as well.

The change move and grow/prune move propose a small change in the tree

structure and/or the splitting rules, which leads to a small change in likelihood.

The likelihood can be greatly changed if a parent-child pair on the top level of the

tree is chosen in the swap move; however, in this case the swap move is not likely

to be valid because it tends to produce empty leaves. So in most cases the parent-

child pair that is picked in a valid swap move is on the lower level. This also leads

to a small change in likelihood. The restructure move was actually inspired by the

swap move, but in restructure move, the whole tree structure is abolished and a

new tree structure is constructed based on the leaf configurations. Theoretically,

it is not easy to compare an algorithm with basic moves only and the one with

the basic moves and restructure move; however, as we briefly discussed in Section

3.4, we can study some characteristics of the output of the chain from the two

algorithms and make comparisons on these statistics instead.

Benefiting from the hierarchical prior specification, the calculation of the ac-
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ceptance probabilities for both basic moves and restructure move can be much

simplified in most cases.

Variations of the restructure move were also discussed. The first variation

includes variable selection in the restructure move; however, how to choose the

candidate splitting variable set C and how to evaluate this variation is not clear.

Observing that the likelihood is unchanged in a restructure move, we propose to

shuffle the observations in the leaf configurations in the second variation. We

described a random shuffle across the leaves in the text. However, there may

exist a better strategy so that after the shuffle the leaf configurations is better

“organized” for some purpose. Again, this is not clear in the text so far. We

presented these two variations here solely for exploring potential new proposals

in the Metropolis-Hastings algorithm. The evaluation of these moves will be left

for future research.

In the beginning of this chapter, we discussed the restriction on the minimum

number of data points in leaf. Such restriction leads to tree models with non-empty

leaves; however, a tree with empty leaves may be of interest. For the purpose of

balancing between computational simplicity and theoretical implication, we may

want to allow for at most one empty leaf in the tree. This empty leaf represents a

new group in prediction. When new observations come in and fall into the empty

leaf, these observations come from distributions that are different from those in

the other non-empty leaves. This new modeling will be left for future research.
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Chapter 4

Example I: Synthetic Data

In the previous two chapters, we introduced a prior specification for the tree model

and the Metropolis-Hastings algorithm for drawing from the posterior distribution.

In Chapter 3, we designed a novel proposal, the restructure move, and discussed

the basic moves. However we have been left an unanswered question. What is the

difference between an algorithm with the restructure move and the one without

the restructure move? This question is not easy to address theoretically. First,

although the theory of the Metropolis-Hastings algorithm guarantees under mild

condition that if one runs the algorithm long enough, the chain will converge to

its limiting distribution. However, the stopping criterion is not usually available.

Second, some exploratory methods are used to analyze the output of the chain.

For tree models, the trace plots of some statistics of the tree are studied in order

to assess the convergence; however, there seems to be no single statistic that can

be used to represent the whole tree. Therefore the trace plots of these statistics

reflect only part of the convergence problem.

We present simulation results for two examples to illustrate the convergence

problem. A synthetic example will be discussed in this chapter. The synthetic
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data set is designed to yield a posterior distribution with two distinct modes. This

toy example is intended to illustrate how the restructure move generates better

mixing Markov chains by enabling direct jumps between modes. The second,

more complicated, example is discussed in Chapter 5, where we also introduce

some exploratory methods specifically for tree models.

4.1 Data

We first discuss MCMC convergence and mixing properties using a synthetic data

set having p = 3 predictors and Y = R.

We generated n = 300 sets of (x1, x2, x3) , where x1
i ∼ Unif(0.1, 0.4) for

i = 1 . . . 200, x1
i ∼ Unif(0.6, 0.9) for i = 201 . . . 300, x2

i ∼ Unif(0.1, 0.4) for

i = 1 . . . 100, x2
i ∼ Unif(0.6, 0.9) for i = 101 . . . 200, x2

i ∼ Unif(0.1, 0.9) for

i = 201 . . . 300, x3
i ∼ Unif(0.6, 0.9) for i = 1 . . . 200 and x3

i ∼ Unif(0.1, 0.4) for

i = 201 . . . 300. Given these predictor values, y values were simulated indepen-

dently as

y =





1 + N(0, 0.25) if x1 ≤ 0.5 and x2 ≤ 0.5,
3 + N(0, 0.25) if x1 ≤ 0.5 and x2 > 0.5,
5 + N(0, 0.25) if x1 > 0.5.

(4.1)

The partition of observations with respect to x1, x2 and x3 is shown in Figure 4.1,

where the symbols refer to the three regions defined in equation (4.1). The mean

values of y in these three regions are well separated. It is easy to check that x1

and x3 are the key predictors. The splitting variable for the root node has to be

x1 or x3. If x2 is chosen as the splitting variable for the root node, the posterior

probability of the tree will be close to zero. Once the first splitting variable is

chosen, the subsequent splitting variable has to be x2. If only x1 and x3 were the
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splitting variables, then the observations 1, 2, . . . , 200 are well-mixed in the region

that (x1, x3) ∈ [0, 0.5] × [0, 0.5], as displayed in the top left corner in the middle

panel of Figure 4.1.

The mean values of y in these three regions are well separated and it is easy

to check that the two trees in Figure 4.2 are the only trees consistent with the

regions.

4.2 Analysis

This analysis assumes a prior within-leaf model where the yi’s are independent

and yi ∼ N(µu, σ
2
u) when observation i is assigned to leaf u, i.e. θu = (µu, σ

2
u). For

this regression tree, we use the conjugate priors as specified in equation (2.20).

More specifically, σ2
u ∼ IG(0.5, 1.5) and (µu|σ2

u) ∼ N(0, σ2
u). The pinball prior has

α(m) = 1 + Pois(m− 1; 10) and β(i|m) = 1 + Bin(i− 1; m− 2, 0.5). The splitting

variables are chosen uniformly via γ(i) = 1
3
, and the splitting thresholds come, for

all k, from δk(·) = N(0.5, 2) truncated to [0, 1] independently.

We initialize the Markov chain with the tree with a single root node, so at the

beginning, no swap moves or prune moves can be proposed. The tree gradually

grows to one of the trees in Figure 4.2, depending on which splitting variable is

chosen in the root node. Suppose now the tree shown in the left panel of Figure

4.2 is the current tree (the splitting thresholds might be a little different). We are

about to propose the following moves:

• Change Proposal : Regardless of which node among node 0 and node 1 is

chosen in the change proposal, the associated splitting variable will likely be

kept unchanged. For example, if node 1 is chosen and the proposed splitting
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Figure 4.1: Simulated data example: Partition of observations with respect to
x1, x2 and x3. The symbols used refer to the three regions defined in equation
(4.1). Cross: x1 ≤ 0.5 and x2 ≤ 0.5, circle: x1 ≤ 0.5 and x2 > 0.5; plus: x1 > 0.5.

63



X1, 0.5

X2, 0.5 Region 3

Region 1 Region 2

X3, 0.5

Region 3 X2, 0.5

Region 1 Region 2

Figure 4.2: Two trees that are consistent with the three regions defined in
equation (4.1). The leaf nodes of each tree mark the region they correspond to.
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Figure 4.3: The partition induced by the new tree after the swap proposal.
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variable is x3, this new proposal will likely be rejected no matter what the

corresponding splitting threshold is because in the space {x1 < 0.5} the

observations are well-mixed and the resulting marginal likelihood is very

small; if x1 is the proposed splitting variable in the node 1, for any possible

splitting threshold 0 < τ < 0.5 the new splitting rule will produce a new

partition with a very small marginal likelihood (some of the observations

in region 1 and region 2 are mixed together). Actually even if the same

splitting variable x1 is chosen with the proposed splitting threshold outside

the interval [0.4, 0.6], this splitting rule is still not very likely to be accepted.

• Grow/prune Proposal: If a prune move is going to be performed, the only

possible way to proceed is to merge the leaves associated with region 1 and

region 2 together. After the change, the observations in region 1 and region

2 will be mixed together. Since the mean values of y in different regions are

well-separated, this will lead to a very small marginal likelihood and hence a

very small acceptance probability. If a grow move is going to be performed,

one of the three regions will be divided into two subregions. Compared to a

prune move, such grow move is more likely to be accepted. However, since

all the observations in one region come from the same normal distribution

with a not very large variance, we still expect the acceptance probability to

be very small.

• Swap Proposal: If a swap move is performed, the only possible pair that can

be chosen is node 0 and node 1. After the swap, the resulting partition is

shown in Figure 4.3, where the new partition is marked by the red solid lines.

The observations in region 3 are then divided into two, one of which is mixed
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with the observations in region 1. Therefore such a swap move produces a

partition associated with a small marginal likelihood. This proposal is not

likely to be accepted.

• Restructure Proposal: After extracting the leaf configurations from the tree

model in the first step of the procedure as described in Section 3.3.1, all

the possible splitting rules for the root node are shown in Figure 4.4. The

first split cannot be made with x2. The probabilities of choosing x1 and

x3 as the first splitting variable are about the same. If x3 is chosen, the

splitting variable chosen in the next step must be x2. This will produce a

tree that looks like the one shown in the right panel of Figure 4.2, except

that the splitting threshold might be different. Similarly, if x1 is chosen as

the first splitting variable, x2 must be the second and then a tree which is

very similar to the current is proposed. No matter which tree is proposed,

the likelihood remains unchanged. Furthermore the difference between the

prior probabilities is very small. Therefore the acceptance probability is

very close to 1. That is, this proposal is likely to be accepted.

4.3 Comparison

In this section, with this synthetic example we will illustrate the difference between

the algorithm with the restructure move and without the restructure move.

We run two algorithms: first, the MCMC using only the grow/prune, swap

and change proposals; and second, including the basic restructure proposal. In

the first case, we call an “iteration” a series of 60 change, 60 grow/prune and 60

swap moves; when including the restructure proposal, we take one iteration to
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Figure 4.4: All the possible splitting rules for the root node of the tree shown in
the left panel of Figure 4.2 for the restructure move.

mean 50 change moves, 50 grow/prune moves, 50 swap moves and 1 restructure

move. With our implementation these two types of iterations require essentially

the same amount of computing time.

We start the chain from the left tree shown in Figure 4.2 and run each of the

algorithms for 8, 000 iterations. We use the last 4, 000 iterations to estimate, for

each predictor, the posterior probability that this predictor is used as a splitting

variable. In the tree samples produced by the algorithm without the restructure

move, both x1 and x2 are used in all the 4000 tree samples while x3 is used only

twice. In fact, by examining the tree samples, we find that 3, 997 out of the 4, 000

samples have exactly the same structure and splitting variables as the starting

tree. All these trees produce the same leaf configurations. The remaining three

trees have one more split than the starting tree, which accounts for the small

probability of accepting a grow move. Thus, the tree shown in the right panel in

Figure 4.2 has never been visited. Since the implementations of the grow/prune,

swap and change proposals are the same as those of Chipman et al. (1998) and
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Denison et al. (1998), the algorithm in Chipman et al. (1998) and Denison et al.

(1998) can hardly find the tree shown in the right panel in Figure 4.2. Restarts

of the algorithm can help, but again one needs to weight all the generated trees.

In contrast, using the algorithm with the restructure move very rapidly generates

tree samples with x1 and x3 appearing at roughly equal frequencies (though of

course not together in any tree). Across a number of repeat runs, by examining

the tree samples we find that each of the two trees in Figure 4.2 is very frequently

visited. For numerical detail, we ran the restructure MCMC for 4000 iterations

and repeated this simulation 50 times. In each of these 50 runs, we recorded the

Monte Carlo frequencies of occurrence of each of x1 and x3 as well as the Monte

Carlo standard errors. Across the 50 runs, the median (range) of the probability

that x1 appears is 0.503 (0.488, 0.521) with Monte Carlo standard error of about

0.008; the corresponding figures for x3 are 0.500 (0.488, 0.521) with Monte Carlo

standard error of about 0.008.

As a supplementary analysis, we try a variation of the restructure move, where

the candidate splitting variable set includes only the ones used in the current tree

rather than the whole set of the predictors. This is a special case of equation (3.9)

taking α = 0. The results from the algorithm without the restructure move are

similar. In contrast, using the algorithm with the variated restructure move, x1 is

used 1290 times, x2 is used 4000 times and x3 is used 2712 times. As the chain gets

longer, the posterior probabilities that x1 and x3 appears in the tree move closer to

0.5 : 0.5 but at a very slow rate. The Monte Carlo standard errors are much larger

than what we see for the algorithm with standard restructure move. The problem

is that when proposing a new tree in the restructure move from one of the trees

in Figure 4.2, only the splitting variables already used will be in the candidate
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set. In other words, the candidate set is either {x1, x2} or {x3, x2} in most cases.

Therefore the current tree is the only choice in this variated restructure move.

The only way for this algorithm to move from one local mode to the other is to

first grow the tree to include all the predictors as the splitting variables and then

propose a restructure move is proposed. The corresponding transition probability

is much smaller than that in the algorithm with the standard restructure move.

Therefore it takes a longer time for this algorithm to converge.

Finally, to check robustness with respect, particularly, to the key Poisson prior

α(·), we re-ran the analysis after replacing the y data with pure noise - a standard

normal random sample. This produced a posterior distribution with Pr(m0(T ) =

1|y) ≈ 0.37, compared to the prior probability of 0.05, supporting the view that

the analysis is relatively robust to the assumed Poisson form; this has been borne

out in other examples, including the real data example in Chapter 5.

4.4 Discussion

The necessity of this analysis might be questioned because, in this synthetic ex-

ample, the two trees shown in Figure 4.2 are basically the same. They produce

the same leaf configurations and thus one might think that the tree structure on

the top is less relevant. However, this may not be the case in real data analysis.

The synthetic example is used simply to illustrate the importance of the restruc-

ture move; however, in practice, the data are usually much more complicated.

There could be more than two tree models, between which one can hardly find

the direct connection, that gives equally important leaves configuration. In this

case, we want to fully explore the tree space and hence the correlation between the

predictors and the response. As the model gets more complicated, we cannot list
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all the possible trees as we can or the synthetic data example. Different diagnostic

tools can also be used, as we shall see in the Chapter 5.
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Chapter 5

Example II: Breast Cancer Data

In Chapter 4, we explored the difference between the MCMC algorithm with the

restructure move and the one without the restructure move through a synthetic

data example. In that toy example, it is relatively easy to list all the local modes,

therefore the convergence problem of the chain can be studied. In this chapter, we

turn to a more complicated example where the convergence property is less clear.

There seem to be no available methods for such analysis. In this case, we compare

the restructure move with the other basic moves using exploratory methods, e.g.

Kolmogorov-Smirnov test and the trace plots of some statistics.

In this chapter we also show how we use the posterior tree samples to make

predictions and assess the importance of the predictors. Cross-validation will be

used to evaluate prediction validity. An importance sampling method will be

proposed to reduce the computational cost for leave-one-out cross-validation. In

that analysis, we will find the assumption that the observations across leaves are

independent samples to be very important.
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5.1 Data description

We analyze the breast cancer data set used in Chipman et al. (1998). The data

were obtained from the University of California, Irvine repository of machine learn-

ing databases (ftp://ftp.ics.uci.edu/pub/machine-learning-databases) and origi-

nated in Wolberg and Mangasarian (1990). The same data set is also used for a

Bayesian CART model search, but without convergence of the MCMC algorithm,

in Chipman et al. (1998). The data set has 9 cellular cancer characteristics, all

ordered numeric variables, and the response is binary, indicating benign (0) and

malign (1) tumors, i.e. Y = {0, 1}. The original data set contains some missing

values. We deleted cases with missing values and so use 683 of the original 699

observations.

Table 5.1 shows the correlations between predictors, ranging from 0.34 to 0.91.

If the tree model is used, the highly correlated predictors are “exchangeable” as

used in splitting rules. Therefore, we expect to find many trees equivalently

important.

x1 x2 x3 x4 x5 x6 x7 x8 x9
Name

x1 1.00 0.64 0.65 0.49 0.52 0.59 0.55 0.53 0.35 clump thickness
x2 0.64 1.00 0.91 0.71 0.75 0.69 0.76 0.72 0.46 uniformity of cell size
x3 0.65 0.91 1.00 0.69 0.72 0.71 0.74 0.72 0.44 uniformity of cell shape
x4 0.49 0.71 0.69 1.00 0.59 0.67 0.67 0.60 0.42 marginal adhesion
x5 0.52 0.75 0.72 0.59 1.00 0.59 0.62 0.63 0.48 single epithelial cell size
x6 0.59 0.69 0.71 0.67 0.59 1.00 0.68 0.58 0.34 bare nuclei
x7 0.55 0.76 0.74 0.67 0.62 0.68 1.00 0.67 0.35 bland chromatin
x8 0.53 0.72 0.72 0.60 0.63 0.58 0.67 1.00 0.43 normal nucleoli
x9 0.35 0.46 0.44 0.42 0.48 0.34 0.35 0.43 1.00 mitoses

Table 5.1: Breast cancer data example: Correlations between predictors.

In the original data, the predictors take integer values between 1 and 9, so we

simply divide them by 10 so as to place all values of xi in the unit value.
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5.2 Exploratory data analysis

In Section 1.1, we studied this data set using a generalized linear model, where

we found the assumption that logit(E(y)) is a linear function of x1, x2, . . . , x9 to

be questionable. Meanwhile, in that model, we failed to find the significance of

x2, x3, x5 and x9 in predicting the response, which could be easily validated by

looking at the data. Thus, we were motivated to use tree model.

We first use the “greedy” algorithm as described in Chapter 1 before moving

to a more complicated model. In R, this algorithm is implemented in rpart pack-

age. The complexity of the tree is controlled by the parameter cp (complexity

parameter), which by default is 0.01. This means that if the decrease in overall

lack of fit (e.g., RSS and Gini index) by a further split is smaller than cp, then

the algorithm is stopped.

We call rpart with the default cp. The resulting tree is shown in Figure

5.1. The misclassification rate is 22/683 = 0.0322 (which is even greater than

the misclassification rate by the generalized linear model). Even if we run this

algorithm with a smaller cp, e.g. 0.00001, we still get the same tree, indicating

that the greedy algorithm is stuck in this tree. But is it the best tree in terms

of misclassification rate? The answer is no. Figure 5.2 shows another tree with

a smaller misclassification rate at 13/683 = 0.019. The greedy algorithm fails to

find this tree because a split that makes the most improvement at each step is not

necessarily the right split in the best tree overall.
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leaf, 410: 405/5 leaf, 8: 1/7 X7 <= 0.35 X2 <= 0.45

leaf, 16: 16/0 leaf, 7: 2/5 X6 <= 0.25 leaf, 174: 3/171

leaf, 14: 10/4 leaf, 54: 7/47

Figure 5.1: A tree produced by the greedy algorithm.

X5, 0.39

X6, 0.28 X2, 0.44

leaf, 402: 2/400 X1, 0.59 X7, 0.78 leaf, 145: 143/2

X3, 0.28 leaf, 48: 46/2 X6, 0.72 leaf, 5: 5/0

leaf, 23: 1/22 leaf, 18: 16/2 X1, 0.58 leaf, 19: 18/1

leaf, 14: 1/13 leaf, 9: 7/2

Figure 5.2: A tree with a smaller misclassification rate than the “greedy optimal”
tree in figure 5.1.
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5.3 Bayesian analysis

In this section, we will first briefly describe the model specification and the al-

gorithm, and then we will introduce two exploratory methods for convergence

diagnosis. Lastly we will discuss posterior inferences.

5.3.1 Model specification

For T we will use a similar prior distribution similar to that of Section 4.2. The

pinball prior has α(m) = 1 + Pois(m − 1; 10) and β(i|m) = 1 + Bin(i − 1; m −

2, 0.5). For the breast cancer example we set m = 10. The splitting variables are

chosen uniformly via γ(i) = 1
9
, and the splitting thresholds come, for all k, from

δk(·) = Unif[0, 1] independently. Alternatively, the discrete uniform distribution

on {0.1, 0.2, . . . , 0.9} ({1, 2, . . . , 9} if without transformation) could be used, since

the predictors are all ordered numerical variables with only a few distinct values.

The within-leaf sampling model is Bernoulli with probability of malignancy θu

in leaf u having independent uniform prior, as specified in equation (2.17), taking

a = b = 1. MCMC analysis was performed using the same two algorithms as

described in Section 4.3, with and without the restructure move.

5.3.2 Exploratory analysis of convergence

Convergence and mixing analysis are more difficult here than in the toy example

of Chapter 4. There are numerous methods for exploring MCMC convergence

(Cowles and Carlin, 1996; Brooks and Roberts, 1998). The basic idea is to simulate

one very long run, assuming this chain is long enough to be considered having

converged, and many short runs. By comparing the long run and the short runs,
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we are able to explore convergence and mixing properties. As we never know how

long we need to run the chain to achieve convergence for such complicated models,

we want to study how long the chains need to be to have similar mixing properties

as the very long chain.

Here we simulate one long and K short MCMC runs for a given algorithm. We

initialize each run by sampling from the prior distribution. For each i = 1, 2, . . .

we pick K realizations from the long run and one realization from each of the

short runs. From the long run we use the realizations after k · i iterations for

k = 1, 2, . . . , K; whereas for the short runs, we use the realization after iteration

number i. If the chain has converged before i iterations and the mixing is sufficient

for two realizations i iterations apart to be independent, then the K realizations

from the short runs and the K realizations from the long run are independent and

all come from the same distribution. For any scalar function of the 2K realizations,

we compute the Kolmogorov-Smirnov p-value (Conover, 1971) to provide some

insight into whether this seems reasonable. The K-S procedure has the advantage

of making no assumptions about the distribution of the data.

Before we use this K-S procedure to evaluate the algorithm with the restructure

move, we will first illustrate this procedure with a very simple example. Suppose

our target distribution is a mixture of normals, namely

y ∼ 0.3N(0, 1) + 0.7N(3, 1). (5.1)

Now we design two algorithms to sample from this target distribution. Algorithm

A is an appropriate one. For both the long run and the short runs we sample

directly from the target distribution. Algorithm B is an inappropriate one. Due

to the starting point, algorithm B will be stuck in one of the local modes. Actually

we are knowledgeable to sample from the target distribution so the algorithm B is
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Figure 5.3: The Kolmogorov-Smirnov procedure for the simple example. The
computed p-values in the left panel and the right panel corresponds to algorithm
A and B respectively.

never used in reality. We mention that here just for illustration. Then we perform

the K-S procedure for these two algorithms. If the null hypothesis is true, that the

realizations from the long run and the realizations from the short runs come from

the same distribution, the computed p-values will follow a uniform distribution

over [0, 1]. The results for algorithm A and B are displayed in Figure 5.3. Clearly,

the output of the chain by the fabricated algorithm B does not converge.

For the breast cancer data, Figure 5.4 shows the result when K = 250 and

the scalar function is the log posterior density. When including the restructure

move, the algorithm converges in fewer than 500 iterations; whereas, without

the restructure move convergence takes more than 4, 000 iterations.1 We have

also generated this type of convergence diagnostics plot for various other scalar

functions including, among others, the log integrated likelihood, tree size and the

number of times a particular predictor variable is used as a splitting variable in

the tree. The convergence differences between the two algorithms are more or less

striking dependent on which scalar function is used. The case shown in Figure 5.4

1With our implementation in early 2005, 500 iterations for this data set took about 6 seconds
on an Intel Xeon 3.0Ghz with 2Gb memory.
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Figure 5.4: Breast cancer data example: P-values of K-S statistics for samples
from algorithm with and without restructure move.

indicates the slowest convergence of the non-restructure move approach for this

example.

Notice this K-S procedure is not a sufficient tool. In the right panel of Figure

5.4, most of the p-values are very small, which by K-S test means that the dis-

tribution of the log posterior density from the two algorithms differ significantly

from each other; however, even if every K-S procedure for all possible scalar func-

tions indicates convergence, it is not necessary that the chain has converged. The

method is very useful and suggestive but not a “proof” of convergence.

An alternative way to diagnose the convergence is by looking at the trace

plots of some statistics. The topology of the tree space is very complex and to

get a clear picture of how the two algorithms work is very difficult; however, some

insight can be gained from Figure 5.5. This shows, for ten runs with each of the two

algorithms, trace plots of the log integrated likelihood and the number of leaves.

Each simulation is for 1000 iterations, of which the last 500 iterations are shown

in the plots. Vertical dashed lines mark the start of new runs. Again we initiate
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Figure 5.5: Breast cancer data example: Trace plots of log integrated likelihood
(upper row) and number of leaves (lower row) for ten runs of the algorithm with
the restructure proposal (right column) and without the restructure proposal (left
column). In each simulation the algorithms is run for 1, 000 iterations, of which
only the last 500 are shown in the figure. The start of a new run is indicated by
a vertical dashed line.
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each run by sampling from the prior distribution. In the right column of Figure

5.5 we note how some of the runs from the algorithm without the restructure

move seem to get trapped in local modes for the whole 500-iteration period. In

particular, this is true for runs 3, 7 and 8. For example, in run 3 most of the trees

visited have the number of leaves larger than 10, and we can see the corresponding

log integrated likelihood first decreases to about −78 and then increases to about

−60, which is an odd pattern compared to the other runs. In the trace plots

for the algorithm with the restructure move, no such effects were encountered.

Therefore, the use of the restructure move seems to improve the convergence and

mixing properties of the Markov chain by preventing it from being trapped in

local modes over a long period. In turn this removes the need for restarts and the

ad hoc weighting discussed in Chipman et al. (1998).

5.3.3 Posterior inferences

Exploration of posterior inferences involves inspecting trees generated from the

sampler and histograms of posterior samples of key quantities of interest, such as

the tree size m(T ) and the malign/benign mixing fraction that will be introduced

below.

In Figure 5.6 we show two randomly selected trees from the sampler. It can

be seen that, as we would expect, x2 is the key splitting variable. For example, in

the root node of the tree on the top and node 2 in the bottom tree, the splitting

rule is about x2 on around 0.45, which results in a similar subtree in the right

child. The splitting variable in both the right child is x4. In that subtree, 172

out of 175 samples indicate malignancy. This shall be further studied to infer the

relationship between the malignancy and the uniformity of cell size (x2) and the
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marginal adhesion (x4).

In the left panel of Figure 5.7, a histogram of the tree size m(T ) is shown.

We can see that the data give little support to trees with more than 15 terminal

nodes, and the posterior mode of the tree size is approximately 9. Recall that

the mean of the prior distribution for tree size is also 9, so we need to check if

the prior dominates the data. We have tried pinball priors encouraging smaller

(m = 5) and larger (m = 15) trees, and the results are very insensitive to this

choice.

The middle panel in Figure 5.7 gives the posterior distribution for the log

integrated likelihood. Most of the probability mass lies in the interval (−81,−65),

but the run visited trees with log integrated likelihood values up to −60. Chipman

et al. (1998) report log integrated likelihood values up to −62.2, with most lying

below −64. As our run was longer than theirs, this is as one should expect. In

addition to tree size we also consider a statistic describing another property of

the tree. Given a simulated tree, we first compute the posterior mean of θ in each

leaf by

E(θu|{y}u, T)

=

∫
θup(θu|{y}u, T)

=

∫
θu

1

B(
∑

yi + a, nu −∑ yi + b)
θ

P

yi+a−1
u (1 − θu)

nu−
P

yi+b−1dθu

=

∑
yi + a

nu + a + b

(5.2)

where
∑

yi is the sum of yi in leaf u, that is
∑

i∈NT(u,I) yi, and nu is the number

of observations in leaf u. If the posterior mean of θ is larger than 0.5, subjects in

this leaf have higher probability for being malign. Thus we classify such leaves as

malign and the remaining leaves as benign. We consider the fraction of the sub-
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X2, 0.417024

X6, 0.770619 X4, 0.159511

X4, 0.757758 X7, 0.314649 leaf, 11: 9/2 leaf, 164: 163/1

X8, 0.622315 leaf, 3: 2/1 leaf, 11: 8/3 leaf, 32: 32/0

X6, 0.255579 X8, 0.814277

X1, 0.66859 X1, 0.460938 leaf, 4: 0/4 leaf, 7: 7/0

leaf, 402: 0/402 leaf, 7: 3/4 leaf, 28: 2/26 leaf, 14: 13/1

X2, 0.319696

X6, 0.202092 X2, 0.477545

X5, 0.466856 X1, 0.350194 X1, 0.614437 X4, 0.190829

leaf, 401: 0/401 X2, 0.184254 X3, 0.365847 X7, 0.219803 X4, 0.502816 leaf, 24: 22/2 leaf, 11: 9/2 leaf, 164: 163/1

leaf, 3: 0/3 leaf, 4: 2/2 leaf, 21: 0/21 leaf, 4: 4/0 leaf, 7: 3/4 leaf, 30: 28/2 leaf, 7: 1/6 leaf, 7: 7/0

Figure 5.6: Breast cancer data example: Two trees chosen at random from the
posterior distribution.
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Figure 5.7: Breast cancer data example: Left: Posterior for tree size m(T );
Center: Posterior for log integrated likelihood; Right: Summary histogram of
Malign/Benign mixing fraction.

jects where subject status differs from leaf status. We call this the “malign/benign

mixing fraction”. A low value indicates pure malign and benign leaves, whereas

a high value results from more mixed leaves. The right panel in Figure 5.7 shows

the histogram for this statistic. The mean value is 0.0248, whereas the smallest

value found in the run is 0.0132. Thus, only a small degree of mixing occurs in

the leaves. As a comparison, the tree found by rpart package in R has a mixing

fraction 0.0322, which is among the worst cases in our run. The “mis-classification

rates” reported in Chipman et al. (1998) correspond to mixing fraction as low as

0.016, though they do not report any corresponding mean values.

5.3.4 Importance of the predictors

In addition to looking at each posterior tree sample, we also summarize the pos-

terior to assess relevance of each of the predictor variables. For each predictor we

estimate the posterior probability that this predictor is used as a splitting variable

(at least once), with results given in Table 5.2. Most of the nine predictors have
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x1 x2 x3 x4 x5 x6 x7 x8 x9
Name

x1
0.98 0.96 0.61 0.47 0.51 0.98 0.38 0.60 0.26 clump thickness

x2 0.96 0.98 0.60 0.47 0.50 0.98 0.37 0.60 0.26 uniformity of cell size
x3 0.61 0.60 0.62 0.28 0.32 0.62 0.27 0.35 0.17 uniformity of cell shape
x4 0.47 0.47 0.28 0.48 0.24 0.48 0.15 0.28 0.14 marginal adhesion
x5 0.51 0.50 0.32 0.24 0.52 0.52 0.19 0.22 0.15 single epithelial cell size
x6 0.98 0.98 0.62 0.48 0.52 1.00 0.39 0.61 0.27 bare nuclei
x7 0.38 0.37 0.27 0.15 0.19 0.39 0.39 0.24 0.10 bland chromatin
x8 0.60 0.60 0.35 0.28 0.22 0.61 0.24 0.61 0.15 normal nucleoli
x9 0.26 0.26 0.17 0.14 0.15 0.27 0.10 0.15 0.27 mitoses

Table 5.2: Breast cancer data example: Posterior pairwise and marginal (on
diagonal) model inclusion probabilities for the nine predictors.

predictive relevance, which – given that one or a few may be truly predictive –

is not surprising in view of the collinearity observed (Recall that the correlation

between the predictors ranges from 0.34 to 0.91.). The table provides the Monte

Carlo estimates of posterior co-inclusion probabilities for pairs of variables as well

as the marginal probabilities of inclusion for each.

5.4 Prediction and cross-validation

5.4.1 Prediction

The predictive probability of a new observation y∗ associated with x∗ being malign

is computed by

P (y∗ = 1|y) =

∫

T

P (y∗ = 1|y, T)p(T|y)dT (5.3)

Given the posterior tree samples T
i, the integral in equation (5.3) is approximated

by the sum

N∑

i=1

P (y∗ = 1|y, Ti)p(Ti|y) (5.4)
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where the probability P (y∗ = 1|y, Ti) is computed by

P (y∗ = 1|y, Ti) = P (y∗ = 1|{y}u, T
i)

=

∫

θu

P (y∗ = 1|θu, {y}u, T
i)p(θu|{y}u, T

i)dθu

=

∫

θu

θup(θu|{y}u, T
i)dθu

= E(θu|{y}u, T
i)

(5.5)

where u is the leaf node the new observation falls into. From equation (5.5),

we know that given the posterior tree sample, the predictive probability of the

new observation being malign is the posterior mean of θ in the leaf that the new

observation falls into.

We still need to show why the first step in equation (5.5) holds. The first

equation means that the probability of a new observation being 1 given the data

and the tree sample is equal to the probability of this observation being 1 given

only part of the data and the tree sample, that is, we only need to look at the

observations that fall into the same leaf as the new observation. Similar to the

notation {y}u, {y}−u is the set of the observation falling into the other leaves than

leaf node u. We first show that given {y}u and T
i, y∗ and {y}−u are independent.

This follows from

P (y∗, {y}−u|{y}u, T
i)

=

∫
P (y∗, {y}−u|{y}u, θ, Ti)p(θ|{y}u, T

i)dθ

=

∫
P (y∗, {y}−u|{y}u, θu, θ−u, T

i)p(θu|{y}u, T
i)p(θ−u|Ti)dθ

=

∫
P (y∗|{y}u, θu, T

i)P ({y}−u|{y}u, θ−uT
i)p(θu|{y}u, T

i)p(θ−u|Ti)dθ

= P (y∗|{y}u, T
i)P ({y}−u|{y}u, T

i).
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With this conditional independence, we have

P (y∗ = 1|y, Ti)
= P (y∗ = 1|{y}u, {y}−uT

i)
= P (y∗ = 1, {y}−u|{y}uT

i)/P ({y}−u|{y}uT
i)

= P (y∗ = 1|{y}u, T
i)P ({y}−u|{y}u, T

i)/P ({y}−u|{y}uT
i)

= P (y∗ = 1|{y}u, T
i),

(5.6)

so that the first equal sign in equation (5.5) holds.

Turning now to prediction, the entire analysis was repeated using a randomly

selected 342 observations as training data, and producing 10, 000 posterior tree

samples. The posterior was used to make out-of-sample predictions on the re-

maining 341 test observations. Figure 5.8 displays the results. With a simple

threshold at 0.5 on the Monte Carlo estimates of the implied predictive proba-

bilities, averaged over all 10, 000 trees, the raw prediction error is 13 out of 341.

By comparison, use of the greedy algorithm rpart in R (with default parameter

settings) led to 23 misclassifications in this 50:50 hold-out prediction assessment.

Modifying rpart to permit a smaller cp value in splitting the tree led to 18 mis-

classified cases.

5.4.2 Cross-validation

To further assess prediction validity we also ran a full ten-fold cross-validation

analysis, each time randomly dividing the data set into ten parts with each part

consisting of ten percent of the benign observations and ten percent of the malign

observations. We reserve one part of the data, use the remaining observations

to generate posterior tree samples, and then predict the held-out samples. We

repeated this ten-fold cross-validation ten times, which resulted in an average
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Figure 5.8: Breast cancer example: Predictive probabilities for the 50% sample
test-set held out to assess predictive accuracy of the tree model fitted to the 50%
training sample. The squares and diamonds represent subjects with benign and
malign recurrence, respectively.
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misclassification rate of 3.9%, calculated by

M =
∑10

i=1 M(yHi
|y−Hi

)/10

=
∑10

i=1

∫
M(yHi

|y−Hi
, T)p(T|y−Hi

)/10dT
(5.7)

where the function M(·) is the misclassification rate and Hi, i = 1, 2, . . . , 10 index

the ten portions of the data set. The integral in equation (5.7) is approximated

by MCMC estimation. We need to run 10 MCMC chains in order to evaluate

equation (5.7). This evaluation will be computationally expensive if we want to

do leave one out cross-validation, as we will have to run n MCMC, where n is the

number of observations in the data set.

In leave-one-out cross-validation, we are interested in computing

P (Yi|y−i) =

∫
P (Yi|y−i, T)p(T|y−i)dT (5.8)

where y−i is the set of observations excluding the ith observation. Note that this

notation is different from {y}u and {y}−u. Instead of running MCMC for every

i, we will use the idea from the Importance Sampling method. The Importance

Sampling method requires independent samples, where in MCMC context this

requirement cannot be satisfied; however, the convergence of average is still much

similar.

Suppose the quantity of interest is

∫

X

h(x)f(x)dx (5.9)

One alternative to direct sampling from f for the evaluation of equation (5.9) is

to use importance sampling, defined as

∫

X

h(x)
f(x)

g(x)
g(x)dx (5.10)
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which is approximated by

1

m

m∑

j=1

f(Xj)

g(Xj)
h(Xj) (5.11)

where X1, X2, . . . , Xm are sampled from a given instrumental distribution g, and

the integral in equation (5.9) is approximated by a weighted sum. Function h is

evaluated at the points sampled from g and then weighted by w = f/g. This

estimator will converge to the quantity shown in equation (5.9) as long as the

support of g contains that of f . An alternative to approximating equation (5.10)

is
∑m

j=1 h(Xj)w(Xj)∑m
j=1 w(Xj)

. (5.12)

This estimator also converges to
∫

h(x)f(x)dx by the Strong Law of Large Num-

bers and it has an advantage that we only need to calculate the weight w up to a

constant; that is, instead of calculating the exact weight

w(Xj) =
f(Xj)

g(Xj)

we can calculate

w̃(Xj) = cw(Xj) ∝
f(Xj)

g(Xj)
.

This method is attractive because the same sample from g can be used repeat-

edly. Suppose now we have n integrals to evaluate:

∫

X

h1(x)f1(x)dx,
∫

X

h2(x)f2(x)dx,

...∫

X

hn(x)fn(x)dx.

(5.13)
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We can then use the same instrumental distribution g for approximating all the

above integrals as long as the support of this function g contains those of functions

f1, f2, . . . , fn. Therefore we need to generate samples from g only once. This

method is efficient when f1, f2, . . . , fn are close to g.

Now we consider applying the Importance Sampling method to leave one out

cross-validation. We first show a general case of equation (5.5), where the leaf

node distribution is not limited to binomial and the quantity of interest can be

some other function. We have

P (Y |y, T) = P (Y |{y}u, T)

=

∫

θu

P (Y |{y}u, θu, T)p(θu|{y}u, T)dθu

=

∫

θu

P (Y |θu, T)p(θu|{y}u, T)dθu

=

∫

θu

P (Y |θu, T)
p(θu|T)p({y}u|θu, T)

p({y}u|T)
dθu.

(5.14)

The first equal sign holds because for any u the distribution of {y}u, falling into

leaf node u, given θu and T does not depend on the other parameters θ−u; that is

P ({y}u|T, θ) = P ({y}u|T, θu). (5.15)

The proof of equation (5.15) is similar to equation (5.6). Replacing Y and y in

equation (5.14) with Yi an y−i, we have

P (Yi|y−i, T) =

∫

θu

P (Yi|θu, T)
p(θu|T)p({y}u,−i|θu, T)

p({y}u,−i|T)
dθu. (5.16)

where {y}u,−i is the set of observations falling into leaf node u except the ith

observation.

We are interested in evaluating equation (5.8) for i = 1, 2, . . . , n. Since sam-

pling from p(T|y−i) is computationally expensive, the standard Monte Carlo esti-
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mation of equation (5.8) is not preferred. In importance sampling, our instrumen-

tal distribution is p(T|y), so the importance sampling representation of equation

(5.8) is

P (Yi|y−i) =

∫
P (Yi|y−i, T)

p(T|y−i)

p(T|y)
p(T|y)dT (5.17)

Thus we only need to run the MCMC algorithm for the whole data set without

leaving out any observation and generate samples to evaluate P (Yi|y−i). It is

reasonable to believe that the distribution of T|y is close to the distribution of

T|y−i for any i, especially when the number of observations is relatively large

and thus leaving out one observation will have a small effect on the posterior

distribution.

We generate samples T1, T2, . . . , TN from p(T|y) only once and will be able to

evaluate n quantities P (Yi|y−i), i = 1, 2, . . . , n. For each i, we calculate

h(Tj) = P (Yi|y−i, Tj)

=

∫

θu

P (Yi|θu, Tj)
p(θu|Tj)p({y}u,−i|θu, Tj)

p({y}u,−i|Tj)
dθu

(5.18)

for j = 1, 2, . . . , N . The second line is given by equation (5.16). The weight

w(Tj) =
f(Tj)

g(Tj)
=

p(Tj|y−i)

p(Tj|y)
is computed by

w(Tj) =
p(Tj|y−i)

p(Tj|y)

=
p(y−i|Tj)p(Tj)/p(y−i)

p(y|Tj)p(Tj)/p(y)

=
p(y−i|Tj)

p(y|Tj)

p(y)

p(y−i)

∝ p({y}u,−i|Tj)

p({y}u|Tj)
.

(5.19)

The last step holds because first, from equation (5.15), we have the conditional
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independence of the marginal likelihood given as

p(y|T) =

∫
p(y|T, θ)p(θ|T)dθ

=

∫
p({y}u, {y}−u|T, θu, θ−u)p(θu, θ−u|T)dθ

=

∫
p({y}u|T, θu)p(θu|T)dθu

∫
p({y}−u|T, θ−u)p(θ−u|T)dθ−u

= p({y}u|T)p({y}−u|T).

(5.20)

Then

p(y−i|Tj)

p(y|Tj)
=

p({y}−u|Tj)p({y}u,−i|Tj)

p({y}−u|Tj)p({y}u|Tj)

=
p({y}u,−i|Tj)

p({y}u|Tj)
.

(5.21)

The weight for posterior sample Tj is proportional to the ratio of the marginal

likelihood of the observations in leaf node u, where the omitted observation should

be, over the marginal likelihood of all the observations, including the held out ob-

servation, in leaf node u. Note that this ratio can not be further simplified to

1/p(yi|Tj) because the observations in the same leaf are not marginally indepen-

dent given the tree structure T.

Note that the calculation of the weight in equation (5.21) may be questionable

when the ith observation falls into a leaf with only one observation, yi. In this

case {y}u,−i is actually an empty set. In our analysis, when this happens we set

p({y}u,−i|Tj) to zero. This assertion is reasonable because when given such a tree

model Tj, we observe as if only one data point. It makes no sense to predict yi

with the “other” data, which actually is an empty set. Therefore, the weight for

this case is zero. An alternative is to specify a minimum leaf size (> 1) in our

model, so that in every leaf node in the tree, there are at least two observations.

Now we have h(Tj) given in equation (5.18) and weights w(Tj) given in equa-
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tion (5.19). The approximation of P (Yi|y−i) is given by

N∑
j=1

h(Tj)w(Tj)

N∑
j=1

w(Tj)

=

N∑
j=1

∫

θu

P (Yi|θu, Tj)
p(θu|Tj)p({y}u,−i|θu, Tj)

p({y}u,−i|Tj)
dθu

p({y}u,−i|Tj)

p({y}u|Tj)
N∑

j=1

p({y}u,−i|Tj)

p({y}u|Tj)

(5.22)

Consider the leave-one-out cross-validation in the breast cancer example. Each

time we want to hold out the ith observation and compute P (Yi = 1|y−i). Similar

to equation (5.5), function h(Tj) is

E(θu|{y}u,−i, Tj). (5.23)

From the marginal likelihood given in equation (2.18), the weight is

B

(
∑

k∈NTj
(u,I),k 6=i

yk + a, nu − 1 − ∑
k∈NTj

(u,I),k 6=i

yk + b

)

B

(
∑

k∈NTj
(u,I)

yk + a, nu −
∑

k∈NTj
(u,I)

yk + b

) (5.24)

where nu is the number of observations, including the ith observation, in leaf node

u.

Turning now to the breast cancer data, the entire analysis was done using

all the observations (683) observations as the data, producing 25, 000 posterior

tree samples. These trees were repeatedly used to calculate P (Yi = 1|y−i), j =

1, 2, . . . , 683. Figure 5.9 displays the results. With a simple threshold at 0.5 on

the Monte Carlo estimates of the implied predictive probabilities, averaged over

all 25, 000 trees, the raw prediction error is 16 out of 683 (2.34%).
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Figure 5.9: Breast cancer example: The results for leave-one-out cross-valida-
tion. For each observation i, P (Yi = 1|y−i) is shown. The squares and diamonds
represent subjects with benign and malign recurrence, respectively. The simple
threshold at 0.5 is overlaid.
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Computationally, this leave-one-out cross-validation by importance sampling is

much faster than the naive method2. In fact, the leave-one-out cross-validation is

supposed to be more computationally intensive than the ten-fold cross-validation

analysis, yet it took less time to run the leave-one-out analysis. One may want to

try this importance sampling method for the ten-fold cross-validation; however,

this analysis can be problematic. As we explained in the text next to equation

(5.21), given a tree sample Tj, if the left-out data fall into the same leaf, where

there are no other observations, the weight for the tree sample is 0. If we apply

the importance sampling method for ten-fold cross-validation, this is more likely

to happen. It does not make much sense to specify a very large leaf size so that

there are at least one tenth of the observations in any leaf node.

5.5 Discussion

In this chapter, by studying the breast cancer data, we discussed several aspects of

Bayesian analysis in tree models. We first discussed the convergence problem. The

K-S procedure was introduced to attempt to explore the convergence problem. As

stated in the text, this was not a sufficient tool. We are not bold enough to say

through this procedure the output of the chain from our algorithm had converged.

Instead, particularly for this data example, we claimed the algorithm with the

restructure move explored more tree space than the one with only basic moves

and its mixing property seemed to be better. However, although the improvement

of restructure move is obvious, we still can not find a stopping criterion to guide the

chain. Some other nonparametric methods may be tried to handle this problem

2With our implementation in late 2005, the cross-validation for this data set after the posterior
tree samples (25, 000 samples) were produced took about 3 minutes on an Intel Xeon 3.0Ghz
with 2Gb memory.
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in the future.

The second part of this chapter focused on the application of importance sam-

pling on leave-one-out cross-validation analysis. We avoided regenerating posterior

samples for each held-out data set. Believing that the posterior distribution given

the held-out data set is close to the one given the whole data set, we used the

latter as the instrumental distribution in importance sampling. Detailed calcula-

tions were given for the binomial case; however, we have not yet discussed what

to do when this method is not applicable. This is left to be discussed in Chapter

7.
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Chapter 6

Example III: Proteomics Data and

Resampling

In this chapter, we discuss another data set from cancer proteomic analysis. The

response is also a binary variable as in the breast cancer data discussed in Chapter

5. At first sight, there is nothing new; however, we present this example here for

two purposes.

First, we want to show that in some cases tree models can not be directly

applied to the data. In Chapter 5, we showed how to make predictions and do

cross-validation analysis. The prediction for breast cancer data using our tree

model is better than with other available tree models. In studying the proteomics

data with our tree model, a primitive analysis will give a very good result in

terms of prediction; however, it is less encouraging when we look at the data

closely. Therefore, a specific algorithm is needed for such data sets.

Second, we find that the predictive validity is questionable because each patient

has multiple samples in the data. In primitive analysis, samples from the same

patient tend to fall into the same leaf; this reduces the credibility of leave-one-out
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cross-validations. We extend the tree model using resampling method to address

this issue. New sampling schemes are introduced to deal with the within-patient

structure.

6.1 Data description

This proteomic breast data contains 554 samples, which are sampled from the

tumor or lymph nodes on each patient and generated as mass spectra traces using

the Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)

technology (Franzen, 1997; Campa et al., 2003a). The range of mass per charge

is divided into p = 268 intervals and intensity is measured in each interval. For

each sample, we have 268 measured values, denoted as (x1, x2, . . . , x268) for this

sample. In mass spectrometry analysis, the location of the peak is important

and informative. By exploring the relationship between covariates and clinical

outcomes, we aim to study the predictive power of such mass spectrum data. We

have three different responses, which are ER (estrogen receptor status), HER2

(related hormone receptor status), and LN (lymph node status), each of them

a binary outcome (0 and 1). Some values are missing and the corresponding

response are assigned −9.

An interesting structure in this data set is that multiple samples can come

from the same patient. The 554 samples come from only 44 patients. We will

explore this structure by incorporating resampling methods, introduced in later

sections, into the Bayesian tree model.

The mass spectrum traces for patients with id 9 and 16, marked with blue

solid lines and red dashed lines correspondingly, are shown in Figure 6.1. The

ER of patient 9 is 0 while the ER of patient 16 is 1. Obviously the intensity
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Figure 6.1: The mass spectra traces for patients with id 9 (blue sold lines) and
16 (red dashed lines).

of x1, x2, . . . , x100 for patient 9 is much higher than patient 16. Meanwhile, the

intensities of the remaining covariates for these two patients share similar struc-

ture. This may indicate that some of the first 100 covariates may be informative

in predicting ER level.

A simple generalized linear model analysis shows that there may be some

predictive information in the regressors with respect to each of the responses. The

tree model is used for the following two reasons. First, in mass spectrum analysis,

whether a peak occurs at certain location is very informative. The indication of

a peak corresponds directly to a splitting rule in the tree model and the splitting

rules in the tree model can be easily interpreted in this context. Second, the

covariates are highly correlated. We aim to model the dependence structure of

the covariates using tree models.
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6.2 Analysis

In this section, we will first briefly describe the model specification and then give

results on the importance of predictors and the predictions.

For each of the three responses, we specify a model that is very similar to the

one in Section 4.2. For T, the pinball prior has α(m) = 1+Pois(m−1; 10), where

m = 10 for this data and β(i|m) = 1+Bin(i−1; m−2, 0.5). The splitting variables

are chosen uniformly via γ(i) = 1
268

, and the splitting thresholds come, for all k,

from δk(·) = Unif[0, 1] independently (all the covariates have been transformed

according to equation (2.8)). The within-leaf sampling model is bernoulli with

probability of ER(HER2, LNPOS) positive being θu in leaf u having independent

uniform prior, as specified in equation (2.17) taking a = b = 1. In this data, there

are 135 missing values found in ER and there are 117 missing values found in each

of HER2 and LNPOS. In the following text, if ER is 1, we call it ER positive. If

ER is 0, we call it ER negative, though this is somehow ambiguous. Otherwise, we

call it ER missing. Similar terms are adopted for HER2 and LNPOS. In running

the MCMC algorithm, we will first ignore the missing values. Later, we will make

prediction for those samples with the posterior tree samples.

We run an MCMC using the algorithm with change, grow/prune, swap and

restructure moves and produce 25, 000 trees. The histograms of the tree size, log

integrated likelihood and log posterior probability of the tree samples are displayed

in Figure 6.2. The upper, middle and lower panels correspond to the tree samples

from the posterior distribution given ER, HER2 and LNPOS respectively. The

size of the trees corresponding to ER and LNPOS ranges from 10 to 20 while the

size of the trees corresponding to HER2 ranges from 15 to 25. The priors for tree
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Figure 6.2: The histrogram of tree size, log integrated likelihood and log posterior
prbability of the posterior tree samples. The upper, middle and lower panels
represents the results for ER, HER2, and LNPOS respectively.
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Rank ER HER2 LNPOS
1 87 (1.00) 156 (1.00) 87 (1.00)
2 95 (1.00) 157 (1.00) 225 (1.00)
3 146 (1.00) 184 (1.00) 199 (1.00)
4 81 (0.96) 199 (1.00) 149 (1.00)
5 100 (0.96) 116 (0.98) 192 (0.82)
6 256 (0.94) 173 (0.79) 76 (0.71)
7 241 (0.85) 147 (0.76) 248 (0.70)
8 30 (0.79) 31 (0.68) 38 (0.55)
9 159 (0.44) 81 (0.61) 77 (0.48)
10 163 (0.42) 159 (0.60) 47 (0.25)

Table 6.1: The ten most frequently used predictors in the posterior tree samples
given each of three responses: ER, HER2 and LNPOS.

size all have a mean at 10. We also tried different priors for the tree size and

found that the results are insensitive to this specification. The histograms of log

integrated likelihood and log posterior probability also show that a wide range of

tree model have been explored.

In this analysis we aim to find which predictors, corresponding to the intensity

at certain locations, are significant in predicting the responses. For each predictor,

we calculate the posterior probability that this predictor is used (at least once)

as a splitting variable. The top ten most frequently used predictors are listed in

Table 6.1. Interesting information can be mined out of this table. For example,

the 87th predictor ranks highest in posterior probability for both responses ER

and LNPOS. We take a closer look at Figure 6.1. The enlarged mass spectrum

between 81 and 93 is displayed in Figure 6.3. We can see that there is a clear

cut at the 87th predictor, which is marked with green line, between patient id 9

and 16. Furthermore, the intensity at this location is relatively low, compared

to the peak at the location of the 83th predictor. This might indicate that there

is hidden information, possibly a peptide, at this location. We can also see that
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Figure 6.3: The mass spectra traces for patients with id 9 (blue solid lines) and
16 (red dashed lines). Only the part between 81 and 93 is shown.

199th predictor appears in top-ten list for both HER2 and LNPOS. Furthermore,

considering the particular structure of this data, the 146th predictor shown in ER

column, the 147th predictor shown in HER2 column, and the 149th in LNPOS

column may give the same important signal because they are close to each other

and hence may represent the same peak. Such information can be sent back to

the biologists and further studied from a proteomic point of view.

To assess prediction validity we ran a leave-one-out cross-validation. We are

interested in calculating P (Yi = 1|y−i) and comparing this predictive probability

to some threshold, which is the number of positive values in each data set over

the total number of non-missing values in this analysis. If P (Yi = 1|y−i) is

higher than the threshold, this sample is predicted to be positive and otherwise

predicted to be negative. We consider the fraction of the samples where the sample

status differs from the predicted status. This fraction is the misclassification rate

in the leave-one-out cross-validation analysis. Figure 6.4 displays the predicted
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Figure 6.4: The predicted probability P (Yi = 1|y−i) in leave-one-out cross-vali-
dation. The dashed line indicates the threshold, which is the number of positive
values in each data set over the total number of non-missing values in this analysis.

probabilities for ER response. In this figure, each sample is marked with its patient

id. Obviously we do not have a clear separation between predicted ER positive

and predicted ER negative. Quite a few predicted values are very close to the

threshold. However, the misclassification rate is only 0.066.

We also draw the boxplot of predicted values grouped by the patient id. Fig-

ure 6.5 displays the boxplots for ER positive, ER negative and ER missing. The

upper panel shows the boxplots of the predicted probabilities for ER positive.

The mean predicted probabilities for each patient are all greater than the thresh-

old, although some of them are very close to the threshold value. The middle

panel shows boxplots of the predicted probabilities for ER negative. It is obvious

that the variance of the predicted values within patient are generally greater than

those in ER positive. The predicted probabilities shown in these two panels are

calculated by leave-one-out cross-validation. We also calculate the predicted prob-
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ability P (Y ∗
i |y) for those samples with ER missing response. This is computed

by averaging over all the trees generated from the posterior distribution given the

whole set of observations. The lower panel in Figure 6.5 displays these predictive

probabilities for ER missing. The variances are even greater.

At first sight, these results seems to be very encouraging and one might there-

fore think if the Markov chain can be assumed to have converged, these results

are ready for discussion with the collaborative biologists. However, before we can

make such a claim, we need to step back and take a closer look at the posterior

samples. Figure 6.6 shows a randomly picked tree from the posterior samples

given the data with ER response. For most of the leaf nodes, the number of

observations in the node is quite small. It is quite possible that most of the leaf

node contains only the sample IDs from the same patient. A closer look at the

leaf node supports our conjecture. We know that the prediction given the tree

sample is related to the observations falling into same leaf node. So for example,

the samples of patient A into the left-most leaf node in the tree. We hold out one

sample i and try to compute P (Yi = 1|y−i). Remember we can use importance

sampling to compute this probability without regenerating the posterior samples

according to equation (5.22). If the samples falling into the same leaf as the ith

sample are mostly ER positive, the predicted probability of Yi being 1 is high and

close to 1. Otherwise, the predicted probability is low and close to 0. Note that

we observe that the samples from the same patient tend to fall into the same leaf

and it is likely that this leaf will contain only one patient because the number of

observations in each leaf node is relatively small. The prediction is therefore very

“accurate”. However, this is not the structure we want to explore. We aim to

explore the similarity in the mass spectrum between patients, not within patients.
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Figure 6.5: The boxplot of predicted values for ER response grouped by the pa-
tient id. The upper panel and the middle panel display the predicted probabilities
for ER positive patients and ER negative patients respectively. The lower panel
displays the predicted probabilities for ER missing.
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We can enforce a more restricted limit on the leaf size, as described in equation

(3.2), to have more patients into one leaf. However, this circumvention is rather

ad hoc and we do not have a clear idea what this limit should be. Another way

to assess the prediction validity is to do hold-one-patient-out cross-validation. We

did try that and the results do show some problems with this data; however, this

cross-validation is computationally expensive. In doing the cross-validation, we

hold out one patient, which means tens of samples, at each time. As we discussed

in Section 5.4.2, the importance sampling method is not feasible in this situation.

Therefore, we need to regenerate the tree samples when we hold out a patient,

which dramatically increases the computation. We will introduce a resampling

idea in next section to deal with this particular problem and this dataset.

The above discussion is based on the leave-one-out cross-validation analysis

for ER response. We also did the same analysis for HER2 and LNPOS, which are

shown in Figure 6.7 and Figure 6.8 respectively.

6.3 Resampling

In this dataset, we have multiple measurements for each patient. We denote

these measurements as X i = {x1
i , x

2
i , . . . , x

ri

i }, where ri is the number of sam-

ples for patient i. In the resampling model, instead of directly using these mea-

surements as the covariates, we treat them as noisy representatives. Suppose

these ri measurements are a random sample from some unknown, patient spe-

cific distribution Fi(x). Assume a Dirichlet process prior with parameter α on

Fi(·). That is for every k and all measurable partitions (B1, . . . , Bk) of X , the

distribution of (P (B1), . . . , P (Bk)) = (Fi(x ∈ B1), . . . , Fi(x ∈ Bk)) is Dirichlet

D(α(B1), . . . , α(B2)). Now X i is a sample from Fi(·). As discussed in Fergu-
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X95, 0.202465

X76, 0.449183 X100, 0.67236

leaf, 40:35/5 X118, 0.338019 X146, 0.550596 X30, 0.768724

leaf, 5:0/5 leaf, 3:0/3 X221, 0.759906 X241, 0.674389 X81, 0.474876 leaf, 15:15/0

X176, 0.547573 leaf, 21:0/21 X221, 0.433703 X10, 0.504907 leaf, 24:24/0 X26, 0.693148

X87, 0.566527 leaf, 39:4/35 leaf, 3:3/0 X116, 0.637155 leaf, 1:0/1 X200, 0.475856 leaf, 23:0/23 leaf, 3:0/3

X256, 0.634121 X92, 0.317899 X159, 0.584114 leaf, 20:20/0 leaf, 3:2/1 leaf, 89:89/0

leaf, 73:5/68 leaf, 33:27/6 leaf, 1:0/1 leaf, 26:26/0 leaf, 17:17/0 leaf, 32:3/29

Figure 6.6: A randomly picked tree sample from the posterior tree samples given
the data with ER response.
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Figure 6.7: The boxplot of predicted values for HER2 response grouped by
the patient id. The upper panel and the middle panel display the predicted
probabilities for HER2 positive patients and HER2 negative patients respectively.
The lower panel displays the predicted probabilities for HER2 missing.
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Figure 6.8: The boxplot of predicted values for LNPOS response grouped by the
patient id. The upper panel and the middle panel display the predicted probabil-
ities for LNPOS positive patients and LNPOS negative patients respectively. The
lower panel displays the predicted probabilities for LNPOS missing.
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son (1973), the posterior distribution of (P (B1), . . . , P (Bk)) for all measurable

partitions (B1, . . . , Bk) of X given the data is

f(P (B1), . . . , P (Bk)|x1
i , x

2
i , . . . , x

ri

i )
∝ f(X i|P (B1), . . . , P (Bk))f(P (B1), . . . , P (Bk))

=
k∏

l=1

ri∏

j=1

P (Bl)
δ
x

j
i

(Bl)
k∏

l=1

P (Bl)
α(Bl)

=
k∏

l=1

P (Bl)
Pri

j=1 δ
x

j
i

(Bl)+α(Bl)
.

(6.1)

Therefore the posterior distribution of Fi(· · · ) is a Dirichlet process with param-

eter α +
∑ri

j=1 δxj
i
. The predictive distribution is therefore

Fi(t|X i) =
α((−∞, t]) +

∑ri

j=1 δxj
i
((−∞, t])

α(X ) + ri
. (6.2)

Thus the predictive distribution is a mixture of prior guesses on Fi(·) and the

empirical CDF. In the limiting case, when α gets small, the predictive distribution

is just the empirical CDF

Fi(t|Xu) → 1

ri

ri∑

j=1

δxj
i
((−∞, t]) (6.3)

and so t is just uniformly distributed across x
j
i . When α is not 0, we allow t to

take values other than x
j
i , j = 1, 2, . . . , ri. This case may be of interest when

there are just a few measurements in xi. Prior guess on Fi(·) explores the other

values than xi that could provide a better prediction p(y|x, T).

Now we introduce the resampling method for our Bayesian tree model. Sup-

pose patient i has outcome yi and independent variable xi. The model is

p(yi|xi, T). (6.4)
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Now we have multiple noisy measurements X i = {x1
i , x

2
i , . . . , x

ri

i } on xi. In our

data, some patients have as many as 26 and some have just 3 measurements. For

each patient i, these measurements are assumed to be random samples from Fi(·).

We have already shown that if we assume Dirichlet process priors on Fi(·), xi is

uniformly distributed. However, the conditional distribution of xi is no longer

uniform given the observed data.

p(xi|yi, X i, T) ∝ p(xi|X i)p(yi|xi, T)

=
∑ri

j=1 qj
i δxj

i

(6.5)

where qj
i , j = 1, 2, . . . , ri sum to 1, and

qj
i ∝ p(yi|xj

i , T). (6.6)

That is, the conditional probability p(xj
i |yi, Xi, T) is proportional to the likelihood

given that the jth covariate in all the samples from the ith patient is chosen as the

representative.

We can now formally incorporate the within-patient information into the MCMC

tree model analysis by resampling the covariates. Let pi denote the index of mea-

surement for patient i. The implied sampling algorithm is then:

1. For each i, set x
pi

i as the covariate. The pi are all initialized to be 1. The

data set is (yi, x
pi

i ), i = 1, 2, . . . , m, where m is the number of patients.

2. Sample from p(T|(yi, x
pi

i ), i = 1, 2, . . . , m) using the Metropolis-Hastings

algorithm with all four types of proposals. Repeat this step long enough.

3. For each i, compute qj
i = p(yi|xj

i , T). Set x
pj

i = x
j
i with probability

qj
i∑ri

l=1 ql
i

.

4. Go to step 2.
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This resampling algorithm basically means that if the likelihood is in favor of

one specific covariate, then the probability that this covariate is sampled to be

the predictor is higher than the others.

Once we have the posterior samples, we can make prediction about the new

observation by averaging over the tree samples, i.e.

p(y∗|y, x, X∗) ≈ 1

N

∑N
i=1 p(y∗|X∗, Ti) (6.7)

where X∗ = {x1
∗, x

2
∗, . . . , x

r∗

∗ } is the multiple measurements of mass spectrum

for this new patient and Ti, i = 1, 2, . . . , N are samples from p(Ti|y, x). The

distribution p(y∗|X∗, Ti) is computed by averaging over all the measurements

∫
p(y∗|x∗, T)P (x∗|X∗)dx∗ ≈ 1

r∗
∑r∗

l=1 p(y∗|xl
∗, T) (6.8)

Similar to equation (6.3), x∗ is just uniformly distributed across X∗.

We then run a leave-one-out cross-validation, but we are holding out one pa-

tient at a time. Note that the importance sampling method discussed in Section

5.4.2, which greatly reduces computation cost, is still applicable here. Therefore,

we can generate the posterior tree samples only once. Figure 6.9 displays the pre-

dicted probabilities that ER is 1 for each patient held out. The upper panel and

lower panel show the predicted values for ER positive patients and ER negative

patients respectively. It is obvious that the variance within each patient is very

large and the mean values are all close to the threshold. Compared to Figure

6.5, Figure 6.9 suggest that it may be very difficult to make predictions using the

information from the other patients. Figure 6.5 looks good because the covariates

within one patient are similar to each other, which does indicate the utility of the
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tree model for evaluating the degree of within patient similarity as opposed to

prediction.

6.4 Discussion

In this chapter, we explored tree modeling in analysis of a clinically interesting

proteomic dataset. This is a very interesting example because of its samples-

within-patient structure. Ignoring this structure, our tree model gave very good

predictions; however, the tree model seemed to classify the samples according to

the patient, which was not informative for cross patient predictions. If all the

samples are known to sample from similar tumor locations within each patient

and the number of samples for each patient are the same, we can consider all the

samples from each patient as one single observation. As this was not the case,

we introduced a resampling method, which assumes that the samples are from

an unknown patient-specific distribution. The revised analysis and results by the

MCMC algorithm were discussed.

This resampling method is an interesting idea to model data that have struc-

ture that is similar to this proteomic data. But it fails to make good predictions

in cross-validation analysis. This failure suggests we step back and analyze the

data again, though this resampling method still helps to diagnose some problems

in the analysis discussed in Section 6.2. I also exploits the importance sampling

method introduced in Section 5.4.2 to reduce the computation cost for leave-one-

patient-out cross-validation.

This resampling example is a rather incomplete analysis. For example, we have

not yet studied the posterior probability of each sample being used in the tree.

Furthermore, we can explore how to improve the leave-one-out cross-validation
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Figure 6.9: The boxplot of predicted values in leave-one-out cross-validation
analysis for ER response grouped by the patient ID. The upper panel and the
lower panel display the predicted probabilities for ER positive patients and ER
negative patients respectively.
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with our Bayesian tree model in the future.
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Chapter 7

Random Threshold

One major feature of tree models is the sharp partitioning of data into sepa-

rate, unrelated subgroups. With a single predictor variable this induces a “step-

function” regression predictor, and the inherent discontinuity can sometimes be

regarded as undesirable. Here we introduce the novel idea of “random thresholds”

to begin to address this issue.

In the first part of this chapter, we explore a simple example with only a

single threshold to motivate and explain the ideas of random threshold modeling.

Bayesian analysis is given for this simple example. Bayesian tree models with

random thresholds are then described in some generality. We discuss aspects of

MCMC analysis in this framework, and also comparisons of predictions between

the random threshold tree and regular tree using a simulated example.
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7.1 Illustrative example

7.1.1 Model specification

In the tree model, we recursively partition the covariate space into sub-regions.

In each region, a simple distribution is assumed. Consider a simple example data

as shown in the left panel of Figure 7.1. In this data, the mean value of y given

x is discontinuous at x = 0. In other words, if we make a split at x = 0, which

is marked with black dashed line, the observations in each region can be modeled

with simple distribution. To fit this data, we can use

y ∼
{

N(µ1, σ
2), x ≤ τ,

N(µ2, σ
2), x > τ.

(7.1)

This corresponds to a tree model with one splitting variable and normal distribu-

tions in the leaves; however, this data is less realistic than that displayed in the

right panel of Figure 7.1, where a clear cut at x = 0 does not exist. If we still

use a tree model to fit this data, we will need to make more than one split. The

regression function of y given x may look like the (green) curve in this graph. As

there are more splitting variables, the tree size may get very large and thus it is

hard to capture and analyze the true structure.

Before we introduce the idea of random threshold, we explain why this could

happen. A first cause is the error in the variable. In this case, the observations are

indeed distributed with different mean values across the regions and the regions

are defined by the splitting variable z, but we do not observe this variable or the

values of z are noisy. Suppose that we actually observe x as the true underlying

z plus noise ε, where ε ∼ N(0, γ2). In the true underlying model, the splitting

threshold is z = 0. If x is far less than 0, the true underlying splitting variable
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Figure 7.1: Illustrative example. Left panel: the mean value of y given x is
disjointed. Right: the mean value of y given x is continuous and smooth.

z is also less than 0 with high probability. In this case, the distribution of y is

similar to the one defined in region {z : z ≤ 0}. The result is similar if x is far

greater than 0; however, if x is close to 0, the underlying z can be either less

or greater than 0. For example, if x is 0, the probability that z is less than 0

is 0.5. Therefore, if we observe only x, the distribution of y is a mixture of the

distributions specified in the adjacent regions. Thus given only x, there is no clear

cut for y at x = 0.

Assume

x = z + ν (7.2)

where ν ∼ N(0, γ2) and

y = µ11(z ≤ τ) + µ21(z > τ) + ε (7.3)

where ε ∼ N(0, σ2). Given x, the probability density function of y can be com-
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puted by integrating out z to give

p(y|x) =

∫
p(y|x, z)p(z|x)dz

=

∫ τ

−∞

p(y|z)p(z|x)dz +

∫ ∞

τ

p(y|z)p(z|x)dz

= φ(y; µ1, σ
2)(1 − Φ(x; τ, γ2)) + φ(y; µ2, σ

2)Φ(x; τ, γ2)

(7.4)

where φ(x; µ, σ2) and Φ(x; µ, σ2) are Normal probability density function and cu-

mulative distribution function respectively. Then it is easy to show that

E(y|x) = µ1(1 − Φ(x; τ, γ2)) + µ2Φ(x; τ, γ2). (7.5)

That is, the mean of y given x is a continuous function of x, favoring smooth

expected mean as shown in the right panel of Figure 7.1.

Another interpretation is via randomness in the threshold as analogous to

errors in splitting variables. In equation (7.1), the distribution of each observation

yi is decided by (xi, τ). That is, for all xi, τ is the same. A subtler model

introduces randomness in the threshold value. For example, for each observation

the distribution of yi is decided by (xi, τi) and τi has a normal distribution with

mean τ0 and variance γ2, with τi, i = 1, 2, . . . , n being unobservable. We only

know the distribution of τ by its mean and variance. This specification will lead

to the same probability density function for y as in equation (7.4). We call this

idea, which induces smoothness of the regression of y on x across the borders of

the sub-regions, the Random Threshold Tree Model.

In both approaches, the variance parameter γ2 is a smoothness parameter.

Figure 7.2 displays the mean of y given x, as specified by equation (7.3), for

different γ2. As γ2 gets smaller, the mean is less smooth and similar to the

one given by equation (7.1), so that the random threshold tree approaches the

standard model.
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Figure 7.2: The expected mean of y given x for different γ2.

7.1.2 Bayesian analysis

A natural prior choice for the parameters (µ1, µ2, σ
2, γ2, τ) in equation (7.3) is

µ1|σ2 ∼ N(µ0, σ
2)

µ2|σ2 ∼ N(µ0, σ
2)

σ2 ∼ IG(a, b)
γ2 ∼ IG(a, b)
τ ∼ Unif(L, U)

(7.6)

where (µ0, a, b, L, U) are the pre-specified hyper parameters. There is no conjugate

prior for τ ; we choose a uniform distribution.

Given the observations (xi, yi), i = 1, 2, . . . , n, the implied full posterior distri-

bution may be sampled via MCMC using the following sequence of conditionals

of each iteration:
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1. For each i, sample zi|xi, γ
2 ∼ N(xi, γ

2).

2. Sample σ2|τ,D ∼ IG(
n

2
+ a,

1
1
4

∑n
i=1(yi − µ0)2 + 1

b

).

3. Sample µ1|τ, σ2,D ∼ N(
µ0 +

∑n
i=1 yi1(zi ≤ τ)

n + 1
,

σ2

n + 1
)

and µ2|τ, σ,D ∼ N(
µ0 +

∑n
i=1 yi1(zi > τ)

n + 1
,

σ2

n + 1
).

4. Sample τ |µ1, µ2, σ
2,D.

5. Sample γ2|µ1, µ2, σ
2,D.

6. Output (µ1, µ2, σ
2, γ2, τ).

7. Go to step 1.

where D = (zi, yi)
n
i=1. Note that it is hard to sample directly from the conditional

distribution in step 4 and 5, so in these steps, we run a Metropolis-Hastings step

with proposals drawn from the priors for each of the τ and γ2.

For the data shown in the right panel of Figure 7.1, we choose µ0 = 0, a = b =

1, L = −2 and U = 2. Figure 7.3 displays the histograms of posterior samples of

τ , µ1 and µ2. The posterior mean and corresponding Monte Carlo standard error

for τ , µ1 and µ2 are 0.11(0.16), 1.13(0.15) and 2.95(0.14) respectively.

For any new x∗, we compute the predicted mean of y∗ as

E(y∗|x∗, (xi, yi), i = 1, 2, . . . , n)

=

∫

Θ

y∗p(y∗|x∗, Θ)p(Θ|(xi, yi), i = 1, 2, . . . , n)dΘ
(7.7)

where Θ is (µ1, µ2, σ
2, γ2, τ). Given the posterior samples of Θ, the predicted mean

is approximated by Monte Carlo integral. Figure 7.4 displays the predicted mean
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Figure 7.3: The histograms of posterior samples of τ , µ1 and µ2.
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dashed line is the expected mean level from the model.
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level (red solid line), which is very close the expected mean level (blue dotted line)

from the model in this simple example.

7.2 Tree models with random thresholds

7.2.1 Model specification and posterior

We now introduce random thresholds in tree models. As discussed in Section

7.1.1, we assume that the splitting thresholds are random in order to get smooth

transitions in predictor space across the sub-regions. Remember a tree model T

is specified by the triplet (T, kT , τ T ). For each splitting threshold τu, u ∈ a(T ),

we assume that

τu = ρu + νu (7.8)

where ρu is called the “true” splitting threshold for node u. Therefore a complete

tree model specification with random thresholds is TR = (T, kT , τ T , ρT ), where

ρT = {ρu, u ∈ a(T )}. The overall idea is that the νu terms will be small, random

perturbations to the underlying thresholds, thus adding little “shocks” to the

left/right specifications for each observation separately. It is key that the random

threshold will have tight priors around the ρ values. The prior for TR is specified

by

π(TR) = π(ρT |τ T , kT , T )π(τ T |kT , T )π(kT |T )π(T ) (7.9)

We adopt the same priors for π(T) = π(τ T |kT , T )π(kT |T )π(T ) as discussed in

Chapter 2 and π(ρT |τ T , kT , T ) is specified by equation (7.8). Then the likelihood

is

f(y|ρt, τ T , kT , T). (7.10)
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Note that y given ρT , kT and T are independent of τ T , thus we can compute the

posterior of the tree model with random threshold as

π(TR|y) ∝ f(y|TR)π(TR)
= f(y|ρt, kT , T)π(ρT |τ T , kT , T )π(τT |kT , T )π(kT |T )π(T ).

(7.11)

Remember that random thresholds are introduced to achieve smoothing of the

conditional distribution of y given x. We are less concerned with finding the exact

partition of the feature space than with sampling from π(τ T , kT , T |y). This is

obtained by integrating out ρT as

π(τ T , kT , T |y) =

∫

ρ
T

π(ρT , τ T , kT , T |y)dρT (7.12)

The resulting posterior MCMC method, similar to the one in Section 7.1.2, is then

straightforward, as follows:

1. Sample T and ρT |T from their prior.

2. Propose a move in T (change, grow/prune, swap, restructure) to get a new

tree model T
′.

3. For each internal node u in T
′, sample ρu ∼ N(τu, γ

2). Thus we have T
′
R =

(T′, ρT ).

4. Compute the acceptance ratio r(TR, T′
R).

5. Take TR = T
′
R with probability min{r(TR, T′

R), 1}.

6. Output T and go to step 2.

However this sampling scheme is not favored because: on one hand, we need to

revise the codes for all the proposals; on the other hand, practically the new
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proposed tree T
′
R is less likely to be accepted due to the updating of ρT . Rather,

we can achieve a more effective MCMC utilizing the existing code and method by

approximately integrating over the random threshold variables. In the practicable

context of a fairly precise prior for the thresholds, this can be done as below and

leads to the following modifications of the “regular” MCMC.

Notice that the posterior in equation (7.12) can be written

∫

ρ
T

f(y|ρt, kT , T)π(ρT |τ T , kT , T )π(τ T |kT , T )π(kT |T )π(T )dρT . (7.13)

Noting that the prior distribution π(τ T , kT , T ) is independent of ρT , the corre-

sponding terms can be taken out of the integral and then the posterior is

π(τ T |kT , T )π(kT |T )π(T )

∫

ρ
T

f(y|ρt, kT , T)π(ρT |τ T , kT , T )dρT . (7.14)

We can now directly use the Metropolis-Hastings algorithm discussed in Chapter

3 and the only difference is the computation of the likelihood function. The

marginalized likelihood f(y|τ T , kT , T) is approximated by

1

M

M∑

j=1

f(y|ρj
T , kT , T) (7.15)

where ρ
j
T , j = 1, 2, . . . , M are sampled from its prior π(ρT |τ T , kT , T ). In this

sampling scheme, we can directly use the current code without revising proposals

and the only change is to define a new class for the computation of the likelihood.

Furthermore, given the posterior draws Ti, i = 1, 2, . . . , M , it is not difficult

to design an algorithm to sample from ρ|y, Ti if it is of interest.
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7.2.2 Prediction and cross-validation

Given the posterior samples of the tree model, prediction is straightforward, via

p(y∗|y) =

∫

T

p(y∗|T, y)p(T|y)dT. (7.16)

We also assess prediction validity by running leave-one-out cross-validation. In

Section 5.4.2, we discussed how to use importance sampling to reduce the compu-

tational cost. However, in the tree model with random thresholds, the importance

sampling method is not directly feasible.

The equation (5.20) is the key in the importance sampling method. More

specifically, we need to have

p(y|T) =
∏

u∈b(T ) p({y}u|T), (7.17)

i.e., that the observations in different leaves are independent of each other given

T. However, in the tree model with random thresholds the observations fall to

the leaf node with certain probability given only T. We no longer have explicit

definition of {y}u, u ∈ b(T ) and equation (7.17) does not hold.

If we want to run leave-one-out cross-validation, the importance sampling

method does not help to reduce the computational cost. Each time we hold

out an observation, we need to rerun the algorithm and produce new samples.

7.3 Simulated example

We simulate data according to

y ∼






N(1, 1) x2 ≤ ρ2, x1 ≤ ρ1,
N(3, 1) x2 > ρ2, x1 ≤ ρ1,
N(5, 1) x3 ≤ ρ3, x1 > ρ1,
N(7, 1) x3 > ρ3, x1 > ρ1,

(7.18)
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Figure 7.5: The tree structure for simulating the data.

where ρ1 ∼ N(0.7, 0.01), ρ2 ∼ N(0.3, 0.01) and ρ3 ∼ N(0.5, 0.01). The corre-

sponding tree structure is displayed in Figure 7.5. The simulated data set con-

tains 162 observations. When we generate the data, we keep track of the “true”

splitting threshold ρ for each sample. Therefore we know which of the four dis-

tribution it is drawn from. The data is shown in Figure 7.6. Four different points

correspond to four different mean levels; however, they do not correspond to four

leaf nodes in Figure 7.5, because by our model, each sample can fall into any leaf

node as a result of the sample-specific randomly perturbed thresholds.

We ran the Metropolis-Hastings algorithm with change, grow/prune, swap and

restructure proposals and produce 8, 000 tree samples. Given the posterior tree

samples, we computed the expected mean of each sample, displayed in the left

panel of Figure 7.7. As a comparison, the results for the regular tree model without

random thresholds are also shown. First, it is not a surprise that the posterior

means of the samples that are marked with cyan square are less than 7. For this
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Figure 7.6: The data generated from the model specified in equation (7.18).

specific data, the within-leaf variance is relatively large and thus we do not expect

to have a clear partition. It is very possible that those cyan square samples are

classified with red cross and black plus samples and therefore the posterior means

of cyan square samples are less than 7. Second, the posterior means are computed

by averaging over all tree samples; however, as we can see in the right panel of

Figure 7.7, most of posterior means of the black plus samples are the same. This

does not reflect the fact that these samples could fall into the other leaves. In

the left panel of Figure 7.7, the posterior means of blue circle samples and black

plus samples are close to each other, indicating the probability for these samples

to fall into the other leaf is high. This is not a surprise since their corresponding

sub-regions are immediately adjacent and belong to the same region {x1 ≤ ρ1},

so indicating the relevance and utility of the new random threshold idea.
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Figure 7.7: The posterior mean of each sample. The left panel corresponds to the
tree model with random thresholds. The right panel corresponds to the regular
tree model.

We also compare the tree samples from the tree model with random thresholds

to those from the tree model without random thresholds. Figure 7.8 displays two

tree samples. The tree in the left panel corresponds to the tree model with random

thresholds and the one in the right panel corresponds to the regular tree model.

They both have the largest log integrated likelihood in their analysis. The size of

tree on the right is much larger as expected because in the regular tree model more

splits are needed to achieve a good fit; this is also illustrated by the example in

the right panel of Figure 7.1. Exploring other tree samples confirmed this result,

that the random threshold model generates smaller and simpler trees.

7.4 Discussion

In this chapter, we introduced random threshold modeling ideas and incorporate

this into our Bayesian tree model. This idea represents and error in variables

concept, i.e., the uncertainty of the splitting thresholds. For each splitting rule in

the tree model, although an extra variable is defined, the implementation of the
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Figure 7.8: Tree samples. The left panel corresponds to the tree model with
random threshold. The right panel corresponds to the regular tree model.
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corresponding Metropolis-Hastings algorithm is no more complex. We only need

to compute the induced marginal likelihood by averaging over random thresholds.

The basic idea of a random threshold is simple. If an observation is close to

the border of the region, then it is less independent of the other observations.

Furthermore, the posterior probabilities of the observation falling into each leaf

may infer the distance between leaves, which corresponds to the distance between

sub-regions in the partition. The distance between leaves is an interesting area

for future research. In a conversation with Fabio Rigat, we have discussed the

possibility of specifying a prior for such a distance. Our tree model with the

random thresholds now suggests a quite novel approach.

In this present analysis, inference on random thresholds is still vague. In the

posterior tree samples, different tree structure are visited and we cannot directly

compare the thresholds across the trees. The focus is on computing the smooth

estimates of the resulting regressions rather than finding out about the underlying

“true” splitting thresholds.

As we will see in Chapter 8, this random threshold can be applied to the other

tree models than the regression tree.
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Chapter 8

AR Tree Models

Nonlinear time series models have been widely studied in the literature. One of

the common techniques to extend linear autoregressive models to handle nonlinear

time series data is thresholding. Motivated by the threshold autoregressive model

(Tong, 1990), we now explore Bayesian tree models in time series.

In development of this autoregressive tree model, we found the work of Meek

et al. (2002) of interest. Although the model specification is similar, key differ-

ence exists. Meek et al. (2002) conduct a Bayesian analysis for a collection of

alternative model structures (trees) having unknown model parameters. How-

ever, the construction of these structures are not clear and instead of running a

MCMC algorithm, Meek et al. (2002) evaluate the posterior probabilities for each

structure. The problem is then changed to that of model selection over finite

number of models. Our approach is quite different. Our autoregressive tree mod-

els focus on exploring the posterior space with the MCMC algorithm discussed

in the previous chapters, and aggregating over trees for prediction. There are

no pre-specified model structures. Instead we specify a prior over tree models to

represent structure uncertainty.
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We first review several thresholding autoregressive models and then discuss the

motivation for our autoregressive tree model in details. After describing model

specifications, we study two data examples. The first one is a synthetic data

example, which gives some guidelines for autoregressive tree analysis. The sec-

ond one is the Canadian lynx data example (Priestley, 1988). The extension to

autoregressive tree models with random thresholds is discussed in the last section.

8.1 Motivation

An autoregressive model can be written as

yt = θ0 +
∑k

i=1 θiyt−i + εt (8.1)

where εt ∼ N(0, σ2). This is the standard AR(k) model for the {yt} process. A

class of nonlinear time series models extending equation (8.1) is called transition

autoregressive models (Tong, 1990; Chan and Tong, 1986; van Dijk et al., 2002).

Generally the current yt does not simply regress on the linear combination of the

past values, but rather on a mixture of two (or more) linear combinations. The

way of mixing is controlled by the transition function as in

yt = θ01 +
k∑

i=1

θi1yt−i + (θ02 +
k∑

i=1

θi2yt−i)π(γ, c, st) + εt (8.2)

where εt ∼ N(0, σ2). Here the model for yt is actually a mixture of two AR(k)

models, specified by θ1 and θ1 + θ2, where θ1 = (θ01, θ11, . . . , θk1) and θ2 =

(θ02, θ12, . . . , θk2) respectively. π(γ, c, st) is the transition function, where st in-

cludes the past values of yt and possibly some other inputs, γ and c are the

parameters to be specified. To simplify the notation, we write equation (8.2) in
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matrix form, namely

yt = x′
tθ1 + π(γ, c, st)x

′
tθ2 + εt (8.3)

where x′
t = (1, yt−1, yt−2, . . . , yt−k).

Specific to different problems and models, the transition function π(γ, c, st)

has different forms. Tong (1978), Tong and Lim (1980), Tsay (1989), and Tong

(1990) proposed and discussed a threshold autoregressive (TAR) model, namely

yt = x′
tθ1 + I[st > c]x′

tθ2 + εt (8.4)

where the transition function is an indicator function which divides the space into

two regimes and in each regime yt is “locally” an AR process. st in the indicator

function can be some other inputs than the time series data itself. If we restrict

st to the past values of the time series data, we have the self-exciting threshold

autoregressive (SETAR) model (Petruccell and Woolford, 1984; Chen and Tsay,

1991; Wong and Li, 1998), namely

yt = x′
tθ1 + I[yt−d > c]x′

tθ2 + εt (8.5)

where d is the delay parameter. From the view of tree models, equation (8.5) is

an explicit expression of the tree model with only one split and the splitting rule

is {yt−d > c}. An immediate extension of this SETAR model is to admit more

than two regimes. For example, one possible extension could be

yt = x′
tθ1 + I[yt−d1 > c1, yt−d2 ≤ c2]x

′
tθ2 + I[yt−d1 > c1, yt−d2 > c2]x

′
tθ2 + εt

(8.6)

Theoretically, we can still use the procedure described in Tsay (1989) to find

the estimate for the delay parameters and the thresholds. But in that case, one
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question is left unanswered. How many thresholds do we need to put into this

extended SETAR model? A possible approach to proceed is to enumerate all pos-

sible ways of thresholding and compare these models according to some criterion

(e.g. AIC, BIC) after the best estimate for delay parameters and thresholds are

found. This approach is computationally expensive and even infeasible for the

data with a complicated thresholding structure. A formal and appropriate ap-

proach is, of course, to build a thresholding structure on top of the AR model. A

natural choice for such structure is the tree model. For example (8.6) can be easily

described by a tree model of size 3 (two splits). In the remaining sections of this

chapter, we illustrate how to synthesize Bayesian tree models with AR models in

the context of non-linear time series data analysis. This model, combining tree

and autoregressive model, is called autoregressive tree (ART).

In both equation (8.4) and (8.5), the transition function is discontinuous. The

introduction of smoothness into the transition function leads to a model called

smooth transition autoregressive model (STAR). One can refer to Bacon and

Watts (1971), Chan and Tong (1986), Luukkonen et al. (1988), Granger and

Teräsvirta (1993), Teräsvirta (1994), Wong and Li (1998), Leybourne et al. (1998)

and van Dijk et al. (2002) for detailed discussions. Some examples of smooth

transition functions are:

• Logistic transition function: π(γ, c, yt−d) = (1 + exp(−γ(yt−d − c)))−1.

• Exponential transition function: π(γ, c, yt−d) = 1 − exp(−γ(yt−d − c)2).

• Second-order logistic transition function: π(γ, c1, c2, yt−d) = (1+exp(−γ(yt−d−

c1)(yt−d − c2)))
−1, where c1 < c2.

The smoothness parameter γ in transition functions above is positive. No matter
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what the (smooth) transition function is, the basic idea of STAR and TAR models

is to replace the linear combination with a non-linear function. That is, all these

models can generalized as

yt = f({yt−1, yt−2, . . .}, θ) + εt. (8.7)

In other words, the non-linearity is introduced in the expected mean of yt given

the past values, while normality still holds. Sometimes we would like to relax

this restriction. In SETAR model, the mean of yt is determined by either θ1 or

(θ1, θ2), depending on yt−d. STAR models relax this to be a weighted sum and

the weight is a function of the past value. This is how the smoothness in the mean

value is introduced. To further relax the restriction of normality, we assume there

is an underlying random variable zt−d which depends on yt−d and possibly some

other parameters. This zt−d can be considered as the “true” transition variable.

In this case, the distribution of yt is determined by this representative zt−d. If

normal distribution is assumed in each region, then the distribution yt is a normal

mixture. Therefore, not only is the mean of yt a nonlinear function of the past

values, but also the distribution of yt is non-normal. This is analogous to the

random threshold introduced in Chapter 7. Therefore, if we use tree models to

define a thresholding structure for a SETAR model, this extension from SETAR

and STAR model is very natural in the tree model context and will be introduced

in a later section.
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8.2 Model specification

We will illustrate the relationship between the SETAR model and the ART model

by looking at a more complicated example. Consider the following model

yt = I(yt−d1 < c1)x
′
tθ1 + I(yt−d1 ≥ c1, yt−d2 < c2)x

′
tθ2

+I(yt−d1 ≥ c1, yt−d2 ≥ c2)x
′
tθ3 + εt.

(8.8)

Unlike equation (8.5), where the first item x′
tθ1 is like a base for the other regimes,

equation (8.8) is specified in the way that the “AR process” in each regime is

distinct from and independent of the others. This specification is introduced only

to simplify the notation. At time t, given the past data {yt−1, yt−2, . . .}, the space

is divided into three regions (Ω = {yt−d1 < c1}∪{yt−d1 ≥ c1, yt−d2 < c2}∪{yt−d1 ≥

c1, yt−d2 ≥ c2}). This is similar to the partitioning of the feature space in the

tree model. It is easy to check that the thresholding structure in equation (8.8)

corresponds to the tree shown in Figure 8.1. The tree shown in Figure 8.1 is

different from the regression tree or classification tree in several perspectives.

• In CART models, a predictor set is used to form the splitting rules in the

tree and hence make the partition of the feature space. Here in ART models,

the past data {yt−1, yt−2, . . .} serves as the predictor variables.

• The splitting rules are changing as time changes. We specify the delay

parameter di instead of a particular variable in the splitting rules. For

example, in node 0 in the tree shown in Figure 8.1, the delay parameter is

d1. So at time t, the splitting variable to be used is yt−d1 .

• In the leaf node u, the specified distribution is written as AR(k; θu), meaning

that if yt falls into this leaf, it has a form of yt = x′
tθu + εt. {yt}u, the set of
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leaf, AR1 Y_-d2, c2

leaf, AR2 leaf, AR3

Figure 8.1: An ART example. AR1, AR2 and AR3 in the leaf node stand for
AR(k; θ1), AR(k; θ2), and AR(k; θ3) respectively.

observations falling into leaf node u, is not necessarily an AR(k; θu) process

because the time index in {yt}u is not sequential.

Define

y =




yk+1

yk+2
...

yT


 (8.9)

and

x = (x1, x2, . . . , xp) =




yk yk−1 . . . yk+1−p

yk+1 yk . . . yk+2−p
...

...
. . .

...
yT−1 yT−2 . . . yT−p


 (8.10)

where p is the pre-specified maximum value for the delay parameter. We hold out

the first k observations, to be used as the input. Then we can directly apply the

model specification for the regression tree to (y, x) with the distribution in leaf
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node u specified as

yt ∼ N(X ′
tθu, σ

2) (8.11)

for every (yt, Xt), t ∈ NT(u, I), u ∈ b(T ) and Xt = (1, yt−1, yt−2, . . . , yt−k). This

is a special case of equation (1.18). The likelihood function for leaf node u is

L(θu, σ
2; yu, Xu) =

1

(2π)
nu
2 |Σ| 12

exp(−1

2
(yu − X ′

uθu)
′Σ−1(yu − X ′

uθu))

(8.12)

where nu is the number of observations in the leaf and Σ = σ2Inu×nu
and (yu, Xu)

denotes all the observations falling into this leaf.

As in the other cases, we need to compute the marginal likelihood on any given

tree structure. Suppose now we have M leaves, then

y1 = X ′
1θ1 + ε1,

y2 = X ′
2θ2 + ε2,

...
yM = X ′

MθM + εM ,

(8.13)

where εu ∼ N(0, σ2Inu×nu
) independently. Let y = (y1, y2, . . . , yM)′ and θ =

(θ1, θ2, . . . , θM)′. A natural choice of the prior for θu, u = 1, 2, . . . , M and σ2 is

θu ∼ N(0, σ2

m
Iq×q),

σ2 ∼ IG(a, b),
(8.14)

where m is a pre-specified hyper parameter to control the variance of θu and

q = k + 1. It is easy to show y|σ2 is still multivariate normal with

E(y|σ2) = E(E(y|θ, σ2)) = 0,
Var(y|σ2) = E(Var(y|θ, σ2)) + Var(E(y|θ, σ2)) = σ2C

(8.15)

where the covariance matrix is

C = Diag(
1

m
X ′

1X1+In1×n1 ,
1

m
X ′

2X2+In2×n2 , . . . ,
1

m
X ′

MXM +InM×nM
) (8.16)
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From the normal/gamma theory, we know that y is marginally a multivariate t

distribution in n =
∑M

u=1 nu dimensions, with 2a degrees of freedom, mode 0 and

scale matrix R = C/(ab) with density

p(y) ∝ (2a + y′R−1y)−(2a+n)/2. (8.17)

In order to compute the marginal likelihood we now only need to evaluate the

probability density function for observation y .

This model can be relaxed by assuming different σ2 in each leaf node. That is

the distribution in leaf node u specified as

yt ∼ N(X ′
tθu, σ

2
u). (8.18)

In this case, for example, equation (8.8) will be changed to

yt = I(yt−d1 < c1)(x
′
tθ1 + εt1) + I(yt−d1 ≥ c1, yt−d2 < c2)(x

′
tθ2 + εt2),

+I(yt−d1 ≥ c1, yt−d2 ≥ c2)(x
′
tθ3 + εt3).

(8.19)

where εti, i = 1, 2, 3 are normal random variables with different variance.

Similar to the prior specification in equation (8.14), the prior for (θu, σ
2
u),

u = 1, 2, . . . , M is

θu ∼ N(0, σ2
u

m
Iq×q)

σ2
u ∼ IG(a, b)

(8.20)

The calculation of marginal likelihood is similar, except that in this case the

marginal likelihood in each leaf can be computed independently. Similarly, yu

is marginally a multivariate t distribution in nu dimensions, with 2a degrees of

freedom, mode 0 and scale matrix Ru = Cu/(ab), where Cu = 1
m

X ′
uXu + Inu×nu

.

We compute the marginal likelihood p(yu|T) by evaluating the corresponding

probability density function of multivariate t distribution. Then the marginal
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likelihood for all the observations is computed by p(y|T) =
∏M

u=1 p(yu|T). In the

following text, we will mainly study the case of equation (8.8).

We conclude this section by discussing forecasting. Given the data and poste-

rior tree samples, one-step forecasting is very straightforward based on

p(yt+1|y1:t) =

∫

T

p(yt+1|T, y1, y2, . . . , yt)p(T|y1:t)dT. (8.21)

However, when we want to further predict yt+2, it is not that easy. There are two

possible approaches. The first approach assumes yt+1 is unknown yet. Then the

predictive density of yt+2 given y1:t is

p(yt+2|y1:t) =

∫

T

p(yt+2|T, y1, y2, . . . , yt)p(T|y1:t)dT (8.22)

but the predictive distribution of yt+2 given T, y1:t is unknown. In linear AR

models, this is a normal distribution; however, in ART models, without the normal

assumption, we know nothing about p(yt+2|T, y1:t) without immense additional

computations involving imputation of yt+1. This relates to the second approach

that assumes yt+1 is known. Then we have

p(yt+2|y1:t+1)

=

∫

T

p(yt+2|T, y1:t+1)p(T|y1:t+1)dT
(8.23)

In this case, the predictive distribution of yt+2 given T, y1:t+1 is known. However,

the posterior samples T given y1:t+1 are not available. We need to regenerate the

tree samples at each step of forecasting, which is computationally expensive. In

practice, for near future forecasting, we still use the tree samples from T|y1:t, sim-

ply assuming that this represents an adequate approximation to the theoretically

exact p(T|y1:t+1).

142



0 10 20 30 40 50 60 70 80 90 100

−0.1

−0.05

0

0.05

0.1

0.15

Time

Simulated Example

Figure 8.2: A simulated data from TAR model

8.3 Synthetic data analysis

We study two synthetic datasets. The first is simulated from a TAR model. We

show how to deal with TAR models in the ART framework. The second dataset

is more complicated, involving more than one threshold.

We simulate the first example dataset from the following model

yt = I(yt−1 ≤ 0)(1.2yt−1 − 1.5yt−2) + I(yt−1 > 0)(0.5yt−1 − 0.06yt−2) + εt

(8.24)

where εt ∼ N(0, 0.022) and the initial values are y1 = 0, y2 = −0.1. The data is

shown in Figure 8.2. The data points marked with red circle are simulated from

1.2yt−1 − 1.5yt−2 + εt and those with blue cross are from 0.5yt−1 − 0.06yt−2 + εt.

When we analyze this data with ART models, we know that there is only one

threshold. Therefore in running the MCMC algorithm, we can start from a tree

with only one splitting variable (two leaves). Since the size of the tree will be kept

the same, we do not need to run the grow/prune move. Swap move is not feasible
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and restructure move and change move are equivalent in this case. So, basically,

we just change the thresholding rule at every step. In the posterior samples, we

see 1479 out of 1500 trees with the delay parameter 1. The MCMC mean and

standard variance of the threshold are 0.00086 and 0.0107 respectively. We also

try to run the MCMC algorithm with grow/prune move and restructure move and

small trees are favored in the posterior samples.

The above analysis is very straightforward and can be easily done even without

the tree structure. However, when we move to a more complicated model, it is

not so obvious. We consider the following model

yt = I(yt−1 < −100)(−767 − 1.5yt−1) + I(−100 ≤ yt−1 < 0)(1.5 − 0.5yt−1)
+I(yt−1 ≥ 0)(−300 + 0.5yt−1) + εt

(8.25)

where ε ∼ N(0, 1002). A simulation of 200 samples is shown in Figure 8.3. We

also show a scatter plot of yt versus yt−1 in Figure 8.4. It is obvious yt is not linear

in yt−1. The different regimes are marked with different symbols. In this case,

a simple AR model can not fit the data well. We thus use ART to explore the

thresholding structure; however, p specified in equation (8.10) is usually unknown.

In other words, we do not know how many steps we need to look back. Some

exploratory analysis may be helpful. Figure 8.5 shows the scatter plot of yt−2

versus yt. Unlike the scatter plot in Figure 8.4, it is hard to distinguish the three

regions marked with different symbols. In this case, p is likely to be 1 and then we

conduct the TAR analysis. However, in ART analysis we specify a large enough

number for p, e.g. p = 3 for this data. Then we run the MCMC algorithm and

check what structure is preferred in the posterior samples.

For this data, the prior for the leaf node distribution is θu ∼ N(0, σ2Iq×q)
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Figure 8.3: A simulation of 200 samples from model specified in equation (8.25)
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Figure 8.4: The scatter plot of yt−1 vs yt. Nonlinearity is observed.
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Figure 8.5: The scatter plot of yt−2 vs yt. No obvious thresholding can be seen
from this scatter plot.

and σ2 ∼ IG(0.01, 0.01). The pinball prior has α(m) = 1 + Pois(m − 1; 3) and

β(i; m) = 1 + Bin(i − 1; m − 2, 1
2
). The splitting variables (delay parameters)

are chosen uniformly via γ(i) = 1
p
, and splitting thresholds come, for all k, from

δk(·) = Unif(−723, 324), where −723 and 324 are the minimum and maximum

values of yt respectively.

We ran the MCMC algorithm using the grow/prune, swap, change and basic

restructure proposals for 1000 iterations. Each iteration includes a series of 25

change moves, 25 grow/prune moves, 25 swap moves and 1 restructure move.

The acceptance ratio of grow/prune and change move is about 15.5% and 18.4%

respectively. The acceptance ratio of swap move is 0% and that of basic restructure

move is almost 1. This is not a surprise. When we take a close look at the

posterior tree samples, we find many trees similar to the two shown in Figure 8.6.
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Figure 8.6: Two posterior tree samples. These are visited with almost equal
probability.

It is obvious that if, for example, the tree on the left panel of Figure 8.6 is the

current one, swap move will not be accepted because it will propose a new tree

with an empty leaf node. As for the basic restructure move, it will propose trees

between the two shown in Figure 8.6. We can see that the two tree structures in

the figure are actually equivalent in terms of the thresholding structure and our

basic restructure move is able to jump between them. Meanwhile, our MCMC

algorithm finds some other trees as well, but most of the trees we see in the

posterior samples have the structure as in Figure 8.6 and in most of the trees,

although we allow delay parameter up to 3, only yt−1 is used, indicating that yt−2

and yt−3 are not necessary to form the thresholding structure.

Figure 8.7 shows the histogram of the log integrated likelihood for the posterior

tree samples. The red dashed line indicates the log integrated likelihood of the

true model. The histogram shows two modes. One is centered at the true value

and the other one is slightly smaller. This indicates that our algorithm has visited
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Figure 8.7: The histogram of the log integrated likelihood with the one from the
true model indicated.

the other trees while the tree model corresponding to equation (8.25) is strongly

preferred.

8.4 Lynx data

Now we consider a real data example. We want to model the annual number

of lynx trappings in the Mackenzie River District of North-west Canada for the

period 1821 to 1934 (Priestley, 1988). The logarithm with base 10 of the data is

shown in Figure 8.8. We first look at the scatter plot of yt versus yt−1 to check

if there is any obvious structure. The scatter plot is shown in Figure 8.9. It is

obvious that yt is generally linear in yt−1. The non-linearity lies in the asymmetry

in the rising period (i.e. from “valley” to “peak”, yt−1 ≥ yt−2) and the falling

period (i.e. from “peak” to “valley”, yt−1 > yt−2). In Figure 8.9, these two

periods are marked with red circle and blue cross respectively. It can be seen that
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Figure 8.8: The log number of the Canadian lynx trappings for the period 1821
to 1934.

the variance of yt given yt−1 in the rising period is slightly larger than that in the

falling period; the time spent on the rising period is slightly higher than the time

spent on the falling side.

In this section, we aim to explore this feature with our ART model. Chapter

7 in Tong (1990) is recommended for a comprehensive study of this data. In our

analysis, we set k = p = 2, that is, at any time t we will look back up to 2 steps to

find an appropriate splitting variable and in each leaf, an AR(2) model is assumed.

Observing the significance of yt−1 − yt−2, we will also include this variable in the

splitting variable set. In this case, equation (8.10) is

x = (x1, x2, . . . , xp, x1 − x2) =




yk yk−1 yk − yk−1

yk+1 yk yk+1 − yk
...

...
...

yT−1 yT−2 yT−1 − yt−2


 . (8.26)

We ran the MCMC algorithm and produced 1000 posterior tree samples. Fig-
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Figure 8.9: The scatter plot of yt versus yt−1. The rising period and falling
period are marked with red circle and blue cross respectively.
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Figure 8.10: The posterior histograms of tree size and log integrated likelihood.

ure 8.10 displays the histogram of tree size and log integrated likelihood. Surpris-

ingly, 825 out of 1000 tree samples have only one single node, which means that

in our ART analysis AR(2) model is preferred in fitting the data. This partly

supports what we have seen in Figure 8.9, where a strong linear relation between

yt and yt−1 was shown. However, non-linearity is evident as now discussed.

Taking a closer look at the posterior tree samples, we find that some more

complicated models have also been visited. Two tree samples are shown in Figure

8.11. They are both trees with only one splitting variable. In the left panel, the

splitting variable is yt−3, which is yt−1 − yt−2 in our specification. The resulting

two subset of observations are very close to the division between rising period

and falling period. The tree displayed in the right panel has a different splitting

variable, which is yt−2.

This ART analysis in this example illustrates the use of the approach as an ex-

ploratory tool to study non-linearity in time series data. There are many question

left unanswered and this first extension of Bayesian tree models to ART modeling

is just an initial, opening step. For example, have we run the posterior MCMC

algorithm long enough? How do we choose k and p? These questions will be
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Figure 8.11: Two tree samples

studied as we further develop this model.

8.5 Extension

We briefly discuss one extension of ART models, that of random thresholds. The

observation and the splitting variable are specified as equation (8.9) and (8.10).

In addition to that, we have a set of underlying variable z = (z1, z2, . . . , zp). As

in the random threshold model, the given splitting variable set is the “noisy” rep-

resentation of z and the true splitting variables are z. Similar to the discussion

in Chapter 7, the only change to the implementation of ART model is the calcu-

lation of the likelihood. We integrate out all the underlying variables in order to

calculate the marginal likelihood.

Consider a simple example specified in equation (8.5). Suppose yt−d is a noisy

splitting variable. It follows a normal distribution with mean y0
t−d and variance
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γ2. The marginal likelihood is

p(yt|xt, yt−d, θ1, θ2, c, σ
2, γ2)

=

∫

y0
t−d

p(yt|xt, y
0
t−d, θ1, θ2, c, σ

2, γ2)p(y0
t−d|yt−d)dy0

t−d

= φ(yt; x
′
t(θ1 + θ2), σ

2)(1 − Φ(yt−d|c, γ2)) + φ(yt; x
′
tθ2, σ

2)Φ(yt−d|c, γ2)

(8.27)

where φ(x; µ, σ2) and Φ(x; µ, σ2) are the normal probability density function and

the normal cumulative distribution function respectively. Thus the mean

E(yt|xt, yt−d, θ1, θ2, c, σ
2, γ2) is

x′
t(θ1 + θ2)(1 − Φ(yt−d|c, γ2)) + x′

tθ2Φ(yt−d|c, γ2) (8.28)

which can be simplified to

x′
tθ1(1 − Φ(yt−d|c, γ2)) + x′

tθ2. (8.29)

This mean is a specific case of the mean in equation (8.3). The transition function

is in the form of normal CDF. It is easy to check that different transition functions,

e.g. exponential transition function and logistic transition function, correspond

to different distribution assumptions for the underlying splitting variable. The

key difference between ART with random threshold and STAR is that the normal

assumption in STAR does not hold in our model. Therefore in analyzing nonlinear

time series data, the normal assumption can be relaxed with ART model with

random threshold.
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Appendix A

SimTree Manual

In this appendix, we describe the implementation of our Bayesian tree model in

C++ and demonstrate the usage of the code SimTree. SimTree is a collection of

C++ code with object oriented design. With this design, it is easy to write new

code for new applications. For example, we need to include just one new class for

survival tree.

A.1 Classes

In this section, we describe the several key classes: Node, Model, Proposal, MCMC

and Diagnose. Figure A.1 displays the complete class hierarchy in the implemen-

tation of SimTree.

A.1.1 Node

Node class defines a node in the tree. It has the following member variables.

• left, right: the pointers to the left child node and right child node.

• obs: the pointer to the observation class, which stores the data.
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Figure A.1: The class hierarchy in the implementation of SimTree.
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• splitVariable, splitLevel: splitting rules assigned to this node. If splitVari-

able is −1, this node is a leaf node.

• SubjectList: the index of observations classified to this node.

Several key member functions includes

• DumpDotFile: Output the subtree starting from this node to a dot file,

which will be used to draw a tree with dot program.

• UpdateSubjectList: if the splitting rules is changes, update the subject list.

NodeTree is a derived class of Node. It represents the whole tree/subtree. A key

member function is Pot. Given the model for tree structure, splitting variables

and leaf node distribution, it calculates the negative log posterior probability.

A.1.2 Model

Model class is designed to describe the model for tree structure, splitting variables

and leaf node distribution. Key member functions include

• Potential: a virtual function. It calculates the negative log prior probability.

• PotentialDifference: a virtual function. It calculates the change of negative

log prior probability given the changes to the tree.

ModelLikelihood, ModelSplittingVariable and ModelTreeStructure are derived classes

of Model. ModelLikelihood describes the leaf node distribution. In the current de-

velopment, we implement ModelLikelihoodBinomial, ModelLikelihoodExp, Mod-

elLikelihoodGaussian, ModelLikelihoodRandomGaussian and ModelLikelihood-

Weibull, corresponding to Binomial distribution, Exponential distribution, Nor-
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mal distribution, Normal distribution with random threshold and Weibull dis-

tribution in the leaf node. When a new model is developed, we only need to

implement a new class derived from ModelLikelihood and implement those vir-

tual functions calculating the negative log marginal likelihood.

ModelSplitVariable is a derived class of Model to describe the prior for the

splitting rules. In the current development, we have the implementation of Mod-

elSplitVariableIndependent, corresponding to the independent prior specifications

for splitting rules.

ModelTreeStructure is a derived class of Model to describe the prior for the

tree structure. In the current development, we have the implementation of Mod-

elTreeStructurePinball, corresponding to the pinball prior for tree structure de-

scribed in section 2.1.

A.1.3 Proposal

Proposal class is designed to describe several proposals in the Metropolis-Hastings

algorithm in chapter 3. It has only one member function ProposeChange, which

proposes changes to the tree and return a Delta class (describing the change).

ProposalBasicRadical, ProposalChange, ProposalPrunegrow and ProposalSwap

are the derived classes corresponding to restructure move, change move, grow/prune

move and swap move.

A.1.4 MCMC and diagnosis

MCMC class runs the Metropolis-Hastings algorithm given the input of proposals

and models for the tree. Acceptance ratio are recorded and return. MCMC itself

does not records all the trees in the chain. So after each iteration, we need to
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store the tree in a vector.

Diagnose class provides a collection of functions, calculating the importance

of splitting variables, negative log posterior probability, the predicted values in

leave one out cross validation, etc., given the input of posterior tree samples.

A.2 Usage of SimTree

The code is successfully compiled and run with g++ 4.0 and Visual C++ 8.0. An

example of running SimTree is

Example
./SimTree seed DataFile OutputPrefix

The running arguments are

• seed: seed number for random number generator.

• DataFile: the input of data. The first line specifies the type of distribution

in the leaf node, defined in the header file Observation.h. The second line

specifies the number of observations and the third line specifies the number

of predictors. From the fourth line, each line is an observation in the format

of x1, x2, . . . , xp, y.

• OutputPrefix: the prefix for a collection of output files. The output files

includes the importance table of predictors, log marginal likelihood for each

tree, predicted values of leave one out cross validation, etc.. Detailed output

can be found in Diagnose::Scoring.

The software is available for download on http://www.isds.duke.edu/~casper/.
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datainput.txt
0

5

2

0.1 0.2 0.12

0.2 0.1 0.14

0.4 0.4 0.50

0.1 0.1 0.13

0.2 0.4 0.30

Table A.1: A sample data input file.

159



Bibliography

Bacon, D. W. and Watts, D. G. (1971). Estimating the transition between two
intersecting straight lines. Biometrika 58, 525–534.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and
Regression Trees. The Wadsworth Statistics/Probability series, Belmont CA.

Brooks, S. P. and Roberts, C. P. (1998). Convergence assessment techniques
for Markov chain Monte Carlo. Statistics and Computing 8, 319–335.

Buntine, W. (1992). Learning classification tree. In Statistics and Computing,
vol. 2, 63–73. Springer Netherlands.

Campa, M. J., Fitzgerald, M. C., and Patz, Jr., E. F. (2003a). Exploring the
proteome with MALDI-TOF (editorial). Proteomics 3, 9, 1659–1660.

Chan, K. S. and Tong, H. (1986). On estimating thresholds in autoregressive
models. Journal of Time Series Analysis 7, 179–190.

Chen, R. and Tsay, R. S. (1991). On the ergodicity of TAR(1) processes. The
Annals of Applied Probability 1, 4, 613.

Chipman, H., George, E., and McCulloch, R. (1998). Bayesian CART model
search (with discussion). J. Am. Statist. Ass. 93, 935–960.

Chipman, H., George, E., and McCulloch, R. (2002). Bayesian treed models.
Machine Learning 48, 299–320.

Conover, W. (1971). Practical Nonparametric Statistics. John Wiley & Sons,
New York.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence
diagnostics: A comparative review. J. Am. Statist. Ass. 91, 883–904.

Denison, D., Mallick, B., and Smith, A. (1998). A Bayesian CART algorithm.
Biometrika 85, 363–377.

Faraway, J. J. (2005). Extending Linear Model With R: Generalized Linear,
Mixed Effects and Nonparametric Regression Models. Routledge.

160



Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems.
Annals of Statistics 1, 209–230.

Franzen, J. (1997). Improved resolution for maldi-tof mass spectrometers: A
mathematical study. International Journal of Mass Spectrometry and Ion Pro-
cesses 164, 1, 19–34.
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