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Abstract

The focus of this thesis is on large sample size issues in spatial data analysis. Specif-

ically, it consists of three major parts: spatial asymptotics; model fitting for large

spatial datasets; and spatial design for one-time sampling. Our major contributions

involve (i) providing various new results for spatial asymptotics; (ii) development of

three new spatial process approximation methods useful for handling large spatial

datasets; and (iii) development of approximately optimal sampling approaches for

extensive spatial sampling.

Performing large sample analysis for spatially dependent data is challenging.

Based on different spatial sampling schemes, we consider three types of asymptotics:

infill asymptotics, expansion asymptotics, and so called “middle-ground” asymptotics.

The first two asymptotics are well known but not fully studied. Middle-ground

asymptotics is a new territory. We study the limiting behavior of the Fisher in-

formation matrix, the asymptotic properties of various estimators, and the weak

identifiability of the parameters in spatial models under these three asymptotics sce-

narios.

Historically, it has been difficult to apply spatial modeling techniques to analyze

large spatial datasets. The problem is that we have to handle the inversion and

determinant computation of a covariance matrix with the size same as the sample size.

Consider fitting a Gaussian spatial model for a spatial dataset with a large sample

size n. Likelihood based or Bayesian modeling suffer from severe computational

difficulties since each evaluation of the exact likelihood requires an O(n3) operation.

We refer to this computational challenge as the “large n problem.” We develop a new

finite sum process approximation model which is both theoretically attractive and

computationally efficient. The model is implemented in a Bayesian framework and
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applied to analyze several large spatial datasets.

Finally, we consider the problem of approximately optimal design in the special

case of one-time sampling at a large number of spatial locations. Our goal is to

develop a good design strategy to help practitioners select sampling locations.
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Chapter 1

Introduction

1.1 Overview

Data in areas such as environmental health, ecology, meteorology, and real estate

markets often have a geographical and temporal label associated with them. Usually,

data that are close together in space (and time) are more alike than those that are

far apart.

There are three basic types of spatial data: point-referenced data, areal data, and

point-process data. Point-referenced data are also known as geocoded or geostatistical

data where data are observed at a collection of locations in a set D in R
d and d is

the number of dimensions. Typically, the locations are represented in two or three

spatial coordinates, e.g. longitude, latitude, and altitude. The Baton Rouge house

price dataset which we will analyze in Chapter 4 provides an example of this case.

The study region D is the city of Baton Rouge, LA. We observe house selling prices

and house characteristic variables (e.g. age of the house, square feet of living area,

and number of bathrooms) at a set of locations. In practice, we can treat a house’s

location as a point since the area of that house usually is small relative to the study

region D. Conceptually, observations can be taken at every location in D so we
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envision uncountably many data points. We can imagine a random surface over D

and view the observations as a realization from a spatial process. We denote this

spatially varying quantity (spatial process) by Y (s), where s indexes location. Often,

the goals are to make statistical inference about Y (s) and predict Y at new locations

based on the current data.

For areal data, the study region D is again a fixed subset in R
d, but now parti-

tioned into a finite number of areal units with well-defined boundaries. For example,

in an environmental health investigation, for purpose of confidentiality, counts of

some adverse health outcome (e.g. lung cancer) are aggregated by county in a par-

ticular state. And environmental risk factors are supplied for these areal units to

explain the counts.

Point-process data describe the locations of “interesting” events. Examples of

such data include locations of trees, bird nests, or cancer cases. A spatial point

process is a collection of random points, where each point indicates the location of

an event (e.g. the occurrences of the earthquakes and the incidence of a disease). A

point process N(·) is defined as a random measure on D ⊂ R
d, taking non-negative

integer values. So N(A) means the number of points falling in the set A ⊂ D.

The main focus of this thesis is on the analysis of point-referenced spatial data.

In general, it is very challenging to study spatially dependent data. It is considerably

harder to derive large sample properties of estimators associated with spatial mod-

els. Chapter 3 studies three types of spatial asymptotics: 1) expansion asymptotics;

2) infill asymptotics; and 3) so called “middle-ground” asymptotics. The first two

asymptotics are well known but not fully studied. Under the expansion asymptotic

setting, the study region grows as the number of the observations increases such that

the distance between the neighboring observations remains roughly the same. In

some sense, expansion asymptotics is the higher dimensional version of traditional
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time-series asymptotics. Infill asymptotics is based on sampling increasingly dense

observations in a fixed bounded region. Infill asymptotics is most relevant to spatial

data analysis because the study region usually is determined in advance. Since the

distance between the neighboring observations decreases to zero as sample size in-

creases, the large sample behavior of estimators can become very unusual as we will

see in Chapter 3. We propose the term “middle-ground” to refer to a slowly expanding

region with a certain rate of infill. Middle-ground asymptotics can provide insights

for some practical applications, like spatial design. Again, the asymptotic behavior of

estimates can be rather unusual under a middle-ground sampling scheme. We study

the limiting behavior of the Fisher information matrix, the asymptotic properties of

various estimators, and the weak identifiability of the parameters in spatial models

in these three different asymptotics scenarios. Noting that the information contained

in the likelihood under infill is limited even when the sample size tends to infinity,

this suggests that the effects of prior will not be washed away by the data.

Historically, it has been difficult to apply spatial modeling techniques to analyze

large spatial datasets. The problem is that we have to handle the inversion and deter-

minant computation of a variance/covariance matrix with the size same as the sample

size. Consider fitting a Gaussian spatial model for a spatial dataset with a large sam-

ple size n. Likelihood based or Bayesian modeling suffer from severe computational

difficulties since each evaluation of the exact likelihood requires an O(n3) operation.

We refer to this computational challenge as the “large n problem.” In Chapter 4,

we first review a number of existing methods to handle this “large n problem”, then

develop a new process approximation model which is both theoretically attractive

and computationally efficient. The model is implemented in a Bayesian framework

and applied to analyze several large datasets.

In Chapter 5, we consider the problem of approximately optimal design in the
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special case of one-time sampling at a large number of spatial locations. For example,

how shall we sample individuals within a region to measure contaminant levels in the

blood? Or, how shall we sample locations to learn about ambient levels of air toxics

or perhaps arsenic levels in the water table? Our goal is to develop a good design

strategy to help practitioners select sampling locations. If we plan to use spatial

processes in building models to analyze the data, it seems equally appropriate to

use such models in developing the sampling design. Our design enables us to learn

about a response model as well as the spatial distribution of the response across the

study region. The criteria we consider are developed from the Fisher information

matrix with the goal of learning about not only the regression structure in the model

but also the dependence structure. Under a criteria that attempts to maximize

information gain, we consider three strategies to develop an approximately optimal

design: sequential sampling, block sampling, and stochastic search sampling.

1.2 Outline

The outline of the thesis is as follows: Chapter 2 reviews the basic elements in spatial

and spatio-temporal modeling. Important concepts such as stationary, isotropic,

variograms, covariance/correlation function, and kriging are introduced. Spatial and

spatio-temoral models are briefly reviewed. We also discuss why and how we use

Bayesian methods to fit spatial models.

Chapter 3 addresses important questions in spatial asymptotics and presents a

variety of new results. Section 3.2 derives the Fisher information matrix for spatial

model parameters. Section 3.3 introduces equivalent measure ideas and discusses why

they are useful for spatial asymptotics. Section 3.4–3.10 provide extensive discussion

and various results under different model assumptions and asymptotics scenarios.

Chapter 4 offers a general process approximation approach to handle the “large n

4



problem” in spatial data analysis. Section 4.2 introduces the theoretical preliminar-

ies for developing the approximation approach. Section 4.3 considers three methods

of approximating the spatial process with an emphasis on a finite sum approxima-

tion based on kernel mixing. Section 4.4 implements the approximation model in a

Bayesian framework. A simulated data example and a Baton Rouge house price data

example are given to illustrate our method in Section 4.5. Section 4.6 summarizes

the process approximation ideas and discusses the extension to generalized spatial

models and spatio-temproal models.

In Chapter 5, we consider the optimal spatial design problem and suggest several

design approaches for practitioners. Section 5.2 provides background and literature

review of spatial design. Section 5.4 develops design criterion based on the informa-

tion matrix. Section 5.5 offers three design methods: block design, sequential design,

and stochastic search design. Section 5.6 takes up information gain and connection to

the entropy criterion. Section 5.7 considers comparison among the proposed sampling

approaches. Section 5.9 illustrates our methods by a simulation study.
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Chapter 2

Spatial Models

2.1 Spatial processes

One of the fundamental elements in specifying spatial models is the spatial process.

We now review a few important basics of spatial processes.

The quantity we are studying varies over space, so we denote it as W (s), where

s indexes location and s ∈ D ⊂ R
d. For each s, W (s) is a random variable. The

collection, or family of W (s), when s varies over all its possible values, is called a

spatial process or random field. In essence, W (s) is just a random function indexed

by the symbol s which belongs to some index set D. Some authors prefer to use the

term stochastic process or random process when d = 1, and random field when d ≥ 2.

In this thesis, these terms are used interchangeably.

For each s, W (s) is simply a random variable and its properties (e.g. mean and

variance) can be described by its distribution function. However, we are interested

in studying the whole collection of random variables {W (s)}. So more generally, we

wish to specify the joint distribution for, say {W (s1),W (s2),W (s3)} at three dis-

tinct locations s1, s2 and s3. This specification seems still not satisfying, since we

want to know the probability structure for the complete process W (s) which con-
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sists of uncountable many random variables. It seems that we have to consider an

uncountably infinite-dimensional joint distribution of W (s). Fortunately, thanks to

the Kolmogorov consistency theorem (see e.g. Billingsley 1995, Section 36), under

fairly general conditions, the probability structure of W (s) is fully specified if the

joint distribution of {W (s1),W (s2), ...,W (sn)} is given for arbitrary choice of n and

s1, ..., sn. So, we only need to focus our attention on the finite-dimensional distribu-

tion of {W (s1),W (s2), ...,W (sn)} at a finite number of locations s1, ..., sn.

2.1.1 Stationarity

We are interested in making inference about the probability structure of the spatial

process based on what we observe (often just a single realization of the process). The

class of all random fields is too large to obtain useful information. A common sim-

plifying assumption is called stationarity. Loosely speaking, the statistical structure

of a stationary process looks similar at different parts of study region D (or does not

change over the space). More precisely, suppose D = R
d,

Definition 1. A process {W (s)} is said strictly stationary if for all s1, ..., sn and

any h ∈ R
d, the joint distribution of {W (s1), ...,W (sn)} is identical with the joint

distribution of {W (s1 + h), ...,W (sn + h)}, i.e.,

Pr(W (s1) ≤ w1, ...,W (sn) ≤ wn) = Pr(W (s1 + h) ≤ w1, ...,W (sn + h) ≤ wn), (2.1)

where w1, ..., wn ∈ R.

Note that, a process W (s) on D ∈ R
d can be viewed as the restriction of W (s)

(defined on R
d) on D. By definition, we can say that the probability law of a strictly

stationary process is invariant under a shift in space.

A weaker type of stationarity is defined in terms of the moments of W .

7



Definition 2. A process W (s) is stationary up to order m if

E{W (s1)
m1W (s2)

m2 ...W (sn)mn} = E{W (s1 + h)m1W (s2 + h)m2 ...W (sn + h)mn} (2.2)

for all h ∈ R
d and all possible positive integer m1, ..., mn such that m1+m2+...+mn ≤

m.

The assumption of stationarity up to order 2 is most common in practice. In this

case,

E{W (s)} = E{W (0)} = µ, a constant independent of s (2.3)

and

Cov{W (s1),W (s2)} = E{W (s1)W (s2)} − µ2

= E{W (0)W (s2 − s1)}

= C(s2 − s1), a function of (s2 − s1) only. (2.4)

C(·) is called covariance or autocovariance function of W .

For a weakly stationary process W (from now on, we always mean a weakly sta-

tionary process up to oder 2 when we say a weakly stationary process), the correlation

between W (s1) and W (s2) is also a function of s1 − s2, defined as

̺(s1 − s2) = C(s1 − s2)/C(0). (2.5)

̺(·) is called correlation or autocorrelation function.

Note that although the conditions of strict stationarity seem much stronger, they

may not always imply weak stationarity. For example, a strictly stationary process

W whose finite joint distribution is Cauchy does not have any moments. However, if

we assume second moments exist, strict stationarity does imply weak stationarity.

Definition 3. W (s) is called Gaussian process if for all n and admissible s1, ..., sn,

the joint distribution of {W (s1), ...,W (sn)} is multivariate normal.
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A multivariate normal distribution is characterized by its mean and covariance

matrix, so the first two moments of a Gaussian process completely specify its prob-

ability structure. Thus for Gaussian processes, weak stationarity implies strict sta-

tionarity.

In terms of what kind of assumptions about the spatial process are appropriate

for spatial data analysis, it is tempting to make less restrictive assumption, say, weak

stationarity. But this generality makes it impossible for making likelihood-based

inference since we don’t have the joint distribution specification. Furthermore, Stein

(1999, p.6–7) gives an example showing that best linear prediction can be very poor

by only considering the first two moments of the process.

As the name indicates, Gaussian processes play a central role in modeling spatial

data. The advantages of the Gaussian process assumption are obvious: it allows con-

venient distribution theory (for instance, conditional distributions are easily obtained

from the joint distributions); the Gaussian process is well studied and many classical

theory and results for Gaussian process are available (several equivalent-Gaussian

measure results will be used in Chapter 3). Furthermore, in most applications, we

just observe a single replication (realization) of the process at a finite set of locations.

It is not easy to criticize a Gaussian assumption since we only have a sample size

of one from a finite dimensional distribution. Nevertheless, there are situations in

which it is more appropriate to use other processes to model spatial data. Wolpert

and his colleagues use Lévy processes to model spatial data in a series of their papers

(see e.g. Wolpert and Ickstadt, 1998; Ickstadt and Wolpert, 1999).
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2.1.2 Covariance/correlation functions and variograms

For a spatial process W (s) with finite second moments, its associated covariance

matrix K(si, sj) must be positive semi-definite, i.e.,

n∑

i=1

n∑

j=1

aiajK(si, sj) ≥ 0, (2.6)

for any set of s1, ..., sn and all real a1, ..., an. This simply follows by noting

Var{
n∑

i=1

aiW (si)} =

n∑

i=1

n∑

j=1

aiajK(si, sj).

The positive semi-definite condition is necessary for the existence of a random field

with finite second moments. On the other hand, if K is positive semi-definite, there

exists a Gaussian random field with covariance matrix K and mean E{W (s)} (since

the finite-dimentional distribution satisfies the Kolmogorov’s consistency conditions).

If W is a stationary process, K(si, sj) depends only on si − sj (see (2.4)). So

we can use covariance function C(si − sj) to describe the covariance structure of W .

As indicated by condition (2.6), not every function can serve as a valid covariance

function. Bochner’s theorem provides necessary and sufficient conditions for C(·) to

be positive semi-definite.

Theorem 1 (Bochner’s Theorem). For a real-valued process on R
d, C(h) is positive

semi-definite if and only if it can be represented as

C(h) =

∫

Rd

eiωT hF (dω), (2.7)

where F is a positive, symmetric, and finite measure and is called the spectral measure

of C(h). If F (dω) is absolutely continuous with respect to Lebesgue measure, i.e.,

F (dω) = f(ω)dω, f(ω) is called the spectral density.
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In the geostatistical literature (e.g. Cressie 1993), researchers commonly use vari-

ograms to describe the spatial correlation of the process Y (s). The variogram assumes

that the variance of Y (si) − Y (sj) only depends on si − sj and is defined as

2γ(h) = Var{Y (s+ h) − Y (s)}. (2.8)

In the above, γ(h) is called semivariogram.

Provided the covariance function exists, the relationship between the variogram

and the covariance function is obvious:

2γ(h) = Var{Y (s+ h)} + Var{Y (s)} − 2Cov{Y (s+ h), Y (s)}

= 2{C(0) − C(h)}. (2.9)

A valid variogram needs to satisfy a negative definiteness condition. Specifically,

for any set of {s1, ..., sn} and any set of real {a1, ..., an} such that
∑n

i=1 ai = 0,

n∑

i=1

n∑

j=1

aiajγ(si − sj) ≤ 0. (2.10)

This follows by noting

n∑

i=1

n∑

j=1

aiajγ(si − sj) = −E{
n∑

i=1

aiY (si)}2 ≤ 0.

Variograms only describe the first two moments (not the probability law) of the

spatial process so it is not possible to make likelihood-based inference on its ba-

sis. One of the reasons that geostatisticians prefer the variogram is that it can be

conveniently estimated by

γ̂(h) =
1

2N(h)

N(h)∑

i=1

{Y (si + h) − Y (si)}2, (2.11)
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where γ̂(h) is called the empirical variogram at distance h and N(h) is the number

of pairs of observations whose distance is equal to h. Variogram binning is ignored

in this formula.

2.1.3 Isotropy

A stationary random field is said isotropic if its covariance function C(h) only depends

on ‖h‖, where ‖ · ‖ indicates the Euclidean distance. The isotropy property can be

thought as an invariance property under rotations. A stronger type of isotropy, called

strict isotropy, can be defined in terms of the invariance of the probability structure

under rigid motions analogous to the definition of strict stationarity (see Stein, 1999,

p.17).

The class of all valid continuous covariance functions on R
d can be characterized

by the Fourier transforms of all finite positive measures on R
d (see Theorem 1). There

is an analogous characterization for isotropic covariance functions (see Yaglom 1987,

Section 22). Specifically,

Theorem 2. For d ≥ 2, a function C is a continuous isotropic covariance function

for a random field on R
d if and only if it can be represented as

C(h) = 2(d−2)/2Γ(d/2)

∫ ∞

0

(ω‖h‖)−(d−2)/2J(d−2)/2(ω‖h‖)G(dω), (2.12)

where Jν is the Bessel function of the first kind of order ν (Aabramowitz and Stegun

1965, Section 9); G is nondecreasing, bounded on R
+ and G(0) = 0.

An isotropic covariance function C must be a real function since C(‖h‖) = C(‖−

h‖) = C(‖h‖). For d = 1, the class of valid isotropic covariance functions is the same

as the class of all real covariance functions for stationary processes.

Let Cd be the class of all valid continuous isotropic covariance functions in R
d

and C∞ =
⋂∞

d=1Cd, the class of valid continuous isotropic covariance functions in all
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dimensions, then C1 ⊃ C2 ⊃ ... ⊃ C∞. The intuition behind Cd1
⊃ Cd2

when d1 < d2

is that starting from higher dimension d2, we can restrict the consideration to d1

coordinates and set the values for the remaining coordinates to zero. A function is

in C∞ if and only if it can be represented as

C(h) =

∫ ∞

0

e−‖h‖2ω2

G(dω), (2.13)

where G is as in (2.12). The Gaussian covariance function (C(h) = σ2 exp(−φ‖h‖2))

is an example of a covariance function valid in all dimensions.

Following is a list of popular parametric isotropic covariance functions:

1. Exponential covariance function:

C(h; σ2, φ) = σ2e−φ‖h‖, (2.14)

where σ2 is the variance parameter and φ is called decay parameter which

tells us how quickly the correlation decays as the distance ‖h‖ increases. The

decay parameter is related with a notion of effective range which is often used

geostatistics. Effective range is the distance at which there is essentially no

lingering spatial correlation. In practice, it is commonly defined as the distance

at which the correlation drops to only 0.05. In the exponential correlation

function case, the effective range h0 equals − log(0.05)/φ.

2. Powered exponential covariance function:

C(h; σ2, φ, α) = σ2e−φ‖h‖α

, 0 < α ≤ 2. (2.15)

3. Gaussian covariance function:

C(h; σ2, φ) = σ2e−φ‖h‖2

. (2.16)
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4. Wave covariance function:

C(h; σ2, φ) = σ2 sin(φ‖h‖)/(φ‖h‖). (2.17)

5. Matérn covariance function:

C(h;φ, α, ν) =
σ2

2ν−1Γ(ν)
(φ‖h‖)νκν(φ‖h‖), (2.18)

where φ is the correlation decay parameter; ν is the smoothness parameter (the

larger ν is, the smoother the corresponding process is); and κν is the modified

Bessel function of the second kind of order ν (Abramowitz and Stegun 1965,

Section 9.6). Note the form (2.18) does not depend on the dimensionality

d. A slightly different parameterization of the Matérn class recommended by

Handcock and Wallis (1994) is

C(h;φ∗, α, ν) =
σ2

2ν−1Γ(ν)
(2ν1/2φ∗‖h‖)νκν(2ν

1/2φ∗‖h‖), (2.19)

The advantage of using 2ν1/2φ∗ rather than φ is that the value of ν has minimal

effects on the interpretation of the decay parameter φ∗ (see Stein 1999, p.50).

There is another alternative parameterization of Matérn class in R
d:

C(h; ζ, φ, ν) =
πd/2ζ

2ν−1Γ(ν + d/2)φ2ν
(φ‖h‖)νκν(φ‖h‖). (2.20)

The process variance is given by σ2 = πd/2Γ(ν)ζ
Γ(ν+d/2)φ2ν . Note that the exponential

covariance function and the Gaussian covariance function are two special cases

of the Matérn class with ν = 1/2 and ν = ∞, respectively.

2.1.4 The spectral method

The spectral method is a powerful tool for studying random processes. Consider a

random process W (s) on R
d. Traditional Fourier analysis says that each realization
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of W (s) can be expressed as a Fourier transform of the form

W (s) =

∫

Rd

eiωT sZ(dω), (2.21)

where Z(dω) is a set function called the Fourier transform of this particular real-

ization of W (s). Of course, different realizations of W (s) will result in different in

Z(dω). Thus Z(dω) is itself random, called the random measure corresponding to

W (s). Z(·) has the following properties:

• E{Z(∆)} = 0 for all measurable set ∆.

• E{Z(∆1)Z(∆2)} = 0 for disjoint measurable sets ∆1 and ∆2.

• Z(∆1 ∪ ∆2) = Z(∆1) + Z(∆2) if measurable sets ∆1 and ∆2 are disjoint.

Suppose E|Z(∆)|2 = F (∆) for some positive finite measure F , then the covariance

function associated with W (s) can be expressed as

C(h) =

∫

Rd

eiωT hF (dω). (2.22)

The function F is called the spectral measure of W .

2.2 Modeling spatial data

Having reviewed the fundamental elements of spatial processes, we now consider basic

statistical models, building from spatial processes for spatial data. We start from a

brief discussion comparing spatial data with time-series data.

2.2.1 Differences between spatial data and time-series data

Time-series data and spatial data share many similarities. Both settings assume

dependent data and much of the theory for time series can be generalized to spatial
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data analysis. Nevertheless, there are several important differences between these

two types of data.

• Time series naturally have the distinction of past and future and the present

observation depends only on the past observations. Usually it is not possible

to go back from now to obtain more samples because of this time “direction”.

In contrast, the dependence extends to all directions for spatial data and in

principle it is possible to obtain more samples at any locations and in any

direction.

• The domain for time series usually is unbounded as we collect more and more

observations. In the case of spatial data, the study region is generally fixed and

bounded a priori in practice. The asymptotic analysis based on the increasing

dense samples in a fixed region is called infill asymptotics which is one of the

subjects studied in Chapter 3.

2.2.2 Models for point-referenced data

Suppose that data are observed at a collection of sites {s1, s2, ..., sn}, where si ∈ D.

A common spatial process model is constructed as follows:

Y (si) = µ(si) +W (si) + ǫ(si), (2.23)

where µ(si) is the mean of the response Y (si), typically of the form XT (si)β (X(si) is

a p-dimensional vector of explanatory variables at location si and β is a p-dimensional

vector of parameters); W (s) is a mean zero spatial process (W (s) is often assumed

to be a stationary Gaussian process with a parametric covariance function σ2̺(si −

sj; φ)); and ǫ(s) is a pure error process with mean 0 and variance τ 2. In spatial

literature, the value of σ2 + τ 2 is called sill; the value of σ2 is called partial sill; and

the value of τ 2 is called nugget.
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For each s, W (s) is a random variable and it can be viewed as the spatial random

effect at location s. W (s) essentially introduces the spatial association into the model

and captures spatial variation at site s. To understand the spatial random effect,

consider the Baton Rouge house price example. Suppose Y (s) is the (log) selling

price of a house at location s and X(s) is a vector of characteristics of the house

(e.g. age of the house, square feet of living area, number of bedrooms, etc.) It is

well known that the price of a particular house depends not only on its inherent

characteristics, but also its location. For instance, if a house is close to a business

center or a school, or in a good community, the price of that house is expected to

be high. Often, underlying variables with spatial explanation are unobserved, so the

spatial random effect term W (s) is introduced to account for these latent effects.

Intuitively, W (s) will be high if the location s is “good”. Of course, if we observe

location related information (e.g. distance from a business center), we can treat them

as covariates and put them into the mean structure of the model. However, there

will always be some latent or unmeasurable spatial effects in the data. So, with a

parsimonious mean, we can model the residual structure more accurately by including

a spatial random effect in the model.

ǫ(s) can be viewed as “noise” associated with replication of measurements at

location s. In the housing data example, ǫ(s) may be caused by a particular buyer

and a particular seller. If Y comes from certain measuring devices, ǫ(s) can be

regarded as the measurement error.

Note that we can view model (2.23) as a hierarchical model with a conditionally

independent first stage given W (s) and µ(s). In the second stage, usually we assume

W (s) to be a Gaussian random field with mean zero and certain parametric covariance

structure.

17



2.2.3 Generalized linear spatial models

In some situations, the response variable Y (s) (even after transformation) is not

appropriate to be treated as a normal random variable. For instance, Y (s) might be

a binary variable or a count variable. It is natural to consider an extension of the

model (2.23) analogous to the generalized linear model. Following Diggle, Tawn, and

Moyeed (1998) , assuming Y (si) are conditionally independent given β and W (si),

we formulate a hierarchical model as follows:

First stage: f(y(si)|β,W (si), ) = h(y(si), γ) exp{γ[y(si)η(si) − ψ(η(si))]}, (2.24)

Second stage: W (si) ∼ Gaussian process(0, C), (2.25)

where g(η(si)) = XT (si)β +W (si) for some link function g; γ is a dispersion param-

eter; ψ(·) is a known function; and W (s) is a Gaussian process with mean zero and

certain covariance structure C as in (2.23). The second stage specifies the spatial

structure.

2.2.4 Spatio-temporal models

Recently, there is considerable literature in spatio-temporal modeling. Spatio-temporal

data can be represented by Y (s, t), where s indexes location and t indexes time. Ex-

amples of such data include pollutant data (monitoring stations measure the pollu-

tant level hourly or daily) and house transaction data (sales can happen at any time

during study period). We can model Y (s, t) analogously to the model (2.23):

Y (s, t) = µ(s, t) +W (s, t) + ǫ(s, t), (2.26)

where µ(s, t) is the mean which may take the form XT (s, t)β, and W (s, t) is a mean

zero spatial-temporal process.

For the spatio-temporal data, there is both temporal and spatial association.

The challenge is to specify an appropriate space-time interaction for the process
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W (s, t). Viewing t as having continuous support, there is a substantial literature

which discusses the specification of spatio-temporal covariance structure of W (s, t).

One of the popular covariance functions is called stationary separable and has the

following form:

Cov(Y (s, t), Y (s′, t′)) = σ2̺1(s− s′)̺2(t− t′), (2.27)

where ̺1 is a valid two-dimensional correlation function and ̺2 is a valid one-dimensional

correlation function.

2.2.5 Prediction

The basic problem of spatial prediction is as follows: suppose we observe a random

field Y on R
d at a set of locations {s1, ..., sn}, how shall we predict Y at a new location

s0? More generally, how shall we predict Y at more than one new locations?

If the probability law of Y (s) is known, then it is natural to do prediction based

on the conditional distribution of Y (s0) given Y (s1), ..., Y (sn). If we only know the

mean and covariance structure of Y (s) up to some parameters, then linear prediction

is commonly used. The best linear prediction approach is known as kriging in geo-

statistics, named by Matheron (1963) in honor of the South African mining engineer

D.G. Krige (Krige, 1951).

Suppose Y (s) has a mean function µ(s) and a covariance function C(si, sj). The

linear prediction takes the form Ŷ (s0) = a0 +
∑n

i=1 aiY (si) and we wish to minimize

the mean squared error of Ŷ (s0), i.e. E{Y (s0) − Ŷ (s0)}2. It is not hard to find the

form of best a0 and a = (a1, ..., an):

a0 = K−1h and a = µ(s0) − hTK−1µ, (2.28)

where K is the covariance matrix of Y = (Y (s1), ..., Y (sn)), h = Cov(Y (s0),Y), and

µ = (µ(s1), ..., µ(sn)). The resulting mean squared error is C(s0, s0) − hTK−1h.
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If we assume Y (s) to be a Gaussian process, then the conditional distribution of

Y (s0) given Y is

N
(
µ(s0) + hTK−1(Y − µ), C(s0, s0) − hTK−1h

)
.

So E(Y (s0)|Y) is equal to the best linear estimator in this case. If we wish to predict

Y at a set of new locations, say, {s0,1, ..., s0,m}, we simply find the conditional dis-

tribution of Y0 = (Y (s0,1), ..., Y (s0,m)) given Y. From standard multivariate normal

theory, we can easily find the conditional distribution from the joint distribution.

Suppose

(
Y0

Y

)
∼ N

( (
µ0

µ

)
,

(
K00 K01

K10 K11

) )
, (2.29)

where µ0 = (µ(s0,1), ..., µ(s0,m)), K00 = Cov(Y0,Y0), K
T
10 = K01 = Cov(Y0,Y), and

K1,1 = Cov(Y,Y). Then the conditional distribution f(Y0|Y) is normal with mean

and variance:

E(Y0|Y) = µ0 +K01K
−1
11 (Y − µ), (2.30)

Var(Y0|Y) = K00 −K01K
−1
11 K10. (2.31)

In practice, the parameters in the mean and covariance structure are unknown

and must be estimated from the data. In a classical framework, usually the restricted

maximum likelihood estimates (REML) are computed and plugged into the above

prediction formulas.

In a Bayesian paradigm, we can obtain posterior predictive distribution of Y (s0)

given Y as follows:

π(y0|Y) =

∫
f(y0, θ|Y)dθ

=

∫
f(y0|Y, θ)π(θ|Y)dθ, (2.32)
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where θ are parameters in the model. So any desired point or interval estimate

may be computed based on this posterior distribution. This is a “Bayesian kriging”

approach. In practice, Markov Chain Monte Carlo (MCMC) methods are often used

to obtain estimates of (2.32). In particular, we typically use composition sampling,

i.e., we first draw posterior samples θ(t) (t = 1, ..., T ) from the posterior distribution

π(θ|Y), then for each θ(t), we sample a y
(t)
0 ∼ f(y0|Y, θ(t)). Thus the collection {y(t)

0 }

is a collection of samples from the predictive distribution (2.32). See Section 2.3 for

more details about Bayesian methods.

2.3 Bayesian methods for spatial data analysis

In this section we discuss why we prefer to fit spatial models in a Bayesian framework.

We also review important MCMC algorithms for Bayesian computation and then

formalize the Bayesian spatial model.

2.3.1 Bayesian paradigm and computation

Bayesian methods enjoy several advantages over frequentist methods for fitting mod-

els involving complicated dependence structures. Here we list a few of them: i) with

the recent advances in computing technology and MCMC algorithm, fitting spatial

models in a Bayesian framework is fairly standard. MCMC output enables us to

make exact analysis for any sample size. The subsequent inference (e.g. estimation,

hypothesis testing, and prediction) is relatively straightforward. In contrast, frequen-

tist methods for spatial data rely heavily on the asymptotic analysis. It is not easy

to study asymptotics for spatial models due to the dependence from all directions of

the spatial data (see Chapter 3 for detailed discussion). ii) the Bayesian paradigm

also enables us to incorporate prior information into the model in a natural way. For

example, in an air pollutant study, historical pollutant information can be translated
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into a prior specification and incorporated into the current analysis. iii) in many

situations, classical inference can be obtained as a special case of Bayesian inference

with a particular choice of prior (often non-informative prior). iv) Bayesian infer-

ence has advantages in the case of missing value problems (either missing response

or covariances) since missing values will be modeled and treated and estimated as

additional parameters.

Bayesians treat parameters θ in the model as random variables and make inference

based on the posterior distribution of θ through Bayes formula

π(θ|data) =
f(data|θ)π(θ)∫
f(data|θ)π(θ)dθ

, (2.33)

where π(θ) is the prior distribution of θ and f(data|θ) is the likelihood function.

In general, π(θ|data) has no closed form. In those situations, MCMC methods play

important role in obtaining samples from the posterior distribution (2.33). MCMC

posterior samples are correlated since they are recursive draws from a particular

Markov chain. The Gibbs sampler (Gelfand and Smith, 1990) and the Metropolis-

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) are the two most popular

MCMC algorithms.

Suppose θ = (θ1, ..., θp)
T is a p-dimensional vector of parameters. The basic

algorithm of the Gibbs sampler proceeds as follows:

Step 1 Set t = 0 and choose an arbitrary starting point θ(0) = (θ
(0)
1 , ..., θ

(0)
p ).

Step 2 Generate θ(t+1) sequentially as follows:

– Generate θ
(t+1)
1 from f(θ1|θ(t)

2 , ..., θ
(t)
p );

– Generate θ
(t+1)
2 from f(θ2|θ(t+1)

1 , θ
(t)
3 , ..., θ

(t)
p );

– · · · · · · · · · · · · · · · · · · · · · · · ·

22



– Generate θ
(t+1)
p from f(θp|θ(t+1)

1 , θ
(t+1)
2 , ..., θ

(t+1)
p−1 ).

Step 3 Set t = t+ 1 and go to Step 1.

Under mild regularity conditions, the sequence {θ(t)} has a stationary distribution

π(θ|data) (Gelfand and Smith, 1990). This means that, when t is sufficiently large

(say bigger than t0), {θ(t), t > t0} are samples from the true posterior distribution

π(θ|data). So we can make inference about any function of θ based on these posterior

samples.

The Gibbs sampler is easy to implement, but requires sampling from each of the

full conditional density which may not be available in a standard distributional form.

The Metropolis-Hastings algorithm is designed to handle this problem.

Suppose we want to sample from the posterior distribution π(θ|data). Let q(θ,ϑ)

be a candidate density such that
∫
q(θ,ϑ)dϑ = 1. The basic scheme of the Metropolis-

Hastings algorithm is as follows:

Step 1 Set t = 0 and choose an arbitrary starting point θ(0) = (θ
(0)
1 , ..., θ

(0)
p ).

Step 2 Generate a candidate point θ∗ from q(θ(t), ·) and generate a number u from a

uniform distribution over (0, 1).

Step 3 Compute the acceptance ratio

r = min
{ π(θ∗|data)q(θ∗, θ(t))

π(θ(t)|data)q(θ(t), θ∗)
, 1
}

(2.34)

and set θ(t+1) = θ∗ if u ≤ r and θ(t+1) = θ(t) otherwise.

Step 3 Set t = t+ 1 and go to Step 1.
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2.3.2 Bayesian spatial models

For the spatial model (2.23), assume W (s) is a stationary Gaussian process with a

parametric covariance function C(h; σ2,φ) = σ2̺(h; φ), where φ is a q-dimensional

vector of parameters in the correlation function. Let θ = (β, σ2,φT , τ 2)T and π(θ)

be a prior distribution for parameters θ. The posterior distribution of θ given Y =

(Y (s1), ..., Y (sn))T is

π(θ|Y) ∝ f(Y|θ)π(θ). (2.35)

f(Y|θ) follows a n-dimensional multivariate normal distribution N(Xβ, σ2R(φ)+

τ 2In), where R(φ) is the associated correlation matrix and In is a n×n identity matrix.

The prior specification of π(θ) is largely arbitrary but typically independent priors

are chosen for the different parameters, i.e.,

π(θ) = π(β)π(σ2)π(φ)π(τ 2). (2.36)

If we want to obtain a particular marginal posterior distribution, say π(β|Y ), we

need to integrate π(θ|Y) with respect to all other parameters, i.e.,

π(β|Y) =

∫
π(θ|Y)dσ2dφdτ 2. (2.37)

Often, we are interested in examining the spatial surface W (s)|Y. The posterior

realizations of W can be obtained by noting

π(W |Y) =

∫
π(W |σ2,φ)π(σ2,φ|Y)dσ2dφ. (2.38)

In general, the posterior distribution π(β|Y ) is not available in a closed-form so

we use some suitable MCMC algorithms to draw posterior samples. In expression

(2.35), W is marginalized so it is not involved in the MCMC updating. It is also
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possible to obtain π(θ|Y ) by considering the following hierarchical model:

Stage 1: Y|θ,W ∼ N(Xθ +W, τ 2In),

Stage 2: W|σ2,φ ∼ N(0, σ2R(φ)).

In this case, the n-dimentional vector W is treated as parameters and updated in

each MCMC step. Generally, we would prefer to work in a low dimensional parameter

space in Bayesian computation. So we shall do as much marginalization as possible.

But for generalized spatial models, marginalizing over W is usually not possible.
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Chapter 3

Spatial Asymptotics

3.1 Introduction

In this chapter, we shall study spatial asymptotics. Consider a stochastic process

model of the following form:

Y (t) = µ(t) +W (t), (3.1)

where t ∈ D and D is some set in R
d; µ(t) is a mean function; and W (t) is a

mean zero stationary Gaussian process. Suppose W (t) has a parametric covariance

function, say,

C(s, t) = Cov{W (s),W (t)} = σ2̺(s− t; φ), (3.2)

where ̺ is a valid correlation function on R
d; σ2 is the variance of the process W ; and

φ is a q-dimensional vector of parameters that determines the correlation function ̺.

In this chapter we focus primarily on the case of d = 1 (continuous time series) and

d = 2 (spatial processes).

The primary issues we address here are as follows. If one observes Y at loca-

tions t1, . . . , tn, how well can one estimate the mean function and the covariance
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parameters σ2,φ? In particular, we ask the usual questions, such as, how much in-

formation is there in the data about these parameters? If the number of locations

(sample size) tends to infinity, does the amount of information tend to infinity? Can

we consistently estimate these parameters? If some of them are assumed known,

can we consistently estimate the others? What functions of these parameters can

we consistently estimate? Can we develop any asymptotic distribution theory, e.g.,

asymptotic normality? We summarize and extend the literature but are only able

to provide partial answers in special cases. Perhaps surprisingly, general answers are

remarkably difficult to obtain. So, in this regard, this chapter serves as both a review

as well as offering several new results.

We have to be more precise with regard to the statement that “sample size tends

to infinity”. Potentially, there are three possible sampling schemes:

1. The (Euclidean) distance ∆ between two neighboring locations remains con-

stant when the sample size increases. In this case, D is necessarily unbounded

as the sample size tends to infinity. The asymptotic analysis under this situation

is called expansion asymptotics.

2. The study region D is fixed and bounded so that the distance between neigh-

boring locations decreases to zero as the sample size increases to infinity. Even-

tually, we obtain everywhere dense samples inside D. Cressie (1993) refers to

asymptotics based on this sampling scheme as infill asymptotics. Stein (1999)

calls it fixed-domain asymptotics.

3. We introduce a third sampling scheme that is a mixed version of the above two.

The sample region D is slowly growing with a certain rate of infill sampling as

the sample size increases. We call asymptotics based on this situation middle-

ground asymptotics.
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We are interested in studying the limiting behavior of the (Fisher) information matrix

for model (3.1) under the above three asymptotics scenarios. We are also interested in

large sample properties of the maximum likelihood estimators (MLEs) and Bayesian

estimators under the different asymptotics.

Expansion asymptotics have been studied extensively and there are many classi-

cal results, especially for time series (d=1, t ∈ Z, the integer set) analysis. Roughly

speaking, under mild regularity conditions, the MLEs are consistent and asymptot-

ical normal under expansion asymptotics. Mardia and Marshall (1984) give general

results for expansion asymptotics. Stein (1999, p.62) argues that in a spatial setting,

it is more natural to consider infill asymptotics than expansion asymptotics since

usually the study region of interest is fixed a priori.

The basic difficulty in studying asymptotics for data with structured dependence

is that for a parametric covariance function, except for a very few cases, the closed

form expressions of the determinant and inverse of the covariance matrix are not

available. So in general it is hard to study the properties of the likelihood. In the

literature, usually the mean function µ(t) is assumed to be zero with attention focused

on the parameters of the covariance function. Ying (1991) studies infill asymptotics

in R
1 with the exponential covariance function (C(s, t) = σ2exp(−φ|s − t|)). He

shows that the variance parameter σ2 and the decay parameter φ cannot be estimated

consistently. Nevertheless, the MLE for σ2φ is consistent and asymptotic normal with

the usual
√
n convergence rate. In Ying (1993) , these results are extended to R

2 for

a separable (product) exponential covariance function. Ying’s results rely critically on

the Markov property of the process with an exponential covariance function. More

specifically, for the correlation matrix Rn (arising from n locations), |Rn| and R−1
n

have closed form expressions under these two cases. So the likelihood functions can

be written explicitly. Stein (1999) studies the consistency of optimal prediction under
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infill asymptotics using the equivalent-measure idea. Zhang (2004) gives some infill

asymptotic consistency results for the Matérn covariance function. Most recently,

Loh (2005) is able to find the explicit forms of |Rn| and R−1
n for a separable Matérn

subclass covariance function in R
2 with the smoothness parameter ν = 1.5.

Middle-ground asymptotics have received little attention in the literature (though

see Stein 1995). Such asymptotics have potential usefulness for spatial design in which

one wants to determine the size of study region as well as the number and locations

of samples. In this rather untravelled territory of “middle-ground asymptotics” we

can obtain interesting results. For example, in R
1 with the exponential correlation

function and sampling distance ∆ = O(1/
√
n), the rate of convergence of estimators

is n1/4 rather than n1/2 (see Section 3.8).

In this chapter, we examine information growth under three above mentioned

different types of asymptotics. We also study the asymptotic properties of various

estimators for the mean parameters and covariance parameters. For instance, when

parameters σ2 and φ in the covariance structure are known, i.e. with only mean

parameters unknown, then in general the information for estimating mean is bounded

under infill sampling, regardless of the denseness of the sampling sites. In other words,

since one may estimate mean parameters only with limited precision, there are no

consistent estimators. When φ is known, but both center and scale are unknown, then

information about the mean is again limited while information about σ2 is unlimited.

Thus, somewhat mysteriously, based on a densely observed path one may estimate the

scale arbitrarily well (there are consistent estimators), whereas there are no consistent

estimators for the center parameters. This also implies that a Bayesian needs utmost

care when specifying a prior for the mean parameters and σ2. Aspects of the prior

related to the mean parameters will be remembered for ever; the data will never

entirely overwhelm the prior. When all parameters are unknown, certain functions of
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these parameters can be learned with arbitrary precision. Reparametrization using

these functions will lead to better behaved likelihoods and MCMC algorithms. See,

for instance, the parametrization of the Matérn covariance function in Handcock and

Stein (1993). More specifically, for the case of an exponential covariance function

on R
1, say C(s − t) = exp(−φ|s − t|), it appears that information is (i) limited in

the mean; (ii) limited in σ; (iii) limited in φ; (iv) but nevertheless unlimited in the

parameter σ
√
φ.

3.2 The information matrix

In asymptotic analysis, usually the first question to ask is whether the parameters

in the model can be consistently estimated or not. If the answer is yes, then we

can turn to the asymptotic distributions and rates of convergence of various esti-

mators. Usually the Fisher information matrix enables assessment of consistency

and the rate of convergence. Under regularity conditions, the Cramér-Rao inequality

provides lower bounds for the variance of estimators. In the limit, the asymptotic

variance associated with an asymptotically unbiased estimator is no less than the

value of the corresponding element in the inverse information matrix. If the variance

of an estimator asymptotically reaches the Cramér-Rao lower bound, this estimator

is asymptotically efficient.

For the classical independent identically distributed (i.i.d.) sampling set up, usu-

ally, the MLEs are
√
n consistent and asymptotically normally distributed with the

covariance matrix equal to the inverse information matrix. For data from independent

but not identical distributions, the information for estimating some model parame-

ters might be limited. Consider a simple example: let Xi
ind.∼ N(µ, i2), i = 1, ...,∞,

where µ is an unknown parameter. It is easy to see that µ cannot be consistently

estimated and the limiting information for is
∑∞

i=1 1/i2 = π2/6. In this example,
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we have limited information about µ even though we have an infinite sample size.

The general behavior of the information matrix for dependent data will be studied

in subsequent sections.

Note that when the number of the parameters is greater than one, the interpreta-

tion of the entries of the information matrix requires care. If the information matrix

is denoted by I(θ), θ is a vector of parameters, then the ith diagonal element I(θ)i,i is

the conditional information for the ith parameter, i.e., assuming all other parameters

are known. The marginal information for a parameter (assuming all other parameters

are unknown) is 1/I(θ)i,i, the reciprocal of the ith diagonal element of the inverse in-

formation matrix. Here I(θ)i,i = (I(θ)−1)i,i. Also it is worth noting that I(θ)i,i → ∞

(as the sample size tends to infinity) does not always imply I(θ)i,i → 0. However,

I(θ)i,i → 0 implies I(θ)i,i → ∞.

Here we calculate the Fisher information matrix associated with model (3.1).

Suppose that we observe Y at t1, . . . , tn ∈ D ⊂ R
d and denote Y = (Y (t1), ..., Y (tn)).

We also assume that µ(ti) = XT (ti)β. Let θ = (σ2,φ)T , with covariance matrix

Kθ = σ2R(φ). Here, R(φ) is the correlation matrix associated with the n locations

whose (i, j)th entry is ̺(ti − tj ; φ) and φ indexes the parameters of the correlation

function, for example, in the Matérn case, a smoothness parameter and a decay

parameter (see Section 2.1.3).

The log likelihood for (β, θ) is

ℓ(β, θ) = −n
2

log(2π) − 1

2
log |Kθ| −

1

2
(Y −Xβ)TK−1

θ
(Y −Xβ). (3.3)

The score function S(β) for β is

S(β) =
∂ℓ(β, θ)

∂β
= (Y −Xβ)TK−1

θ
X

31



and the associated Hessian is

Hβℓ(β, θ) =
∂2ℓ(β, θ)

∂β∂βT
= −XTK−1

θ
X.

So, the expected information matrix for β is I(β) = −E{Hβℓ(β, θ)} = XTK−1

θ
X.

The score function for the ith component of θ is

∂ℓ(β, θ)

∂θi
= −1

2
Tr(K−1

θ

∂Kθ
∂θi

) +
1

2
(Y −Xβ)TK−1

θ

∂Kθ
∂θi

K−1

θ
(Y −Xβ)

and the (i, j)th entry of the associated Hessian matrix Hθℓ(β, θ) is

∂ℓ(β, θ)

∂θi∂θj
=

1

2
Tr[K−1

θ

∂Kθ
∂θj

K−1

θ

∂Kθ
∂θi

−K−1

θ

∂Kθ
∂θi∂θj

]

+
1

2
(Y −Xβ)T [−2K−1

θ

∂Kθ
∂θj

K−1

θ

∂Kθ
∂θi

K−1

θ
+K−1

θ

∂Kθ
∂θi∂θj

K−1

θ
](Y −Xβ).

Hence, the (i, j)th entry of the expected information matrix of θ is

I(θ)i,j = −E[
∂ℓ(β, θ)

∂θi∂θj
] =

1

2
Tr[K−1

θ

∂Kθ
∂θi

K−1

θ

∂Kθ
∂θj

]. (3.4)

Finally, the expected information matrix for (β, θ) has the block diagonal form

I(β, θ) =




XTK−1

θ
X 0

0

(
1
2
Tr[K−1

θ

∂K
θ

∂θi
K−1

θ

∂K
θ

∂θj
]

)

 . (3.5)

The block diagonal form in (3.5) reveals that β and θ are orthogonal parameters

(Cox and Reid, 1987). Informally, this means that information for estimating β is

“independent” of the information for estimating θ.
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3.3 Equivalent measures

For a general parametric covariance function, closed form expressions for the deter-

minant and inverse of the covariance matrix will not be available. As a result, it is

hard to derive the properties of the likelihood function. The use of equivalent mea-

sures enables study of consistency through examination of the spectral density of the

covariance function, avoiding matrix calculation. The basic idea in using equivalent

measures is as follows: if we know that the data are generated by one of two equiv-

alent measures P1 and P2, we are not able to distinguish with probability one which

measure is correct regardless of what we observe. In other words, we will not be able

to provide consistent estimation.

First let us recall the definition of equivalent/orthogonal measures. Let two prob-

ability measures to be defined on the same measurable space (X,F). We say P1 is

absolutely continuous with respect to P2, denoted by P1 ≪ P2, if for any A ∈ F ,

P2(A) = 0 implies P1(A) = 0. If P1 ≪ P2 and P2 ≪ P1, we call P1 and P2 equivalent,

denoted by P1 ≡ P2. If there exists two disjoint measurable sets A1 and A2 such that

P1(A1) = 1 and P2(A2) = 1, we call P1 and P2 orthogonal, denoted by P1⊥P2. In

our problem, F is the σ-algebra generated by the spatial process Y (s), where s ∈ D

and D ⊂ R
d is a compact set. The equivalence or orthogonality of two measures is

informative. For example, suppose we have two uniform measures P1 on [0, 1] and

P2 on [2, 3]. Assume the data are generated by either P1 or P2. It is trivial to see

P1 and P2 are orthogonal and we can identify the true measure perfectly based on

any number of observations. On the other hand, if P1 ≡ P2, then we are not able

to distinguish perfectly which measure generate the data based on what we observe.

The following are a few clarifying remarks.

Remark 1. If P1 ≡ P2, we cannot distinguish P1 and P2 with P1-probability 1. In

other words, we cannot make a perfect decision to choose P1 or P2 no matter what

33



we observe.

Suppose we observe an event A (i.e. P1(A) > 0 and P2(A) > 0), if we can perfectly

distinguish P1 and P2, we must be able to construct an event B based on A such

that B occurs with P1-probability 1 and P2-probability 0. But if P1(B|A) = 1, we

have P1(B
c|A) = 0 which implies P2(B

c|A) = 0 (Bc means the complement of B).

This further implies P2(B|A) = 1 which leads to contradiction. Thus we cannot

distinguish P1 and P2 perfectly.

Remark 2. Let Pθ be a measure indexed by a vector of parameters θ = (θ(1), ..., θ(p)).

If Pθ1

≡ Pθ2

, where θi = (θ
(1)
i , ..., θ

(p)
i ) for i = 1, 2; and suppose θ

(j)
1 6= θ

(j)
2 for j =

1, ..., q with q ≤ p, then there is no weakly consistent estimator for each component

in the subset (θ(1), ..., θ(q)). Here weakly consistent means convergence in probability.

Consider θ(1) in the subset (θ(1), ..., θ(q)) and suppose θ̂n is a weakly consistent

estimator for θ(1). Then there exists a subsequence θ̂nk
which is strongly consistent

(i.e. Pθ1

(θ̂nk
→ θ

(1)
1 ) = 1). Pθ1

≡ Pθ2

implies Pθ2

(θ̂nk
→ θ

(1)
1 ) = 1. For the sequence

θ̂nk
which converges weakly to θ2 under probability Pθ2

, there is a sub-subsequence

θ̂nkj
such that Pθ2

(θ̂nkj
→ θ

(1)
2 )=1. This leads to contradiction since θ

(1)
1 6= θ

(1)
2 .

Remark 3. If the limiting value of the inverse information of a parameter (by in-

verse information of a parameter we mean the corresponding element in the inverse

information matrix) is bounded below by a positive number as sample size tends to

infinity, then there is no L2-consistent estimator for that parameter. If there is no

consistent estimator for a parameter and the variance of MLE attains the Cramér-

Rao lower bound asymptotically, then the associated inverse information is bounded

below by a positive number and hence the information is bounded above by a finite

number no matter how large the sample size is.

Finally, a theorem of Blackwell and Dubins (1962) tells us that the parametriza-
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tion under which measures are equivalent is important for prediction. Two measures

with different parametric covariance functions could be equivalent. Then, the predic-

tions based on the wrong measure are asymptotically optimal as long as this wrong

measure is equivalent to the correct measure.

From the above remarks, we can use the idea of equivalent measures to study

consistency and limiting behavior of the Fisher information. In general, two measures

could be equivalent, orthogonal, or neither equivalent nor orthogonal. However, it is

well known that two Gaussian measures are either equivalent or orthogonal (see e.g.

Gikhman and Skorokhod, 1974, Chapter 7). Furthermore, there are many results

that provide conditions for checking the equivalence of Gaussian measures.

A Gaussian measure is characterized by its mean and covariance function. Sup-

pose Yj(t) (j = 1, 2) are stationary Gaussian random fields on D ∈ R
d with mean

µj(t) and covariance function C(s − t) = σ2
j ̺j(s − t) and ̺j(s − t) has a spectral

representation

̺j(s− t) =

∫

Rd

ei(ω,s−t)Fj(dω), (3.6)

where Fj(·) is the spectral measure of Yi(t) and Fj(dω) = fj(ω) dω if Fj(·) is abso-

lutely continuous with respect to Lebesgue measure. The random fields Yj(t) have

the representation

Yj(t) = σj

∫

Rd

ei(ω,t)Zj(dω), (3.7)

where Zj(·) is a random measure such that E{Zj(A1)Zj(A2)} = Fj(A1 ∩ A2) for

measurable sets A1 and A2. Gaussian random fields Yj(t), t ∈ D induces Gaussian

measure Pj on the measurable space (RD,BD).

Let L2(D) be the space of square-integrable functions on D. L2(D) is a Hilbert
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space with inner product

(x(t), y(t)) =

∫

D

x(t)y(t) dt (3.8)

for x(t), y(t) ∈ L2(D). The covariance operator K is defined as

Kx(t) =

∫

D

σ2̺(t, s)x(s) ds (3.9)

for x(t) ∈ L2(D). We use the notation P (µ,C), P (µ, σ2̺), or P (µ,K) for a Gaussian

measure with mean µ and covariance function C = σ2̺, or covariance operator K.

The fundamental theorems about Gaussian equivalent measures state the condi-

tions in terms of operators which are not easy to verify. Fortunately, there are many

more specific conditions expressed in terms of either the covariance functions or the

spectral measures. See Gikhman and Skorokhod (1974), Ibragimov and Rozanov

(1978), and Yadrenko (1983) for details.

3.4 Only the location parameter is unknown

We begin with the simplest case in model (3.1) assuming the parameters in covariance

function, σ2 and φ are known, and we want to estimate the unknown mean.

3.4.1 Estimating µ: the sample average and BLUE

Suppose a one dimensional process Y (t) with a constant mean µ is observed at

t1, ..., tn ∈ [0, L] where L is a bounded positive real number. For concreteness, let

ti = iL/n, i = 1, ..., n. Suppose we use the sample average µ̄n =
∑n

i=1 Y (ti)/n to

estimate µ. µ̄n has variance

ζ2
n =

1

n2

∑

i,j

C(ti, tj) → ζ2 =

∫ L

0

∫ L

0

C(s, t) ds dt/L2. (3.10)
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ζ2 is the variance associated with the stochastic integral µ̄L =
∫ L

0
Y (t) dt/L, clarifying

that, even with an arbitrarily large sample, precision is limited. One cannot estimate

the mean parameter arbitrarily well with a single realisation, however dense, on

a bounded region. For instance, consider C(s, t) = exp(−φ|s − t|), L = 1, and

φ = 1, corresponding to a time-transformed Ornstein-Uhlenbeck (OU) process. Then,

ζ2 = 2/e = 0.7358. But even with a quite small n, ζ2
n is close to ζ2, e.g., for

n = 5, 20, 100 the values are 0.7466, 0.7364, 0.7358, respectively.

Now suppose we allow L to grow large. It can be shown that (Yaglom, 1987,

Section 16)

lim
L→∞

µ̄L = lim
L→∞

1

L

∫ L

0

Y (t) dt = µ if and only if lim
L→∞

1

L

∫ L

0

̺(h) dh = 0. (3.11)

Note the condition that limL→∞
∫ L

0
̺(h) dh/L = 0 is weaker than the condition that

̺(h) → 0 as h→ ∞. It is also worth noting that

lim
L→∞

∫ L

0

̺(h) dh/L = F (+0) − F (−0), (3.12)

where F (·) is the spectral measure of ̺(·). So µ̄L is consistent as L→ ∞ if and only

if the spectrum of the correlation function is continuous at 0. So for middle-ground

and expansion asymptotics, under fairly general conditions, µ can be consistently

estimated.

Suppose we consider the best linear unbiased estimator (BLUE) instead of the

sample average, i.e., consider

µ̂n =
1

n

n∑

i=1

a(iL/n)Y (iL/n), (3.13)

the limit of which is µ̂L =
∫ L

0
Y (s) dA(s). Unbiasedness requires (1/n)

∑n
i=1 a(iL/n)

= 1, which in the limit means
∫ L

0
dA(s) = 1. We may think of A(s) as a signed
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measure with unit mass or as a “generalized” distribution function. The variance of

µ̂n is

σ2
n =

1

n2

∑

i,j

a(iL/n)a(jL/n)C(iL/n, jL/n)

→
∫ L

0

∫ L

0

C(s, t) dA(s) dA(t)/L2 = σ2. (3.14)

There should be a well-defined best weighting function dA(s) that minimizes the

limit variance among those with
∫ L

0
dA(s) = 1. It is easy to consider finding the

best weighting function for finite n, then passing to the limit. A Lagrange multiplier

calculation shows that the best linear combination sets a0 = R−1
n 1/1TR−1

n 1 with

resulting

Var (aT
0 Y ) = σ2/1TR−1

n 1. (3.15)

This corresponds to the optimal linear estimator

µ̂n = aT
0 Y =

1TR−1
n Y

1TR−1
n 1

. (3.16)

For the OU process, R−1
n can be calculated explicitly (see Appendix A.1) leading to

the information expression for µ

An(φ) ≡ 1TR−1
n 1 = 1 + (n− 1)(1 − ρn)/(1 + ρn), (3.17)

where ρn = exp(−φL/n). As n→ ∞, the limit is

lim
n→∞

An(φ) = 1 + φL/2, (3.18)

explicitly providing the bound on information.

Furthermore, the weighting function a0 = (a0,1, ..., a0,n)
T with a0,1 = a0,n = (n−

(n− 2)ρn)−1 and a0,i = (1 − ρn)(n− (n− 2)ρn)−1 for i = 2, ..., n− 1. So, in a limit,
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for the OU process on [0, L], the BLUE weights dA(t) is

dA(t) =
1

2 + φL
{δ(t) + δ(t− L) + φ1(0,L)(t)} dt, (3.19)

where δ(t) is a Dirac delta function with
∫∞
−∞ f(x)δ(t− x) dt = f(x).

How much smaller is the variance of µ̂n compared with that of µ̄n? The relative

efficiency

Var µ̂n/Var µ̄n

can be studied. For the OU case with L = 1, the ratio is rather close to 1 for small

φ and large φ, and, for φ around 2.5, the ratio reaches at its maximum value of 1.14.

This may suggest that for ordinary correlation functions, the relative efficiency never

gets large. In other words, the simple sample average estimation may not lose much

to the optimal strategy.

For a general covariance function, R−1
n has no closed form expression so we are not

able to find µ̂ = limn→∞(1TR−1
n Y )/(1TR−1

n 1) by direct calculation. As an alternative

approach, for a random process Y (t) (t ∈ D) with mean x(t)µ (x(t) is a known

covariate function. For example, x(t)=1 in the above discussion) and covariance

function σ2̺, Grenander (1981, Chapter 4) shows the existence and uniqueness of

the BLUE for µ. He also shows that BLUE µ̂ can be characterized by a so-called

normal equation

E{µ̂Y (s)} = (Var(µ̂) + µ2)x(s) ≡ cx(s) for any s ∈ D, (3.20)

where c is a constant. This is easy to see by noting that the variance of any other

linear unbiased estimator µ̂∗ = µ̂+ǫ{Y (t)x(s)−Y (s)x(t)} is greater than the variance

of BLUE µ̂ for arbitrary ǫ and any s, t ∈ D. As a special case, if x(s) = 1 for s ∈ D

and µ̂ =
∫

D
Y (t) dA(t), the normal equation becomes

E{µ̂Y (s)} =

∫

D

̺(s, t) dA(t) + µ2 = c. (3.21)
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So if we can find dA(t) (up to a normalizing constant) such that
∫

D
̺(s, t) dA(t) is a

constant for each s, we are done.

Example 1: For the OU case on [0, L], it is easy to verify that when dA(t) =

{δ(t) + δ(t− L) + φ1(0,L)(t)} dt,
∫ L

0
e−φ|s−t| dA(t) = 2 for all s ∈ [0, L]. We normalize

dA(t) to get back (3.19) and find the variance of the BLUE is 2/(2 + φL).

Example 2: For a Gaussian correlation function ̺(s, t) = exp(−φ(s− t)2) (t, s ∈

[0, L]), we want to find dA(t) such that
∫ L

0
e−φ(s−t)2 dA(t) is constant for all s. We dif-

ferentiate both sides of the equation with respect to s to get
∫ L

0
e−φ(s−t)2(t−s) dA(t) =

0 for any s. If we let s = 0, we have
∫ L

0
e−φt2t dA(t) = 0 so there must be negative

weights for t in the interval [0, L]. Though an exact solution for dA(t) is elusive,

Figure 3.1 shows how the BLUE weights behave for a finite n (n = 30, L = 1 and

φ = 10).

BLUE for Gaussian covariance function
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Figure 3.1: BLUE weights for a Gaussian process on [0, 1] with the correlation
function exp(−10|s− t|2), n = 30.
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Example 3: Turning to the Matérn covariance function (see Section 2.1.3),

C(s, t; σ2, φ, ν) =
σ2

2ν−1Γ(ν)
(φ‖s− t‖)νκν(φ‖s− t‖), (3.22)

where φ is correlation decay parameter; ν is the smoothness parameter; σ2 is the

variance parameter; and κν is the modified Bessel function of the second kind of

order ν. The modified Bessel function is not easy to work with. Even for the special

case where the smooth parameter ν = 3/2 which implies the correlation function

has the closed form e−φ|s−t|(1 + φ|s − t|), it is not easy to find the exact form of

dA(t). Figure 3.2 shows some numerical results for dA(t) with different values of

ν (σ2 = 1, φ = 1, n = 50). It can be seen that ν = 0.5 is a critical point. When

ν ≤ 0.5, dA(t) is positive and less than 1 for all t and the shape of dA(t) converges

to the shape of (3.19) as ν goes to 0.5. When ν > 0.5, dA(t) becomes very irregular

with enormous negative and positive weights. The shape of dA(t) converges to that

of dA(t) for the Gaussian covariance function as ν goes to infinity. Perhaps most

important is that it seems very unattractive to use such extreme weights to estimate

the mean with positively correlated data. For example,

µ̂ = 3519.189y1 − 10560.157y2 + 12122.415y3 − 7506.865y4 + 3674.883y5 − · · ·

does look strange, for data with standard deviation 1. These weights are for n = 50

and ν = 3. The weights escalate further with increasing ν and increasing samples

intensity n. This aspect of traditional geostatistics theory does not seem to be noted

in the literature.

Grenander (1981, Chapter 4) suggests a way to understand why the weights at

boundary (or near boundary) points are so different. If we want to estimate the mean
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Figure 3.2: BLUE weights dA(t) for a Gaussian process on [0, 1] with Matérn
covariance function (n = 50, σ2 = 1, φ = 1, ν = 0.1, 0.5, 1.5, 3).

of a random process based on observations {Y (t), t ∈ D}, we could conceptually

obtain the unbiased prediction Ŷ (t) for t /∈ D. Then we can estimate the mean

based on the combined set of {Y (t)} and {Ŷ (t)}. This procedure can not change the

information contained in the original data in terms of estimating µ. Again, consider

the OU process on [0, L]. The OU process is Markovian (see Appendix A.1) so the

best unbiased prediction of Y (t) for t < 0 only depends on Y (0) and Ŷ (t) only

depends on Y (L) for t > L. Now we have three pieces of information, the first one

is from {Ŷ (t), t < 0}, the second one comes from {Ŷ (t), t > L} and the third one is

from {Y (t), t ∈ [0, L]}. The contributions from these three information sources are

weighted according to the decay parameter φ as in (3.19). Note that if φ increases, the

correlation will decrease so that the contribution from {Y (t), t ∈ [0, L]} will increase.

For a process with a covariance function other than exponential, Ŷ (t) (t > L) usually

42



depends more on the samples close to the right boundary (similarly, Ŷ (t) depends

more on the samples close to the left boundary for t < 0). As a result, samples close

to boundaries will have bigger impact on µ̂.

3.4.2 Bayesian beware

In terms of Bayesian analysis, suppose we place a prior π(µ) on the mean parameter,

with consequent posterior density

πn(µ | data) ∝ π(µ) exp{−1
2
An(µ− µ̂n)2}, (3.23)

in terms of the information level An and the ML estimator µ̂n. Since An is limited,

the posterior will for ever depend on aspects of the prior. The limiting posterior, for

infinite fill-in, is

π(µ | data) ∝ π(µ) exp{−1
2
A(µ− µ̂)2},

with A the finite limit of An. If the prior is a normal (µ0, 1/A0), for example, then

the Bayes estimator, and its limit for large n, are

µ̃n =
A0µ0 + Anµ̂n

A0 + An
and µ̃ =

A0µ0 + Aµ̂

A0 + A
. (3.24)

Thus one needs to be particularly careful with one’s prior in such contexts.

3.4.3 Equivalent measures and estimation of µ

As discussed in Section 3.3, the approach of equivalent measures can help us un-

derstand the limiting behavior of the information about µ. Let us start with two

theorems that give some specific conditions for verifying equivalence of Gaussian

measures.

Theorem 3 (Ibragimov and Rozanov, 1978, p.77). Suppose two Gaussian measures

P (µ1(t), σ
2
1̺1) and P (µ2(t), σ

2
2̺2) are corresponding to two Gaussian processes Y1(t)
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and Y2(t) defined on some set D. P (µ1(t), σ
2
1̺1) ≡ P (µ2(t), σ

2
2̺2) if and only if

limn→∞(E1 log f1,n

f2,n
+ E2 log f2,n

f1,n
) < ∞, where fj,n (j = 1, 2) is the joint density of

{Yj(t1), ..., Yj(tn), ti ∈ D}, E1 and E2 denotes expectations under P (µ1(t), σ
2
1̺1) and

P (µ2(t), σ
2
2̺2), and {ti} is dense in D.

We add the following corollary:

Corollary 3.1. If µ1(t) = u1, µ2(t) = u2 for t ∈ D, then P (µ1, σ
2̺) ≡ P (µ2, σ

2̺) if

and only if (u1 − u2)
2 limn→∞ 1TR−1

n 1 <∞.

Proof. log
f1,n

f2,n
= (u1 − u2)Y

TR−1
n 1 − 1

2
u2

11
TR−1

n 1 + 1
2
u2

21
TR−1

n 1 and E1 log
f1,n

f2,n
=

1
2
u2

11
TR−1

n 1+ 1
2
u2

21
TR−1

n 1−u1u21
TR−1

n 1. So limn→∞(E1 log f1,n

f2,n
+E2 log f2,n

f1,n
) = (u1−

u2)
21TR−1

n 1.

Theorem 4 (Ibragimov and Rozanov, 1978, p.86; Yadrenko, 1983, p.137). The Gaussian

measures P (0, σ2̺) and P (µ(t), σ2̺) defined on the σ-algebra BD are equivalent if and only

if the mean µ(t) permits a spectral representation

µ(t) =

∫
e−iλtψ(λ)F (dλ) (3.25)

for t ∈ D, where the function ψ(λ) satisfies the condition
∫
|ψ(λ)|2F (dλ) <∞. Here F (dλ)

is the spectral measure of the covariance function.

If we can verify two measures (with different means but a same covariance struc-

ture) are equivalent using Theorem 4, then by Remark 2, we cannot estimate mean

consistently. And by Corollary 3.1, 1TR−1
n 1 is bounded.

3.4.4 Properties of An(φ)

We now summarize a few basic properties of An(φ). Perhaps the most useful result

is the explicit form of the information gain upon sampling an additional location, say
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t0. We have

An+1(φ) − An(φ) =
(1 − 1TR−1

n (φ)rn0(φ))2

1 − rn0(φ)TR−1
n (φ)rn0(φ)

(3.26)

where rn0 is an n× 1 vector with ith entry ̺(ti − t0; φ). This result is a special case

of the recursion of Brimkulov, Krug, and Savanov (1986).

Next, since A1 = 1, we have An > 1 and An increasing in n. As the scalar

decay parameter φ → ∞, An → n. Is An ≤ n? A simple calculation shows that

A2 −A1 = (1− ρ)/(1 + ρ), where ρ = ̺(t1 − t2;φ). So, if ρ is allowed to be less than

0, A2 > 2 and, in fact, A2 − A1 → ∞ as ρ → −1. If ̺ only takes on positive values

then An+1(φ) − An(φ) ≤ 1 and An ≤ n.

For the OU process, we have the following results (see Appendix A.1 for proofs)

Result 1: For an OU process on [0, L], 1TR−1
n (φ)1 increases as φ increases, i.e.

1TR−1
n (φ1)1 > 1TR−1

n (φ2)1 if φ1 > φ2 > 0.

Result 2: For an OU process on [0, L], limφ→0 1TR−1
n 1 = 1 and limφ→∞ 1TR−1

n 1 =

n.

Finally, as we have noted, the only covariance functions in R
1 that have proven

amenable to explicit computation of R−1
n and |Rn| are two cases of the Matérn class,

namely smoothness parameter ν = 0.5 (the exponential case) and ν = 1.5 (as in

Loh, 2005). To obtain explicit forms for R
d the only solution to date appears to be a

specification that is separable in the coordinates, i.e., ̺(s−s′;φ) = Πd
l=1 exp(−|sl−s′l|)

(as in Ying, 1993 and Loh, 2005). The resulting R−1
n has a Kronecker product form.

3.4.5 On computing limn→∞ 1TR−1
n 1.

We wish to calculate the limiting value of 1TR−1
n 1, the information for µ. Motivated

by Parseval’s equality and Theorem 4, we have the following result:
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Theorem 5. Let the model be Y (t) = µx(t) + W (t) (t ∈ D, a compact set in R
d),

where x(t) is a known covariate function and W (t) is a mean 0 stationary process

with a correlation function ̺. Then the information for estimating µ can be computed

as follows:

lim
n→∞

x(t1, ..., tn)TR−1
n x(t1, ..., tn) =

∞∑

i=1

|(ψi(·), x(·))|2
λi

, (3.27)

where {λi} is a countable set of eigenvalues and {ψi(t)} are corresponding orthonor-

mal eigenfunctions associated with ̺; and (ψi(·), x(·)) =
∫

D
ψi(t)x(t) dt is the inner

product.

See Appendix A.2 for a proof.

Below we demonstrate how to calculate limn→∞ 1TR−1
n 1 for the OU model using

Theorem 5. The Karhunen-Loève expansion (see, for example, Adler 1981) is one

way of finding eigenvalues and eigenfunctions for a correlation function ̺ on D. It

decomposes ̺(s, t) (s, t ∈ D ⊂ R
d) into a sum of orthogonal series (see Section 4.2.1

for details):

̺(s, t) =
∞∑

i=1

λiψi(s)ψi(t), (3.28)

where {λi} is a countable set of eigenvalues and {ψi(t)} are corresponding orthonor-

mal eigenfunctions of ̺. We solve

∫

D

̺(s, t)ψ(t)dt = λψ(s) and

∫

D

ψi(t)ψj(t) dt = δij, (3.29)

where δij equals 1 when i = j and 0 otherwise, to obtain λi and ψi(t).

Example 4: Consider a Gaussian process Y (t) on D = [−L,L] (the symmetric

interval is chosen for computation simplicity) with mean 0 and exponential correlation
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function ̺(t, s) = e−φ|t−s| where t, s ∈ [−L,L]. We solve the integral equation λψ(t) =

∫ L

−L
e−φ|t−s|ψ(s) ds with

∫ L

−L
ψi(s)ψj(s) ds = δij to find λi and ψi as follows (see

Appendix A.3 for details):

λ1,i =
2φ

w2
1,i + φ2

, ψ1,i(t) =
cos(w1,it)√

L+ sin(2w1,iL)/(2w1,i)
(3.30)

and

λ2,i =
2φ

w2
2,i + φ2

, ψ2,i(t) =
sin(w2,it)√

L− sin(2w2,iL)/(2w2,i)
, (3.31)

where w1,i and w2,i are the solutions of the following two equations (3.32) and (3.33)

respectively:

tan(wL) = φ/w, and (3.32)

tan(wL) = −w/φ. (3.33)

Thus we have

̺(s, t) =

∞∑

i=1

(
λ1,iψ1,i(s)ψ1,i(t) + λ2,iψ2,i(s)ψ2,i(t)

)
. (3.34)

If we arrange the eigenvalues in decreasing order, we can approximate the correlation

function by truncating the infinite sum (3.34). Let us look at a concrete example.

Specifically, letting L = 1 and φ = 2, we find the 10 largest eigenvalues to be

λ1...10 =(0.7752, 0.4329, 0.2315, 0.1339, 0.0846, 0.0575, 0.0413, 0.0310, 0.0241, 0.0192)

and the corresponding eigenfunctions (see Figure 3.3). (The solutions of (3.32) and

(3.33) are w1,1...5=(1.08, 3.64, 6.58, 9.63,12.72), w2,1...5 =(2.29, 5.09, 8.10, 11.72,

14.28). See Figure 3.4.) We approximate the correlation function using these 10

terms. The approximation is fairly good as we can see from Figure 3.5. In general,
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the weaker the correlation is, the slower the decrease in the eigenvalues and more

terms are needed in order to achieve accurate approximation.

According to Theorem 5, in order to calculate limn→∞ 1TR−1
n 1, we only need to

compute
∑∞

i=1 |(ψi(·), 1)|2/λi. Note

(ψi,1(·), 1) =

∫ L

−L

ψ1,i(t) dt =
2 sin(w1,iL)

w1,i

√
L+ sin(2w1,iL)/(2w1,i)

and

∫ L

−L

ψ2,i(t) dt = 0.

So, by plugging in the first 10 eigenvalues and eigenfunctions we obtain

10∑

i=1

|(ψi(·), 1)|2/λi = 2.91.

The true value of limn→∞ 1TR−1
n 1 = 1 + φL = 3. For the φ = 1 and L = 0.5 case,

using only six eigenvalues, the approximated value of limn→∞ 1TR−1
n 1 is 1.46 while

the true value is 1.5.

Remark 4. The use of the Karhunen-Loève expansion to calculate the information

depends on the ability to solve the integral equation (3.29), which is typically a hard

task. There exists numerical methods, for example, the “Galerkin method” (see e.g.

Ghanem and Spanos, 1991), to find approximate solutions enabling approximate lim-

iting information.

Another way to handle the difficulty of finding exact eigenvalues is motivated by

the following solution for (3.29),

∫

Rd

̺(s− t)eiωT t dt = eiωT s

∫

−Rd

̺(u)e−iωT u du = λ(ω)eiωT s, (3.35)

where λ(ω) =
∫

Rd ̺(u)e
−iωT u du.
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Figure 3.3: First five eigenfunctions for the exponential correlation function on
[−1, 1], ̺(s, t) = exp(−2|s− t|).

Note that λ(ω) is the spectral density associated with ̺. For a process Y (t), t ∈

[−L/2, L/2], we expect the eigenvalues and eigenfunctions to be close to λ(ω) and eiωt

when L is large. Since we know the spectral density for many covariance functions

of interest, we can use the approximated eigenvalues and eigenfunctions to compute

(3.27).

We follow the approach of Van Trees (1968, Chapter 3). For the integral equation

∫ L/2

−L/2

̺(s− t)ψ(t) dt = λψ(s),

we try solutions of the form ψn(t) = eiπnt/L, n = 0,±1,±2.... and substitute in the
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Figure 3.4: Solutions for (3.32) and (3.33)

spectral representation of ̺(s− t) =
∫∞
−∞ f(ω) exp{iω(s− t)} dω. Then we have

∫ L/2

−L/2

̺(s− t)eiπnt/L dt =

∫ L/2

−L/2

[ ∫ ∞

−∞
f(ω)eiω(s−t) dω

]
eiπnt/L dt

=

∫ ∞

−∞
f(ω)eiωs

[ ∫ L/2

−L/2

ei(πn/L−ω)t dt
]
dω

=

∫ ∞

−∞
f(ω)eiωs

[2 sin(πn/2 − ωL/2)

πn/L− ω

]
dω

≈
∫ ∞

−∞
f(ω)eiωsδ(ω − πn/L) dω

= f(πn/L)eiπns/L. (3.36)

If you plot the function 2 sin(πn/2−ωL/2)
πn/L−ω

, you will see 2 sin(πn/2−ωL/2)
πn/L−ω

≈ δ(ω− πn/L)

for large L. Therefore, we find a “cheap” way to find the eigenvalues and correspond-
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Figure 3.5: Karhunen-Loève expansion approximation for the exponential correla-
tion function on [−1, 1]: ̺(s, t) = exp(−2|s− t|).

ing eigenfunctions

λj = f(jπ/(2L)) and ψj(t) = c eijπt/(2L), (3.37)

where f(·) is the spectral density associated with ̺ and c is a normalizing con-

stant. The approximation is convenient since many common correlation functions

have closed-form spectral densities. For example, for the exponential correlation func-

tion on [−L,L], the approximated eigenvalues are λj = f(jπ/(2L)) = 2φ
φ2+(0.5jπ/L)2

(compare with (3.30) and (3.31)). It can be seen from Figure 3.4 that wn ≈ nπ
2L

when wn is large. When L converges to infinity, w is more and more dense on R and

eventually the eigenvalues become f(w) for all w ∈ R. For the Matérn covariance

function on [−L,L], the approximated eigenvalues are

λj =
2
√
πΓ(ν + 1/2)φ2ν

Γ(ν){φ2 + (0.5jπ/L)2}ν+1/2
. (3.38)
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3.4.6 Extension to µ(s) = XT (s)β

For illustration we consider the model Y (s) = β0 + x(s)β1 + W (s) (but the results

below are routinely extended to handle a general covariate vector X(s)). The infor-

mation matrix and the inverse information matrix for the mean parameters are

I(β0, β1) =

(
1TR−1

n 1 xTR−1
n 1

xTR−1
n 1 xTR−1

n x

)
(3.39)

and

I−1(β0, β1) =
1

|(1TR−1
n 1)(xTR−1

n x) − (xTR−1
n 1)2|

(
xTR−1

n x −xTR−1
n 1

−xTR−1
n 1 1TR−1

n 1

)
,(3.40)

where x = (x(s1), ..., x(sn))T . So

Var(β̂0) ≥
1

|1TR−1
n 1 − (xTR−1

n 1)2/xTR−1
n x| .

By the Cauchy-Schwarz inequality, 1TR−1
n 1 ≥ (xTR−1

n 1)2/xTR−1
n x. We may view

1/I(β0, β1)
1,1 = 1TR−1

n 1 − (xTR−1
n 1)2/xTR−1

n x

as the “information” for β0 when β1 is unknown, where I i,i means the ith diagonal

element of the inverse information matrix I−1. 0 < 1TR−1
n 1− (xTR−1

n 1)2/xTR−1
n x <

1TR−1
n 1 = I(β0|β1), in agreement with our intuition that the information for esti-

mating β0 decreases if we have a non-orthgonal nuisance parameter β1. Thus we can

conclude that I(β0) (when β1 unknown) is bounded if I(β0|β1) = 1TR−1
n 1 is bounded.

Remark 5. It can be shown that the conditional information is greater than uncon-

ditional information, i.e. Ii,i ≥ 1/I i,i. This follows since the information matrix I

is the covariance matrix associated with the score vector. I−1 is the matrix such that

the reciprocals of the diagonal entries are conditional variances for one score given

all of the others. Since the conditional variance is always less than or equal to the

marginal variance, we immediately have the inequality.
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Remark 6. If x(t) is bounded for t ∈ D and 1TR−1
n 1 is bounded, x(t)TR−1

n x(t) is

bounded.

3.4.7 Under expansion and middle-ground asymptotics

For estimating the mean, we have an either-or situation. From the discussion in

Section 3.4.1, in general, we can consistently estimate the mean as long as the study

region D increases without bound.

3.5 Unknown center and scale

3.5.1 Information and MLEs

Let us next investigate the model where the correlation function is assumed known

for (3.1)-(3.2), but with unknown center µ and scale σ2. Data therefore follow the

model Y ∼ Nn(µ1, σ2Rn), with log-likelihood

ℓn(µ, σ) = −n log σ − 1
2
log |Rn| − 1

2
(y − µ1)TR−1

n (y − µ1)σ2, (3.41)

with Rn known. One finds

∂ℓn
∂µ

= (1/σ2)(1TR−1
n y − Anµ),

∂ℓn
∂σ

= −n/σ + (1/σ3)(y − µ1)TR−1
n (y − µ1)

yielding the ML estimators as expected, namely

µ̂ =
1TR−1

n y

1TR−1
n 1

and σ̂ = {(y − µ̂1)TR−1
n (y − µ̂1)/n}1/2. (3.42)

Also, the information matrix becomes

In(µ, σ) =

(
An(µ)/σ2 0

0 2n/σ2

)
, (3.43)
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revealing that information is bounded in µ but not in σ. The ML estimators match

the Cramér-Rao lower bound In(µ, σ)−1 (modulo the usual (n− 1)/n factor for σ̂2).

To see this, let us write

Y = µ1 + σR1/2
n ǫ in terms of ǫ ∼ Nn(0, In), where In is an n× n identity matrix.

Then

µ̂ = µ+ σ
1TR

−1/2
n ǫ

An
and µ̂1 = µ1 + σ

11TR
−1/2
n

An
ǫ, (3.44)

leading to

Y − µ̂1 = σ(R1/2
n − 11TR−1/2

n /An)ǫ

and

σ̂2 =
σ2

n
ǫT
(
R1/2

n − R
−1/2
n 11T

An

)
R−1

n

(
R1/2

n − 11TR
−1/2
n

An

)
ǫ

=
σ2

n
ǫT
(
In − R

−1/2
n 11TR

−1/2
n

An

)
ǫ.

This implies independence between the two estimators and

µ̂ ∼ N(µ, σ2/An), (3.45)

σ̂2 ∼ σ2χ2
n−1/n. (3.46)

3.5.2 Bayesian caveat

Again there is a warning for Bayesians coming out of this; parts of any prior for (µ, σ)

will be retained in the posterior distribution, even with infinitely many data points

on a bounded study domain.
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Suppose we specify a normal inverse-gamma prior π(µ, σ2) = N(µ0, 1/A0)IG(α0, β0)

for mean and scale parameters. Then the posterior is

π(µ, σ2|data) ∝ e−
A0

2
(µ−µ0)2(σ2)−(α0+1)e−β0/σ2 |2πσ2Rn|−

1

2 e−
1

2
(y−µ1)T R−1

n (y−µ1)/σ2

∝ e−
A∗

2
[(µ−µ∗)2−µ∗2+yT R−1

n y/(A∗σ2)+µ0A0/A∗]−β0/σ2

(σ2)−(α0+1+n/2),

where µ∗ = yT R−1
n 1/σ2+µ0A0

1T R−1
n 1/σ2+A0

and A∗ = 1TR−1
n 1/σ2 + A0. The conditional densities

have closed form expressions:

µ|σ2, data ∼ N(µ∗, 1/A∗), (3.47)

σ2|µ, data ∼ IG(α0 + n/2, β0 +
1

2
(y − µ1)TR−1

n (y − µ1)). (3.48)

This leads

E(µ|σ2) = (µ0A0 + µ̂nAn/σ
2)/(A0 + An/σ

2) and (3.49)

E(σ2|µ) =
β0 + (y − µ1)TR−1

n (y − µ1)/2

α0 + n/2 − 1
≈ (y − µ1)TR−1

n (y − µ1)

n
(3.50)

for large n. It is easy to see that for large n, σ forgets where it comes from, but not

µ.

3.6 Known µ, σ: estimating φ only

Suppose both the mean and standard deviation are known in our standard model.

How well can we estimate the parameters of the correlation function? Without loss

of generality, we can take the model to be of the form

Y ∼ Nn(0, Rn(φ)), (3.51)

with Rn(φ) having elements ̺(|ti − tj |; φ), corresponding to the process Y having

been observed at positions t1, . . . , tn.
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3.6.1 Information calculations

In the following, let φ be a scalar for now and let

Bn = Tr(R−1
n (φ)R̄n(φ)), (3.52)

En =
1

2
Tr(R−1

n (φ)R̄n(φ)R−1
n (φ)R̄n(φ)), (3.53)

where R̄n(φ) is the matrix with entries, ∂Rn,i,j(φ)/∂φ.

For the OU case with equidistance sampling on the interval [0, L] (data are ob-

served at ti = iL/n for i = 1, ..., n), we have (see Appendix A.1)

Bn = 2(n− 1)
ρ2

1 − ρ2
∆,

En = (n− 1)
ρ2(1 + ρ2)

(1 − ρ2)2
∆2, (3.54)

where ρ = exp(−φ∆) and ∆ = L/n.

The log-likelihood function for model (3.51) is

ℓn(φ) = −1
2
log |Rn(φ)| − 1

2
yTRn(φ)−1y, (3.55)

with consequent

Vn = (∂/∂φ)ℓn = −1
2
Bn + 1

2
yTR−1

n (φ)R̄n(φ)R−1
n (φ)y.

The ML estimator φ̂ solves the equation

yTRn(φ)−1R̄n(φ)Rn(φ)−1y = Bn(φ).

Writing Y = R
1/2
n (φ)ǫ, where ǫ ∼ Nn(0, In), the random score function may be

expressed as

Vn = 1
2
(ǫTGnǫ − Bn), with Gn = R−1/2

n (φ)R̄n(φ)R−1/2
n (φ). (3.56)

It has mean zero and variance In(φ) = En.
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3.6.2 Asymptotic normality?

Suppose that information increases linearly with n, and that n−1En → E, say. The

usual approximation argument, when it works, produces

√
n(φ̂− φ)

.
= (n−1In(φ))−1n−1/2Vn →d N(0, 1/E), (3.57)

where →d means convergence in distribution.

For the OU case, for example,

n−1En =
n− 1

n
ρ2(1 + ρ2)

∆2

(1 − ρ2)2

.
= ρ2(1 + ρ2)

( ∆

2φ∆

)2

→ 1

2φ2
.

This holds, interestingly, under (and only under) the minimal requirement ∆ → 0,

i.e. both for infill and for middle-ground asymptotics. Thus we expect
√
n(φ̂−φ) →d

N(0, 2φ2) for the OU process, as long as the sampling distance ∆ → 0, regardless of

the speed with which this happens.

A crucial ingredient in (3.57) is that n−1/2Vn →d N(0, E). Let Qn be a unitary

matrix with QnGnQ
T
n = Λn, the diagonal matrix with entries λ1, . . . , λn equal to

the eigenvalues of Gn. Then Gn = QT
nΛnQn and Vn = 1

2

∑n
i=1 λi(N

2
i − 1), in terms

of independent standard normals N1, N2, . . .. Note that Bn =
∑n

i=1 λi and En =

1
2

∑n
i=1 λ

2
i . It is now not difficult to demonstrate, via characteristic functions, that

n−1/2Vn →d N(0, E) if and only if

n−1En =
1

2
n−1

n∑

i=1

λ2
i → E and n−1/2 max

i≤n
|λi| → 0. (3.58)

This is a version of the Lindeberg-Feller conditions applied to an infill setting.
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3.6.3 Decay parameters versus smoothness parameters

Inference for the decay parameter in a covariance function differs dramatically from

that for a smoothness parameter. Consider the power exponential correlation function

̺(h;φ) = exp(−φhγ) for h ≥ 0, (3.59)

where γ ∈ (0, 2) is viewed as a fixed parameter, reflecting the amount of smoothness

in our random curves. The derivative of ̺, used to compute R̄n(φ) and thus, Gn

and its eigenvalues, is ̺′(h;φ) = −hγ exp(−φhγ). Numerical work does suggest that

(3.58) and hence (3.57) holds, for each γ ∈ (0, 2).

Suppose, in (3.59) that we consider φ fixed (and equal to 1 without loss of gener-

ality) with γ unknown in (0, 2), i.e.,

̺(h; γ) = exp(−hγ) for h ≥ 0. (3.60)

Here Bn and in particular En explode very rapidly with n, seemingly with each

given γ ∈ (0, 2), and the eigenvalues are not evenly enough distributed for limiting

normality to hold. It is possible that kn(γ̂ − γ) →d some limit for some kn sequence

that is much more rapid than
√
n. Note that ̺′(h; γ) = −γhγ−1 exp(−hγ), but that

the diagonal elements of R̄n are defined as 0 in general, also here, when γ < 1.

We expect similar non-traditional behavior of information and estimators when one

attempts to estimate the Matérn smoothness parameter.

One might also consider the more ambitious task of estimating both the decay

and smoothness parameters in the Matérn correlation function or φ and γ in (3.59).

We find a two-dimensional score vector

Vn =
∂ℓn(φ)

∂φ
=

(
−1

2
Bn,1 + 1

2
yTR−1

n R̄
(1)
n R−1

n y

−1
2
Bn,2 + 1

2
yTR−1

n R̄
(2)
n R−1

n y

)
=

(
1
2
(ǫTR

−1/2
n R̄

(1)
n R

−1/2
n ǫ − Bn,1)

1
2
(ǫTR

−1/2
n R̄

(2)
n R

−1/2
n ǫ − Bn,2)

)
,

where

Bn,j = Tr(R−1
n R̄(j)

n ) and R̄(j)
n = (∂/∂φj)Rn.
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The information matrix may be expressed as

In(φ) = VarVn = En =

(
En,1,1 En,1,2

En,1,2 En,2,2

)
,

where

En,i,j = Tr(R−1
n R̄(i)

n R
−1
n R̄(j)

n ) for i, j = 1, 2.

Limiting behaviour of both information and distribution of estimations would essen-

tially be determined by the eigenvalues of respectively

G(1)
n = R−1/2

n R̄(1)
n R−1/2

n and G(2)
n = R−1/2

n R̄(2)
n R−1/2

n .

3.7 All parameters unknown

Now let us return to the general model

Y ∼ Nn(µ1, σ2Rn(φ)) (3.61)

with one or more unknown parameters in the correlation function as well as unknown

mean µ and variance σ2.

3.7.1 Basic information calculations

The log-likelihood function is as in (3.41), but with φ (assume φ is one dimensional

for now) present in Rn. One finds a score function with components

∂ℓn
∂µ

= Un = (1/σ2)(1TR−1
n y −Anµ),

∂ℓn
∂σ

= Vn = −n/σ + (1/σ3)(y − µ1)TR−1
n (y − µ1),

∂ℓn
∂φ

= Wn = −1
2
Tr(R−1

n R̄n) + 1
2
(y − µ1)TR−1

n R̄nR
−1
n (y − µ1)/σ2,

with R̄n(φ) as above.
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To find ML estimators numerically, one maximizes the profile log-likelihood func-

tion

ℓ
n,prof(φ) = −n log σ̂(φ) − 1

2
log |Rn(φ)| (3.62)

with respect to φ, where

σ̂(φ) =
[
{y − µ̂(φ)1}TRn(φ)−1{y − µ̂(φ)1}/n

]1/2
and µ̂(φ) =

1TRn(φ)−1y

1TRn(φ)−11
. (3.63)

We write Y = µ1 + σRn(φ)1/2ǫ in terms of a vector ǫ of independent standard

normals. One finds

Un = 1TR−1
n ǫ/σ,

Vn = (−n + ǫT ǫ)/σ,

Wn = −1
2
Tr(R−1

n R̄n) + 1
2
ǫTR−1/2

n R̄nR
−1/2
n ǫ.

As a special case of (3.5), the information matrix is

In(µ, σ, φ) =




An/σ
2 0 0

0 2n/σ2 Bn/σ
0 Bn/σ En


 (3.64)

where An, Bn, and En are as before (with φ suppressed)

The inverse information matrix is

I−1(µ, σ, φ) =




σ2

An
0 0

0 Enσ2

2nEn−B2
n

− Bnσ
2nEn−B2

n

0 − Bnσ
2nEn−B2

n

2n
2nEn−B2

n


 . (3.65)

From the Cramér-Rao information inequality, which applies here,

Var σ̂ ≥ En

2nEn − B2
n

σ2 and Var φ̂ ≥ 2n

2nEn −B2
n

. (3.66)
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3.7.2 Information for the OU model

For the OU process on [0, L] with equidistance sampling (i.e., Y are observed at at

ti = iL/n for i = 1, ..., n), we have (see Appendix A.1):

An =
(n− 1)(1 − ρ)

1 + ρ
+ 1

.
= 1 +

Lφ

2
, (3.67)

Bn =
2(n− 1)ρ2

1 − ρ2
∆

.
=
n− 1

φ
− 2L, (3.68)

En =
(n− 1)ρ2(1 + ρ2)

(1 − ρ2)2
∆2 .

=
n− 1

2φ2
− 3L

2φ
. (3.69)

We also can compute the entries in the inverse information matrix (3.65):

Enσ
2

2nEn − B2
n

=
(1 + ρ2)

2n− 2(n− 2)ρ2
σ2 .

=
σ2

2(1 + Lφ)
, (3.70)

− Bnσ

2nEn − B2
n

= − 1 − ρ2

∆(n− nρ2 + 2ρ2)
σ
.
= − σφ

1 + Lφ
, (3.71)

2n

2nEn − B2
n

=
n(1 − ρ2)2

∆2(n− 1)(nρ2 − nρ4 + 2ρ4)
.
=

2φ2

1 + Lφ
. (3.72)

So we have

I(µ, σ, φ)
.
=




1+Lφ/2
σ2 0 0

0 2n
σ2

n−2Lφ
φσ

0 n−2Lφ
φσ

n−3Lφ
2φ2


 and (3.73)

I−1(µ, σ, φ)
.
=




σ2

1+Lφ/2
0 0

0 σ2

2(1+Lφ)
− σφ

1+Lφ

0 − σφ
1+Lφ

2φ2

1+Lφ


 . (3.74)

By the Cramér-Rao information inequality and the inverse information matrix
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(3.74),

Var(µ̂) ≥ σ2

1 + Lφ/2
> 0, Var(σ̂) ≥ σ2

2(1 + Lφ)
> 0 and

Var(φ̂) ≥ 2φ2

1 + Lφ
> 0. (3.75)

This indicates that none of (µ, φ, σ) can be estimated consistently.

The asymptotic correlation between σ̂ and φ̂ is

Corr(σ̂, φ̂) = − 2σBn/(2nEn − B2
n)√

σ2En

(2nEn−B2
n)

2n
(2nEn−B2

n)

= −Bn/
√

2nEn

= −
√

2ρ/
√
n(1 + ρ2)/(n− 1)

.
= −1. (3.76)

The implications of this result are well-known more generally in terms of essentially

a ridge in the likelihood surface and drifting of MCMC algorithms due to the weak

identifiability.

Although φ and σ cannot be consistently estimated separately, it might be that

some new parameter η(σ, φ) could be estimated consistently. In particular, consider

the information matrix for the parametrization λ = (µ, σ, σ
√
φ)T . Recall that, if

λ = g−1(θ) with dim(λ) = s ≤ dim(θ) = p, then,

I(λ) =




∂g1(λ)
∂λ1

. . . ∂gp(λ)
∂λ1

...
...

...
∂g1(λ)

∂λs
. . . ∂gp(λ)

∂λs




(
I(g(λ))

)



∂g1(λ)
∂λ1

. . . ∂gp(λ)
∂λ1

...
...

...
∂g1(λ)

∂λs
. . . ∂gp(λ)

∂λs




T

. (3.77)
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So,

I(µ, σ, σ
√
φ) =




1 0 0
0 1 −2λ2

3λ
−3
2

0 0 2λ3λ
−2
2






An

σ2 0 0
0 2n

σ2

Bn

σ

0 Bn

σ
En






1 0 0
0 1 −2λ2

3λ
−3
2

0 0 2λ3λ
−2
2




T

=




An

σ2 0 0

0 2n−4Bnφ+4Enφ2

σ2

2Bn
√

φ−4Enφ
3

2

σ2

0 2Bn
√

φ−4Enφ
3

2

σ2

4Enφ
σ2




.
=




1+Lφ/2
σ2 0 0

0 2Lφ+2
σ2

2L
√

φ
σ2

0 2L
√

φ
σ2

2(n+1)/φ−6L
σ2


 . (3.78)

Note that the information for estimating σ is bounded given σ
√
φ. It is different

from the situation of the information for σ given φ which, from formula (3.73), is

unbounded. The inverse of the new information matrix is

I−1(µ, σ, σ
√
φ) =




σ2

An
0 0

0 σ2En

2nEn−B2
n

σ2

2
√

φ
2Enφ−Bn

2nEn−B2
n

0 σ2

2
√

φ
2Enφ−Bn

2nEn−B2
n

σ2(n−2Bnφ+2Enφ2)
2φ(2nEn−B2

n)




.
=




σ2

1+Lφ/2
0 0

0 σ2

2(1+Lφ)
O( 1

n
)

0 O( 1
n
) O( 1

n
)


 (3.79)

which indicates that σ
√
φ can be estimated consistently.

For the OU model, in a general sampling setting, say, on [0, Ln] with Ln = Ln1−γ

and ∆n = L/nγ for γ ∈ (0, 1), Corrn(σ̂, φ̂)2 = 2(n−1)ρ2
n/(n+nρ2

n) which goes to 1 if

and only if ∆n → 0. So the bivariate distribution of (σ̂, φ̂) collapses to one dimension

under both infill and middle-ground asymptotics. In this regard, the approximation

Corr2
n
.
= 1 − φ∆n for small ∆n suggests potential problems for autoregressive time

series models when ∆n is small and adjacent correlation is high.
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Next,

nEn −B2
n = 2n(n− 1)

ρ2
n

(1 − ρ2
n)2

∆2
n{1 − ρ2

n + (2/n)ρ2
n}.

For ∆n → 0, nEn − B2
n
.
= n2φ−1∆n. Along with Bn

.
= n/φ and En

.
= n/(2φ2),

valid as good approximations as long as ∆n → 0, we obtain

I−1
n (σ, φ)

.
=

1

n∆n

(
σ2/(2φ) −σ
−σ 2φ

)
.

This means that for infill asymptotics, where n∆n is bounded away from zero and

infinity, neither σ nor φ can be estimated consistently.

3.7.3 Beyond OU

Abt and Welch (1998) studied the behavior of the information matrix under the

triangular, exponential, and Gaussian covariance functions. For a general covariance

function, closed form expressions for An, Bn, and En will not be available. By

simulation, Figures 3.6-3.9 reveal the behavior of the information quantities (see

formulas (3.64) and (3.65)) for several customary covariance functions, including the

power exponential, Matérn, Gaussian, and Cauchy.

Again, the challenge is to characterize exactly which parametric functions η(σ2,φ)

have the property of increasing information under infill. Here, we have the known

results using equivalence/orthogonality of Gaussian measures. For example, two

Gaussian measures P (0, Ci) (i = 1, 2) with Ci(s, t) = σ2
i exp(−φi|s− t|) (s, t ∈ [0, L])

are equivalent if and only σ1

√
φ1 = σ2

√
φ2 (Ibragimov and Rozanov, 1978, Chapter 3).

So in the exponential covariance function case, the new parameter σ
√
φ determines

the equivalence of the measures so it can be consistently estimated.
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Figure 3.6: Information for power exponential covariance model: σ2 exp(−|φh|0.5)
on [0, L], where (L, σ2, φ) = (1.3, 1.5, 10).
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Figure 3.7: Information for Matérn covariance model when ν = 1.5:
σ2(1 + φ|h|) exp(−φ|h|) on [0, L], where (L, σ2, φ) = (1.3, 1.5, 8).
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Figure 3.8: Information for Gaussian covariance model: σ2 exp{−(φh)2} on [0, L],
where (L, σ2, φ) = (1.3, 1.5, 100).

More generally, there are well established explicit conditions expressed in terms of

the spectral densities (indexed by same parameters as in the corresponding covariance

functions) for us to check equivalent Gaussian measures (see e.g. Yadrenko, 1983,

Chapter 3). From those results, we can see which reparametrization will make the

new parameters to be estimated consistently. One of the easy-to-verify conditions

is provided by Stein (2004) which is a modified version of Skorokhod and Yadrenko

(1973, Theorem 4).

Theorem 6 (Stein, 2004, Theorem A.1). P (0, K1) ≡ P (0, K2) on any bounded D ⊂
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Figure 3.9: Information for Cauchy covariance function: σ2/{1 + (φh)2} on [0, L],
where (L, σ2, φ) = (1.3, 1.5, 50).

R
d if for some finite c,

∫
|ω|>c

(f2(ω)−f1(ω)
f1(ω)

)2 < ∞ and f1(ω)|ω|α is bounded away from

0 and ∞ as |ω| → ∞ for some α > d, where fi is spectral density of Ki.

Using the above theorem, Zhang (2004) shows that for Matérn class

C(h; σ2, φ, ν) = σ2(αh)νκν(αh)/(Γ(ν)2ν−1),

two measures corresponding to (σ2
1, φ1, ν) and (σ2

2 , φ2, ν) are equivalent if and only if

σ1φ
ν
1 = σ2φ

ν
2.

As an ad hoc strategy, from the likelihood perspective, if some η(σ2,φ) can be

consistently estimated under infill, the MLE’s will be clustered around a contour of

some constant η. By simulation, we may attempt to deduce a functional form for

η(σ2,φ). Figure 3.10 provides an example to illustrate this idea. In this case, the

data are generated from a Gaussian process with an exponential covariance function.

For each simulation, we find the MLEs for the parameters and we find the functional
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form η = σ2φ0.96 which is close to the theoretical form σ2φ. A Matérn example is

shown in Figure 3.11 and we find η = σ2φ2.76, not too far from σ2φ3.

1 2 3 4

5
10

15
20

MLEs for exponential covariance model

σ̂
2

φ̂

Figure 3.10: MLEs for the exponential covariance model (C(h) = σ2 exp(−φ|h|) on
[0, L], where (L, σ2, φ) = (1.3, 1.5, 5)), with n=100. We fit a linear model of log(σ̂2)

on log(φ̂) and obtain the curve σ2φ0.96 = 6.95.

3.8 Middle-ground asymptotics

Here, we consider the three-parameter OU process with equidistance sampling on a

general interval [0, Ln], where Ln could be allowed to vary with n. Explicit formula

for the information matrix for (µ, σ, φ) enable investigation of the delicate balancing

between infill and expansion.

68



0 1 2 3 4 5 6 7

6
8

10
12

14
16

18

MLEs for Matern covariance model

σ̂
2

φ̂

Figure 3.11: MLEs for the Matérn covariance model with ν=1.5
(C(h) = σ2(1 + φ|h|) exp(−φ|h|) on [0, L], where (L, σ2, φ) = (1.3, 1.5, 8)), n=100.

We fit a linear model of log(σ̂2) on log(φ̂) and plot the curve σ2φ2.76 = 460.14.

3.8.1 Information formula

Our data are Y (Lni/n) for i = 1, . . . , n, giving a vector Y ∼ Nn(µ1, σ
2Rn) where

Rn has elements exp(−Lnφdi,j) = exp(−φLn|j − i|/n). The sampling distance and

basic neighbor correlation are now ∆n = Ln/n and ρ = exp(−φ∆n), i.e., data are

sampled with inter-distance di,j = |j − i|∆n. Our previous calculations of Section

3.7.2 (done for infill asymptotics) remain valid. Writing R0
n, A

0
n, B

0
n, E

0
n for the old

formula, valid for the constant interval Ln = L, as functions of φ, we now need to

work with the correlation matrix Rn = R0
n(Lnφ). This leads in particular to

R̄n,i,j = (∂/∂φ)R0
n,i,j(Lnφ) = LnR̄

0
n,i,j(Lnφ) = − exp(−φdi,j)di,j. (3.80)
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With care to detail we find

An = A0
n(Lnφ) = 1 + (n− 1)

1 − ρn

1 + ρn
= 1 + (n− 1)

1 − exp(−φLn/n)

1 + exp(−φLn/n)
, (3.81)

Bn = B0
n(Lnφ) = 2(n− 1)∆n

ρ2
n

1 − ρ2
n

= 2Ln
n− 1

n

exp(−2φLn/n)

1 − exp(−2φLn/n)
, (3.82)

En = E0
n(Lnφ) = (n− 1)∆2

nρ
2
n

1 + ρ2
n

(1 − ρ2
n)2

= (n− 1)
(Ln/n)2 exp(−2φLn/n){1 + exp(−2φLn/n)}

{1 − exp(−2φLn/n)}2
. (3.83)

3.8.2 Infill, expansion, and middle ground

Let us consider three different scenarios.

Case 1: Infill

Similar to our asymptotics above, assume that Ln is small compared to a growing n.

Then ρn
.
= 1 − φLn/n, leading to

An
.
= 1 + 1

2
Lnφ, Bn

.
= n/φ, En

.
= n/(2φ2),

and therefore to

In(σ, φ)
.
= n

(
2/σ2 1/(φσ)

1/(φσ) 1/(2φ2)

)

for the lower right block of the information matrix. This implies limited information

for µ and trouble for (σ, φ), since the matrix approaches singularity.

Case 2: Expansion

Assume Ln is proportional to n, say Ln/n = ∆n → d whence ρ = exp(−φd). Then

An
.
= n

1 − ρ

1 + ρ
, Bn

.
= 2n∆

ρ2

1 − ρ2
, En

.
= n∆2ρ2 1 + ρ2

(1 − ρ2)2
,

with consequent customary large-sample behavior for the information matrix. This

case places us in the domain of time series methodology. Here ML estimators are
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consistent and asymptotically normal, with variances

Var µ̂
.
=

1

n

1 + ρ

1 − ρ
,

Var σ̂
.
= 1

2

σ2

n

1 + ρ2

1 − ρ2
,

Var φ̂
.
=

1

n

1 − ρ2

∆2ρ2
.

Case 3: Middle ground

We consider a middle-ground scenario here.

(i) The information becomes unlimited for µ, i.e., it can be consistently estimated,

if and only if Ln → ∞. This is intuitive; we need an unlimited stretch on the time

axis to learn about µ consistently. The conclusion follows from the fact that

n{1 − exp(−φLn/n)} → ∞ if and only if Ln → ∞.

(ii) The estimator precision bounds for (unbiased) estimators of σ̂ and φ̂ are

Var σ̂ ≥ σ2

2n

En

En − B2
n/(2n)

and Var φ̂ ≥ 1

En − B2
n/(2n)

,

from results of Section 3.7.2. These are exact bounds, valid for any n. From previous

calculations, we find

En −B2
n/(2n) =

(n− 1)∆2
nρ

2
n

1 − ρ2
n

1 − ρ2
n + (2/n)ρ2

n

1 − ρ2
n

and

En

En − B2
n/(2n)

=
1 + ρ2

n

1 − ρ2
n + (2/n)ρ2

n

,

leading essentially to the precision bounds

Var σ̂ ≥ σ2

2n

1 + ρ2
n

1 − ρ2
n

and Var φ̂ ≥ 1 − ρ2
n

n∆2
nρ

2
n

. (3.84)
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To formalize our notion of middle-ground asymptotics, let ∆n = Ln/n = L/
√
n so

that Ln = L
√
n. Then the bounds say

Var σ̂ ≥ 1√
n

σ2

2φL
[1 +O(1/

√
n)] and Var φ̂ ≥ 1√

n

2φ

L
[1 +O(1/

√
n)]. (3.85)

We shall show that the ML estimators are consistent, under the ∆ = L/
√
n

sampling plan, and achieve these bounds. We do expect

n1/4(µ̂− µ) →d N(0, 2σ2/(φL)),

n1/4(φ̂− φ) →d N(0, 2φ/L),

n1/4(σ̂ − σ) →d N(0, σ2/(2φL)). (3.86)

There would also be limiting binormality here, in fact

n1/4

(
σ̂ − σ

φ̂− φ

)
→d N2

(
0,

1

L

(
σ2/(2φ) −σ
−σ 2φ

))
. (3.87)

Furthermore, σ̂φ̂1/2 is
√
n consistent and

σ̂φ̂1/2 − σφ1/2 →d N(0, σ2φ/(2L)). (3.88)

Figure 3.12 gives credence to (3.86), (3.87), and (3.88). The bottom right plot

displays 500 simulated version of (σ̂, φ̂) for the OU case, in a situation where (σ, φ) =

(1, 1), ∆n = 1/
√
n, and n=4000. The observed scaled standard deviations n1/4sd(σ̂),

n1/4sd(φ̂), and n1/4corr(σ̂, φ̂) are (0.671, 1.414, -0.977), agreeing well with the the-

oretical middle-ground asymptotics values (0.707, 1.414, -1). n1/2sd(σ̂φ̂1/2) = 0.736

also agrees with the theoretical value 0.707 (see Table 3.1 for the simulation results

for n=100, 500, 1000, 4000).
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Figure 3.12: MLEs of (σ, φ) from simulation runs. The true exponential model
parameters (σ, φ) = (1, 1) with Ln =

√
n and ∆ = 1/

√
n and n = 100, 500, 1000, 4000.

Table 3.1: Simulation results for the middle-ground exponential model.

n n1/4sd(σ̂) n1/4sd(φ̂) n1/4corr(σ̂, φ̂) n1/2sd(σ̂φ̂1/2)

100 0.645 1.791 -0.842 0.766
500 0.699 1.588 -0.923 0.730
1000 0.710 1.570 0.949 0.706
4000 0.671 1.414 -0.977 0.736

asy. val. 0.707 1.414 -1 0.707
(σ, φ) = (1, 1), Ln =

√
n, and ∆n = 1/

√
n

Remark 7. The ML estimators are defined (and computed) as follows, for a fixed

sampling window size ∆, e.g. ∆ = L/
√
n in what could be our favourite example.

Let

σ̂(φ) = {yTRn(φ)−1y/n}1/2.

Then φ̂ is the minimiser of

Qn(φ) = log σ̂(φ) + 1
2
(1 − 1/n) log{1 − exp(−2φ∆)},
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and σ̂ = σ̂(φ̂). This is easy to implement. Note also that

yTR−1
n y = y2

1 +
n∑

i=2

(yi − ρyi−1)
2

1 − ρ2
,

where ρ = exp(−φ∆).

Our challenge is now to prove that (σ̂, φ̂) is consistent and asymptotically normal,

as envisaged above. Perhaps the log-likelihood ℓn(σ, φ) will more and more tend to

exhibit a ridge at the maximum. The correlation between the two estimators seems

to converge to −1.

We have stumbled upon a situation that resembles the following constructed ex-

ample, which could be helpful for both intuition and proofs: one observes i.i.d. pairs

(
Xi

Yi

)
∼ N2

((
a
b

)
,

(
1 −ρn

−ρn 1

))
,

where ρn = 1 − L/
√
n is on its way to 1, and taken as known in this construction.

To match this situation even more closely to some of the problems examined in this

section, one could assume that one observes
√
n such pairs. Then,

n1/4

(
â− a

b̂− b

)
→d N2

(
0,

(
1 −1
−1 1

))
.

The log-likelihood surface would have a strongly visible ridge where a + b = x̄ + ȳ,

and the particular parameter a + b is estimable with much better precision, namely

O(1/n) variance, than all other parameters.

Remark 8. We have focussed here on ∆ = L/
√
n as middle ground, partly for

pedagogical reasons, but there is really a full bridge here, spanned by ∆ = L/nγ, for

γ ∈ (0, 1), where γ = 0 is time series (classic expanding domain) and γ = 1 is infill.
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Remark 9. Everyone does time series with AR and ARMA etc., but there is no

reason not to use the Matérn class for correlation. As ∆ is fixed positive, in principle

both φ and ν may be estimated well from the data, along with (µ, σ).

Remark 10. One could also indicate that the n1/4 middle ground phenomenon would

hold for slowly expanding circles in dimension two.

Remark 11. We have of course been generously helped in our analysis of the OU

process by the fully explicit expressions for the information matrix. We may spec-

ulate that the same type of phenomena take place also for the full Matérn class of

correlation functions, i.e. not only for ν = 1
2
. This might be harder to prove mathe-

matically, but we could ‘inspect’ and verify, if required, from computing the required

An, Bn, En numerically (see Figure 3.7).

We simply anticipate that the n1/4 asymptotics result (3.86) must be true, based

on the information calculus and simulation study. The part relating to n1/4(µ̂ − µ)

is easy, coming from normality etc.; the challenge is to prove n1/4 results for (σ̂, φ̂),

under Ln = L
√
n, or ∆ = L/

√
n, circumstances. If we succeed in really proving

this, it would presumably not be more difficult to reach results for the full bridge,

stretching from infill to time series, where the sampling range is Ln = Ln1−γ and the

sampling distance is ∆ = L/nγ .

Under the ∆ = L/
√
n assumption, let us start with the log-likelihood function

ℓn(σ, φ) = −n log σ − 1
2
(n− 1) log(1 − ρ2) − 1

2

1

σ2
Qn(ρ),

where

Qn(ρ) =
y2

1 +
∑n

i=2(yi − ρyi−1)
2

1 − ρ2
.

Here ρ = exp(−φL/√n) tends slowly to 1 as n grows. Our first exercise is to derive

the limit of n−1ℓn(σ, φ), under the assumption of a true model with (σ0, φ0). Note
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that yi − ρyi−1 has mean zero and variance

σ2
0(1 + ρ2 − 2ρ0ρ) = σ2

0

[
1 + exp(−2φc/

√
n) − 2 exp{−(φ+ φ0)/

√
n}
] .

= σ2
02φ0L/

√
n,

and, in view of the denominator 1 − ρ2 .
= 2φL/

√
n, we have

Qn(ρ)/n→p σ
2
0φ0/φ.

Furthermore,

log(1 − ρ2)
.
= log(2φL/

√
n) = log φ+ const..

Ignoring terms that do not depend on the parameters, therefore,

n−1ℓn(σ, φ) →p − log σ − 1
2
log φ− 1

2

σ2
0φ0

σ2φ
= − log η − 1

2

η2
0

η2
,

in terms of

η0 = σ0

√
φ0 and η = σ

√
φ.

We anticipate two things from this result. (i) The limit function is uniquely max-

imised for η = η0, so when maximising the likelihood, η̂ = σ̂φ̂1/2 should converge to

the maximiser of the limit, i.e. η; (ii) we cannot estimate σ and φ well, only their

inferred parameter η. As (3.86) claims (and that we wish to prove rigorously), not

all hope is lost for (σ, φ), but in the large-sample limit η is rather more advantaged

(MLE for η is
√
n consistent). Also, we expect from the above that the log-likelihood

surface will tend to exhibit a strong ridge where σρ1/2 .
= η̂.

It appears necessary to prove three things now. The first is that n1/4(φ̂− φ) has

a limit distribution, where φ̂ maximises the profile

πn(φ) = max{ℓn(σ, φ) : σ > 0} = −n log σ̂(φ) − 1
2
(n− 1) log{1 − ρ(φ)2} − 1

2
n,

where

σ̂(φ) = {Qn(ρ(φ))/n}1/2.
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The second would be to prove the corresponding result for σ̂; the profile for σ is a

bit more cumbersome to work with, though. And the third is that
√
n(η̂− η) should

have a normal limit, a precision order of magnitude better than for the two other

parameters. This would be a proper generalisation and strengthening of the results

of Ying (1991) and Zhang (2004); they work only with infill, whereas here we think

we can reach a
√
n-result valid also with middle-ground asymptotics.

Remark 12. Assume we manage to prove the simultaneous limit distribution results

anticipated just after (3.86). Then, for any smooth parameter λ = h(σ, φ), n1/4(λ̂−λ)

has a limit distribution, with variance equal to

{(∂h
∂σ

)2 σ2

2φ
+
(∂h
∂φ

)2

2φ− 2
∂h

∂σ

∂h

∂φ
σ
} 1

L
.

But this is equal to zero for λ = σφ1/2, and, only for functions of this η parameter.

All other estimands need to be satisfied with n1/4 convergence, whereas η can brag of

n1/2. Equivalent measure results can explain why only h(σ, φ) = g(σφ1/2) functions

have this property.

Remark 13. The point of asymptotics is to provide good approximations for finite n.

What we could do, presumably, in order to compare infill methods, expansion meth-

ods, and middle-ground methods, is to reach mathematical results for the scenario

with ∆ = L/nγ , and then phrase approximations based on the limit distributions in

terms of ∆. Then for actual applications one inserts the ∆, the range of sites divided

by sample size.

3.9 Including a nugget

For a model including a nugget component, i.e., Y (s) = µ(s) + W (s) + ǫ(s), where

ǫ(s) ∼ N(0, τ 2), what can we conclude with regard to asymptotic behavior? The
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following theorem indicates that, under infill asymptotics, the parameter τ 2 can be

consistently estimated with the usual rate of convergence and the results for the

covariance parameters remain same as in Section 3.6-3.8.

Theorem 7 (Stein, 1999, p.122–123). P (µ1, C1 + τ2
1 I) ≡ P (µ2, C2 + τ2

2 I) if and only if

τ2
1 = τ2

2 and P (µ1, C1) ≡ P (µ2, C2).

For information regarding the mean parameter, one would expect that 1T (σ2Rn +

τ 2In)−11 < 1T (σ2Rn)−11. The intuitive explanation is that the information for mean

parameter µ will decrease if there is some extra noise (e.g. measurement error) in

the model. In fact, it is true in general and can be proved easily. If 1T (σ2Rn)−11 is

bounded and convergent, then 1T (σ2Rn + τ 2In)−11 must be bounded.

Lemma 1. 1T (σ2Rn)−11 > 1T (σ2Rn + τ 2In)−11 for each n and for all valid covari-

ance functions.

Proof. It is sufficient to show 1T (aRn)−11 > 1T (aRn + In)−11 for a positive number

a. Since Rn is an n × n positive definite matrix, it has a spectral decomposition

form Rn = UnΛnU
T
n , where UnU

T
n = In and Λn = diag(λ1, ..., λn), λi > 0. Note

(aRn + In)−1 = Un(aΛn + In)−1UT
n . So

1T (aRn)−11 − 1T (aRn + In)−11 = 1TUn[(aΛn)−1 − (aΛn + In)−1]UT
n 1

=
1

a2
1TUndiag(

1

λ2
1 + λ1/a

, ...,
1

λ2
n + λn/a

)UT
n 1 > 0

Chen, Simpson and Ying (2000) address infill asymptotics for a one-dimensional

OU process with a nugget term. They show that if φ is known, then

τ̂ 2 → τ 2
0 a.s. but σ̂2 → σ2

0 in probability,
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where τ̂ 2 and σ̂2 are MLEs and τ 2
0 and σ2

0 are true values. Furthermore,

(
n1/4(σ̂2 − σ2

0)
n1/2(τ̂ 2 − τ 2

0 )

)
→d N2

((
0
0

)
,

(
4
√

2τ0φ
−1/2σ3

0 0
0 2τ 4

0

))
.

If φ is unknown, then

τ̂ 2 → τ 2
0 a.s. and φ̂σ̂2 → φ0σ

2
0 in probability,

where φ̂ is the MLE for φ and φ0 is the true value. And

(
n1/4(φ̂σ̂2 − φ0σ

2
0)

n1/2(τ̂ 2 − τ 2
0 )

)
→d N2

((
0
0

)
,

(
4
√

2τ0(φσ
2
0)

3/2 0
0 2τ 4

0

))
.

3.10 Prediction

So far we focused on the estimation problem. In other words, we wish to learn how

well we can estimate the model parameters. In various geostatistical applications,

the primary goal might be prediction and interpolation, rather than super-accurate

estimation of the model parameters. Stein (1999) provides a mathematical treatment

for the prediction (kriging) problem when the covariance structure of the random

process is unknown. The basic message regarding prediction from Stein’s book is

that even if we do not mange to estimate the model parameters well, or even if we

estimate the covariance structure non-negligibly wrong, it is possible to have nearly

optimal linear predictors. The underlying mathematical reason is related to the

equivalent measure ideas we discuss in Section 3.3. If a large amount of data cannot

help us distinguish two measures with high probability, then the prediction based on

these two measures won’t differ much.

In fact, there is a more general statement about the principles of prediction or

forecasting. Dawid (1984, p.285) says “things we shall never find much out about
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cannot be very important for prediction” and he calls it Jeffreys’s law based on a

similar statement by Jeffreys (1938, p.718). See Stein (1999, p.140–143) for more

discussion.

3.11 Discussion

In this chapter, we discussed various topics, including information, consistency, and

asymptotic normality for spatial models under three asymptotics settings. We pro-

vided many new results; however, we are still unable to give a general theory for the

questions we would like to answer. In the future, we shall prove limiting normality

of estimators for the Matérn model under infill and middle-ground asymptotics. We

shall prove similar asymptotic results for the generalized linear spatial model, i.e. Y

in the first stage is non-Gaussian. We shall also study the asymptotic properties of

the spatial predictive distributions.
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Chapter 4

Analysis for Large Spatial Datasets

4.1 Introduction

As we have discussed in Chapter 1, for spatial data analysis exercises, we usually

build hierarchical models with spatial structure described though random effects us-

ing Gaussian processes. If the sample size n is very large, exact likelihood based

inference becomes unstable and, eventually, infeasible since it involves computing

the inverse and determinant of a large covariance matrix (the computation cost of

matrix inversion and determinant is O(n3)). If we wish to fit a Bayesian model,

implementing a suitable MCMC algorithm, the large matrix will make repeated cal-

culations impractical. In this chapter, we review a number of strategies for handling

large spatial datasets. We propose a finite sum process approximation model which

is conceptually simple and routine to implement. Simulated and real data examples

are provided to illustrate the method.

For a point-referenced dataset, a random surface is assumed over a region D in

R
2. More specifically, observation Y (si) at location si ∈ D for i = 1, ..., n, is assumed

to have an additive structure

Y (si) = µ(si) +W (si) + ǫ(si), (4.1)
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where µ(s) is a mean function; W (s) is a mean zero Gaussian process; and ǫ(s) is

white noise process with variance τ 2.

As the number of observations n grows large, evaluation of the likelihood will

become very slow and, eventually, impractical. Likelihood calculation requires evalu-

ating quadratic forms involving the inverse of covariance matrix of size n× n as well

as the determinant of that matrix. If we wish to fit a Bayesian model, we will need

to implement an MCMC algorithm that will include a Metropolis-Hastings step to

update the parameters in the covariance function. In turn, this will require repeated

likelihood evaluation both within and across iterations.

We refer to this computational difficulty informally as the “large n problem” in

spatial data analysis. Banerjee, Carlin and Gelfand (2004) summarize several possible

approaches to the “large n problem”.

• Subsampling strategy

As indicated by its name, one could take a subset of size n0 from the n sampled

locations, resulting in a computationally tractable sample size. For independent

data, usually the variances of the maximum likelihood estimators decrease at

a rate of
√
n. But because of the dependence in spatial data, the convergence

rate could be much slower than
√
n (see Chapter 3). Intuitively, adding a

new observation very close to an existing observation only helps to estimate

the noise term τ 2 and gains little information in terms of learning the spatial

structure. So if the spatial correlation is strong and noise is weak, one would

hope that it will not lose much information by ignoring some of the available

data. For subsampling method, we need to determine the subsample size n0

and the subsampling locations. Usually we choose the value of n0 as large as

the computation power allows. For a fixed n0, we wish to select an optimal set

of n0 locations from a total n locations. This is not an easy task when n is
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large. In Chapter 5, we address this optimal spatial design problem in detail.

• Likelihood approximation

The second method is to approximate the likelihoods following Vecchia’s (1988)

idea and reduce the size of the covariance matrix. Stein et al. (2004) develop

this likelihood approximation in more detail. The basic idea is to approximate

the likelihood based on the fact that any joint density can be written as a prod-

uct of conditional densities. Specifically, suppose that Y = (Y (s1), ..., Y (sn))T

has joint density f(y; θ), where y = (y(s1), ..., y(sn))
T and θ is a vector of

parameters. Then we can write

f(y; θ) = f(y(s1))

n∏

i=2

f{y(si)|y(s1), ..., y(si−1)}. (4.2)

Next, we approximate f{y(si)|y(s1), ..., y(si−1)} by f{y(si)|∂si}, where ∂si de-

fines a set of “neighborhood” observations of si among {y(s1), ..., y(si−1)}. For

instance, ∂si might be the min(m, i−1) nearest observations to si in Euclidean

distance for a fixed integer m ≪ n (≪ means much smaller). By this approx-

imation, the evaluation of the likelihood involves at most ‘n’ m×m matrices,

instead of a single n×n matrix. The performance of this likelihood approxima-

tion depends on the value of m and the ordering of the observations. The large

value of m helps increase the accuracy of likelihood approximation but makes

likelihood computation less efficient. Vecchia (1988) studies the ordering effect

and finds this effect to be small in his examples.

More generally, if we partition Y into subvectors {Y1, ...,Yp} (Yi may have dif-

ferent length), we can write the joint density f(y; θ) as a product of conditional

densities of these subvectors. That is, f(y; θ) = f(y1)
∏p

i=2 f(yi|y1, ...,yi−1).

Then we can approximate each conditional density f(yi|y1, ...,yi−1) in a similar

way as above.
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It is a challenging task to determine a right value of m and define the optimal

“neighborhood” (neighborhood need not mean nearest points; it may be useful

to include some distant observations in the neighborhood). See Stein et al.

(2004) for more details.

• Spectral methods

Another approach is to use spectral methods to approximate the likelihood.

The basic idea is to work in the spectral domain, develop a periodogram, and

then utilize the Whittle likelihood (Whittle, 1954). The Whittle likelihood in

the spectral domain is an approximation to the exact likelihood in the spatial

domain. The word “periodogram” was coined by Arthur Schuster in 1898 and

is a nonparametric estimator of the spectral density of a random field. Suppose

we observe the process W (s) in a regular two-dimensional n1 × n2 grid so the

sample size is n = n1n2. Periodogram at frequency ω is defined as follows

(Priestley, 1981, Chapter 6):

In(ω) = (2π)−2n−1|
n1∑

s1=1

n2∑

s2=1

W (s)e−isT ω|2, (4.3)

where s = (s1, s2). In(ω) is an asymptotically unbiased estimator of the spectral

density f(ω) of W . Although In(ω) is defined for all ω but we are able to

evaluate it numerically only at a discrete set of frequencies. In particular, this

set of frequencies is 2πm/n, where m/n = (m1/n1, m2/n2), (m1, m2) ∈ Bn and

Bn = {−⌊n1 − 1⌋, ..., n1 − ⌊n1/2⌋} × {−⌊n2 − 1⌋, ..., n2 − ⌊n1/2⌋} (⌊x⌋ means

the greatest integer less than or equal to the real number x). The Gaussian

negative log likelihood can be approximated by (Whittle, 1954)

∑

m∈Bn

{log f(2πm/n) + In(2πm/n)f−1(2πm/n)}. (4.4)
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The calculation of (4.4) is rapid by using the fast Fourier transform and we

can make inference based on this approximated likelihood (e.g. we can find

the maximum likelihood estimators of the model parameters θ.) This approach

must be used with caution. The performance of Whittle likelihood is unclear.

• Gaussian Markov random field methods

Gaussian Markov random fields (GMRF) are often used to model areal unit

data and lattice data. In particular, simultaneously autoregressive (SAR) and

conditionally autoregressive (CAR) models are two very popular GMRF models.

For a point-referenced dataset, we can use inverse distance to create a proximity

matrix for the observations at a finite set of locations. The joint distribution

is determined through its full conditional distributions (by Brook’s Lemma)

and the inverse matrix emerges explicitly (Besag, 1974). Note that there is no

notion of a spatial process if we work with a Gaussian Markov random field.

In other words, we can not specify the finite-dimensional distribution for an

arbitrary set of locations in the study region.

It is possible to use a Markov random field to approximate a Gaussian process.

One can choose a Markov random field which has joint density “close” to the

joint density of Y . However, the approximation is not transparent and requires

extrapolation to a regular grid (see e.g. Rue and Tjelmeland, 2002).

• Covariance tapering

Furrer et al. (2005) propose using a covariance tapering to produce a sparse

covariance matrix. The idea is to truncate the covariance function to zero

with a certain range using an appropriate compactly supported positive definite

function. They use a conjugate gradient algorithm to speed up calculation.

We shall first propose what we call “multilevel process model”. Suppose we partition

the study regionD intom subregions, denoted asDj , j = 1, ..., m. There are nj points
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in subregion j so that n =
∑m

j=1 nj. We assume the spatial process on each subregion

to be stationary. We assign random effects γs∗j
= (γ(s∗j,1), γ(s

∗
j,2), ..., γ(s

∗
j,p))

T for the

jth subregion, where s∗j = (s∗j,1, ..., s
∗
j,p) is a set of “representative” points for subregion

j and p is a small integer numer. Conditioning on the random effects, Y (si) and Y (sj)

are assumed to be independent, given si lies in subregion i and sj is in subregion j.

The random effects γs∗j
itself follows a spatial process that can be envisioned as a

hyper process. We build a multilevel spatial model as follows:

Y (s) = XT (s)β +Wj(s) + hT (s, s∗j)γ(s∗j ) + ǫ(s), (4.5)

where s ∈ Dj; Wj(s) is a Gaussian process on Dj ; h(s, s
∗
j ) is a vector which relates

s with s∗j (its lth element may take the form exp(−φ|s − s∗l |)); and γ(s∗) is a hyper

Gaussian process.

The above model can be viewed as the following hierarchical model:

Stage 1: Y (s)|β,Wj(s), τ
2,γs∗j

∼ N(XT (s)β +Wj(s) + hT (s, s∗j)γ(s∗j), τ
2), (4.6)

Stage 2: Wj(s)|σ2,φ ∼ Nnj
(0, σ2Rnj

(φ)), (4.7)

γ(s∗)|σ2,φ ∼ Npm(0, σ2Rpm(φ)). (4.8)

The covariance matrix of the vector W = (W (s1), ...,W (sn)) is

KW =




(σ2Rn1
(φ)) · · · 0

0
. . . 0

0 · · · (σ2Rnm(φ))


 + σ2HRpm(φ)HT , (4.9)

where H = (h(s1, ·), ..., h(sn, ·))T (h(s1, ·) = h(s1, s
∗
j) if s1 ∈ Dj).

It is natural to fit the multilevel process model (4.5) in a Bayesian framework and

the model implementation is straightforward. The computation is fast if the values

of max{nj}, m, and p are not large. This model may be flexible enough in terms of

fitting the data. The W process associated with the model is nonstationary. The
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multilevel process model cannot approximate a desired stationary model. In other

words, it is easy to see from (4.9) that the resulting covariance matrix KW cannot

approximate the covariance matrix of a stationary process. We do not pursue this

model further here.

In this chapter, our focus is to investigate the performance of an attack on the

“large n problem” using a finite sum process approximation model. More specifically,

a spatial random process can be approximately described as a linear combination of,

say, m random variables. Thus, no matter how large n is, we only need to handle

an m × m matrix. We propose three methods to approximate the spatial process,

namely, i) approximation based on the kernel mixing representation of the process;

ii) approximation based on the projection ideas; and iii) approximation based on

Karhunen-Loève expansion.

The kernel mixing approximation has a similar looking form as in Higdon et al.

(1998) but with a perspective different from ours. They seek a flexible modeling

approach, confined to Gaussian kernels, with focus on achieving certain association

structure while we propose a process approximation tool with focus on approximating

a desired stationary model. Furthermore, we clarify the theoretical justification for

the use of the approximation. We formalize the mechanics of the approximation for

various classes of covariance functions.

After approximating the spatial process using a finite sum (no matter which

method you choose to develop the approximation), we implement the approximate

model in a Bayesian framework. We illustrate our method though several examples.

4.2 Theoretical preliminaries

In order to develop the approximate model, we first recall Karhunen’s theorem on the

generalized orthogonal representation of random functions (Yaglom, 1987, Section 26)
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which asserts that a random functionW (s) is representable asW (s) =
∫

A
ψ(s, t)Z(dt)

where A is a given measurable set, ψ is a complex valued function of two arguments

and Z(·) is an orthogonal random measure on A (see below).

4.2.1 Representations for stationary process

In the case of a stationary process several representations are available. These include

the spectral representation, kernel mixing (moving average) representation, and the

Karhunen-Loève expansion representation.

Spectral representation

The spectral representation theorem asserts that for every stationary process W (s)

on R
d with mean 0 and finite variance there can be assigned a random measure

Z(dω) with orthogonal increments such that for each s we have the representation

(see Section 2.1.4):

W (s) =

∫

Rd

eiωT sZ(dω). (4.10)

Orthogonal increments of Z imply that for disjoint measurable sets A and B: (i)

E(Z(A)) = 0, (ii) E(Z(A)Z(B)) = 0, (iii) Z(A ∪ B) = Z(A) + Z(B). If we define

E|Z(A)|2 = ν(A) where ν(·) is a σ-finite measure, this representation produces a

spectral representation for the covariance function C(h) associated with W (s):

C(h) =

∫

Rd

eiωT hν(dω). (4.11)

If we abandon the orthogonality for the random measure Z(·), we can obtain a

nonstationary process.

Kernel mixing representation

An alternative representation for a large class of mean 0 stationary process on R
d
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takes the form:

W (s) =

∫

Rd

k(s− t)Z(dt), (4.12)

where Z(·) is an orthogonal random measure and k(·) is a non-random kernel function.

It is straightforward to show that (4.12) produces a stationary random process (see

Section 4.2.2 for details). However, not all stationary random process can be written

using kernel mixing (again, see examples in Section 4.2.2).

Karhunen-Loève expansion representation

For a random process W (s) defined on some compact set D ∈ R
d with covariance

function C(s, t) for s, t ∈ D, under certain conditions for C(·, ·), the Karhunen-Loève

expansion decomposes W (s) into a countable orthogonal series,

W (s) =
∞∑

i=1

√
λiφi(s)Zi, (4.13)

where λi are the eigenvalues for the process, φi(s) are orthonormal eigenfunctions

associated with λi, and

Zi =
1√
λi

∫

D

W (s)φi(s) ds. (4.14)

We solve

∫

D

C(s, t)φi(t) dt = λiφi(s) and

∫

D

φi(s)φj(s) ds = δij , (4.15)

where δij = 1 if i = j and δij = 0 otherwise, to obtain λi and φi(s). The covariance

function has the representation

C(s, t) =

∞∑

i=1

λiφi(s)φi(t). (4.16)
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The Karhunen-Loève expansion can produce both stationary and nonstationary pro-

cesses and offers the possibility of an approximation when a process can not be

represented using kernel mixing.

4.2.2 Kernel mixing in detail

Here, we elaborate some of the details involved in kernel mixing with a random

measure. Let (X,F , ν) be a σ-finite measure space and (Ω,B,P) be a probability

space. Define

W (s) =

∫

X

k(s− t)Z(dt), (4.17)

where k(·) is a non-random function in L2(X,F , ν) ≡ L2
ν , the space of square in-

tegrable functions defined on (X,F , ν). Z(dt) is a random orthogonal measure as

defined below (4.10).

Consider the stochastic integral Z[f ] =
∫

X
f(t)Z(dt), where we think of Z[f ]

as a mapping from a function f ∈ L2
ν to a random variable in L2(Ω,B,P) ≡ L2

P
,

the space of random variables with finite second moment. We define this stochastic

integral in the usual fashion, building from simple functions. For a simple function

f(t) =
∑n

i=1 ai1Ai
(t), where A1, ..., An are measurable and disjoint, we define Z[f ] =

∑n
i=1 aiZ(Ai). Then E(Z[f ]) = 0 and Var(Z[f ]) =

∑n
i=1 a

2
i ν(Ai). Omitting details

(see, e.g. Gikhman and Skorokhod, 1974), since the class of simple functions is dense

in L2
ν , for each f ∈ L2

ν , there exists a sequence of simple function {fn} such that

‖fn − f‖L2
ν
→ 0. Thus we can define Z[f ] as a mean square limit of Z[fn]. This limit

exists and is independent of the sequence {fn}. It also follows that E(Z[f ]Z[g]) =
∫

X
f(t)g(t)ν(dt) for all f, g ∈ L2

ν .

Under this definition, suppose that we specify Z(A) to be a Gaussian measure by

assuming Z(A) ∼ N(0, ν(A)), where N(a, b) is the normal distribution with mean a,
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variance b. For the measure space (R2,F , ν), we can see that W (s) ≡ Z[k(s− ·)] =
∫

R2 k(s − t)Z(dt) defines a Gaussian random variable for each s since the L2 limit

of Gaussian random variables is also Gaussian. In fact, the collection of W (s) is a

Gaussian field because its finite dimensional distributions are multivariate normal.

For completeness, a direct proof is given in Lemma B.1 of the Appendix. Moreover,

it is easy to show that W (s) is stationary with covariance function

C(h) =

∫

R2

k(h+ s)k(r)ν(ds) =

∫

R2

k(u− h)k(u)ν(du). (4.18)

Define the Fourier transform with respect to measure ν (we assume ν is well

behaved to ensure the existence of the integral) as f̂(ω) =
∫

R2 e
iωT xf(x)ν(dx). Under

usual regularity conditions, we have

Ĉ(ω) =

∫

R2

[ ∫

R2

eiωT hk(u− h)ν(dh)
]
k(u)ν(du)

= k̂(−ω)

∫

R2

eiωT uk(u)ν(du)

= k̂(ω)k̂(ω) = |k̂(ω)|2. (4.19)

The essence of our kernel approximation approach below is based upon the fact

that, using (4.18) and (4.19), for certain covariance functions C(·), we can obtain an

associated kernel k(·) that produces C(·). Assume ν(dt) = dt, i.e., Lebesgue measure,

and k̂(ω) =
∫

R2 e
iωT uk(−u)du =

∫
R2 e

iωT uk(u) du = k̂(ω) for each ω (if and only if

k(u) = k(−u)). We have

Ĉ(ω) = k̂(ω)k̂(ω) = k̂2(ω), (4.20)

which implies that

k(u) = (2π)−2

∫

R2

e−iωT u

√
Ĉ(ω) dω. (4.21)
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Remark 14. Though our primary interest is in R
2, all the above discussion can

be easily generalized to the R
d case. For example, in R

d, (4.21) becomes k(u) =

(2π)−d
∫
e−iωT u

√
Ĉ(ω) dω.

Remark 15. A rich class of stationary processes can be defined in the kernel mixing

form of (4.17). Specifically, if a stationary random process can be represented by

a kernel mixing form, then this process has a spectral density Ĉ(ω) = |k̂(ω)|2. On

the other hand, suppose a process has a spectral density Ĉ(ω) and letting k̂(ω) be

any function satisfying |k̂(ω)|2 = Ĉ(ω). If k̂(ω) is in L1, then the inverse Fourier

transform of k̂(ω) exists hence the process has a kernel mixing form representation

(see e.g. Yaglom, 1987, Section 26).

Note that if k(u) depends only on ‖u‖, where ‖·‖ indicates the Euclidean distance,

then the covariance function is isotropic and there is a one-to-one relationship between

C(·) and k(·). In general, formula (4.19) shows that C(·) does not uniquely determine

k(·), but it is possible to seek a k(·) which satisfies equation (4.19) as the following

examples illustrate.

Example 1: Gaussian covariance function on R
2: C(h) = σ2e−‖h‖2/τ2

. It is easy to

calculate Ĉ(ω) = σ2πτ 2e−τ2ωT ω/4. Then k(u) = 2σπ−1/2τ−1e−2‖u‖2/τ2

.

Example 2: Matérn covariance function on R
d:

Cφ,α,ν(h) =
πd/2φ

2ν−1Γ(ν + d/2)α2ν
(α‖h‖)νκν(α‖h‖), (4.22)

where α is correlation decay parameter, ν is the smoothness parameter, φ is the

variance parameter, i.e., the process variance σ2 = πd/2Γ(ν)φ
Γ(ν+d/2)α2ν , and κν is the modified

Bessel function of the second kind of order ν. The Fourier transform of the Matérn
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covariance function is given by, e.g., Stein (1999, p.31),

Ĉφ,α,ν(ω) = (2π)dφ(α2 + ‖ω‖2)−ν−d/2. (4.23)

Thus,

k̂φ,α,ν(ω) = (2π)
d
2φ1/2(α2 + ‖ω‖2)−ν/2−d/4. (4.24)

Hence

kφ,α,ν(u) = (2π)−
d
2Cφ1/2,α,ν/2−d/4(u), (4.25)

with the restriction ν > d/2. So, when d = 2 we must have ν > 1. We can not apply

our kernel solving approach to covariance function that are less than mean square

differentiable (see Stein, 1999, Banerjee and Gelfand, 2003). In particular, we can

not handle the familiar exponential covariance function.

Example 3: Suppose C∗(·) is a covariance function associated with geometric anisotropy,

i.e., C∗(h) = C(hTBh) where B is positive definite and C(·) is a valid isotropic co-

variance function in R
d. Then straightforward calculation shows that the associated

kernel, k∗(u), takes the form k∗(u) = k(B
1

2u), where k(·) is the kernel associated

with C(·).

Example 4: If C(·) is a valid covariance function in R
d, then convolution of C(·)

with itself produces a valid covariance function in R
d. That is, C ⋆C(h) =

∫
Rd C(h−

u)C(u) du is valid (see, e.g., Majumdar and Gelfand, 2005). But then, following

(4.18), immediately we can associate C ⋆ C(h) with the process W (s) =
∫

Rd C(s −

t)Z(dt), i.e., k(u) = C(u).

Example 5: An example in which a stationary Gaussian random process cannot be

written as a kernel mixing form can be constructed as follows (R. Wolpert, personal
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communication). In R
1, let Z1, Z2

i.i.d.∼ N(0, 1) and set X(t) = Z1 cos(t)+Z2 sin(t). It

is easy to see that E{X(t)} = 0 and Cov{X(t1), X(t2)} = cos(t1 − t2). So X(t) is a

stationary Gaussian process. But C(h) = cos(h) =
∫∞
−∞ eiωh 1

2
[δ(ω−1)+ δ(ω+1)] dω.

So its spectral density is a dirac delta function and it does not have a square root.

Thus it does not admit a kernel mixing representation.

4.3 Finite sum approximation

The basic idea behind our approach is to approximate the spatial process W (s) using

a linear combination of a set of random variables {Z1, ..., Zm}. The generic form of

approximating the vector W = (W (s1), ...,W (sn))
T is

W̃ = GZ, (4.26)

where Z = (Z1, ..., Zm)T and G is an n × m matrix (the form of G will become

apparent later). We consider three ways of constructing G and Z, namely, i) kernel

mixing approximation; ii) projection process approximation; and iii) Karhunen-Loève

approximation.

4.3.1 Kernel mixing process approximation

The two subsections here explicitly detail the finite sum kernel mixing process ap-

proximation as well as approaches to assess its accuracy.

In practice, once we have associated k(·) with C(·), we introduce a two-step ap-

proximation to work with the process W (s) =
∫

R2 k(s − t)Z(dt). We restrict the

integration to a bounded region Dr and replace the integral by a finite sum. We

look at the details a bit more closely. In particular, we consider m grid locations

(“knots”) {trj, j = 1, ..., m}, regardless of the number of sampled locations s1, ..., sn.

As shown in the rest of the chapter, random effects at a relatively small number of

94



those grid locations will capture most of the variation and association structure of

the process W (s). Let Dr be a square region (i.e. [a, b]× [a, b] for a, b ∈ R) in R
2 and

D1 ⊂ D2... ⊂ Dr ⊂ ... → R
2 as r → ∞. Let Brj, j = 1, ..., m be an equally spaced

partition of Dr, i.e., each is a square with edge length
√

|Dr|
m

, where |Dr| is the area

of Dr. We proceed with the following approximation:

∫

R2

k(s− t)Z(dt) = lim
r→∞

∫

Dr

k(s− t)Z(dt)

= lim
r→∞

m∑

j=1

∫

Brj

k(s− t)Z(dt)

≈ lim
r→∞

m∑

j=1

k(s− trj)

∫

Brj

Z(dt)

= lim
r→∞

m∑

j=1

k(s− trj)Z(Brj)

≈
m∑

j=1

k(s− trj)Vj

√
|Brj |. (4.27)

Here, we envision the trj as grid points, e.g., the centroids of Brj . The number of the

grid points is denoted by ‘m’ and the Vj are independent normal random variables

with mean 0 and variance σ2. Introducing σ2 as the variance for the V ’s implies that

k becomes the kernel associated with the correlation function of the process.

Remark 16. Note that letting Dr be a square, making Brj an equally spaced parti-

tion of Dr, and choosing trj as the centroid of Brj are just convenient choices to make

the limiting argument easier. In practice, one can determine Dr and Brj according to

the distribution of locations where the data were collected. For example, if a subset

of sample locations {si, i = 1, ..., n} is densely clustered in some area, one might want

to make Brj small in that area in order to better approximate W (s) for s in that

subset.
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We define the approximation process W̃ as follows:

W̃r,m(s) ≡
m∑

j=1

√
|Brj|k(s− trj)Vj. (4.28)

It can be shown that W̃r,m(s) converges to W (s) in the L2 sense for every s as

m → ∞ and r → ∞. (See Appendix B.2 for a proof.) The covariance matrix of

W̃r,m(s) also converges to the covariance matrix of W (s). To assess the accuracy

of the approximation, we have to specify some distance notion for two measures

corresponding to the exact and the approximate processes respectively. See Section

4.3.2 for further discussion.

It is easy to see that under kernel mixing approximation, G in (4.26) takes the

form (g(s1)
T , ..., g(sn)

T )T , where g(si) = (
√
Br1k(si − tr1), ...,

√
Br1k(si − trm))T , and

Z = {V1, ..., Vm} is a vector of independent normal random variables. Z is associated

with “knots” {trj} and G connects locations in W with locations in Z.

Remark 17. For a process that can not be written as a kernel mixing form, we

could attempt to use a partial sum approximation to the Karhunen-Loève expansion

or a projection process approximation (see below two sections). Note that here

Karhunen-Loève expansion approximation only involves one step of approximation

while the kernel mixing approximation involves two. However, solving the integral

equation (4.15) for the eigenfunctions φi(s) is far more challenging than implementing

the approximation in (4.28).

Remark 18. If the process W̃r,m(·) is “close” to the process W (·), then one would

expect that f(W (·)) and f(W̃r,m(·)) should also be “close” for “nice” functions f(·).

For example, based on Proposition B.2 in the appendix, we immediately obtain

E[Y (s)− Ỹ (s)]2 → 0 as m, r → ∞ for every s, where Y (s) = XT (s)β +W (s) + ǫ(s)

and Ỹ (s) = XT (s)β + W̃r,m(s) + ǫ(s).
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4.3.2 Choice of Dr and m

For the finite sum approximation to the spatial process as given in the formula

(4.28), assuming equally spaced partitioning and centroid approximation, how shall

we choose the “cover” region Dr and the number of grid points m? Informally, Dr

should cover the study region while m should be as large as is computationally feasi-

ble. Conceptually, we want to encourage the approximate process to be close to the

exact process. For example, after defining a suitable distance (or closeness measure)

between the true process and its approximation, we may seek to make that distance

small under some constraints. Specifically, suppose d(W, W̃r,m) is some distance (or

closeness) between two processes W and W̃r,m. If we fix m, we can find

arg sup
Dr∈D

d(W, W̃r,m)

for some class of D (for example, the class of all square areas). Or if we want to

control the accuracy of the approximation, for a fixed small positive number ǫ, we

can find a Dr ∈ D with m as small as possible such that d(W, W̃r,m) < ǫ.

Let us now consider a few examples of d(W, W̃r,m). The natural choices would be

sup
s∈S

(E(|W (s) − W̃r(s)|p))
1

p , (4.29)

or

∫

s∈S

(E(|W (s) − W̃r(s)|p))
1

p ds, (4.30)

where p > 0 and S is some bounded region in R
2 (e.g. the study region D). But the

calculations of (4.29) and (4.30) are difficult.

Another idea is to choose Dr and m to make the following probability to be small

for a positive number ǫ,

Pr(sup
s∈S

|W (s) − W̃r,m(s)| > ǫ). (4.31)
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Note that the set

{sup
s∈S

|W (s) − W̃r,m(s)| > ǫ} =
⋃

s∈S

{|W (s) − W̃r,m(s)| > ǫ}

in (4.31) is the union of uncountably many measurable sets, it is measurable if

W (s) and W̃r,m(s) have continuous sample paths. The reason is that
⋃

s∈S{|W (s) −

W̃r,m(s)| > ǫ} =
⋃

si∈S{|W (si) − W̃r,m(si)| > ǫ} is a countable union of measurable

sets, where two coordinate values of si are rational. Again, (4.31) is not easy to

compute.

From practical point of view, since the {Vj} in (4.28) are Gaussian, the Kullback-

Leibler divergence between the joint distribution fW of a set of random variables

{W (si), i = 1, ..., n} and the joint distribution fW̃ of the set of random variables

{W̃r,m(si)} for the same set of si is easy to compute. We have

KL(fW, fW̃) = −1

2
log |K−1

W̃
KW| + 1

2
Tr(K−1

W̃
KW − In), (4.32)

where KW and KW̃ are the covariance matrices of W (si) and W̃r,m(si), respectively,

In is an n× n identity matrix. One could imagine increasingly dense si and attempt

to compute the limiting Kullback-Leibler divergence. Instead, for a fixed m and n,

we can find (at least empirically) the Dr such that KL(fW, fW̃) is minimized.

Another easy calculation is to find the covariance matrix KW−W̃ for the vector of

W (si) − W̃r,m(si), i = 1, ..., n, and roughly minimize its determinant or its trace. A

natural choice for the set of {si} would be a subset of the n data locations. The
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Figure 4.1: The effect of choice of Dr.

diagonal terms of KW−W̃ can be calculated as follows,

Var(W (s) − W̃r,m(s))

= σ2
[ ∫

R2

k2(s− t) dt+
|Dr|
m

m∑

j=1

k2(s − trj) − 2
m∑

j=1

(k(s − trj)

∫

Brj

k(s − t) dt)
]
. (4.33)

To illustrate, we consider the simulation example in Section 4.5 below. Observa-

tions are taken on a [0, 10]× [0, 10] square and then we fix the set of data locations at

the “center” of Dr while we slowly expand Dr and adjust trj accordingly (fix m=100).

Figure 4.1 shows how the Kullback-Leibler divergence changes as we change the cover

region (three expansions are marked on the x-axis) using three different range param-

eters. The good news is that to some extent the approximation performance seems

fairly “robust” over a range of choices for Dr. We also see that the stronger the spa-
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Figure 4.2: Performance of approximating Gaussian covariance function
C(h) = σ2 exp(−‖h‖2/φ) (σ2=1, φ=15) based on kernel mixing.

tial correlation is, the less sensitive the performance of the approximation is to the

choice of Dr. In Figure 4.2 the upper graph (A) shows the true Gaussian correlation

function as well as the approximated correlation function. The lower graph (B) shows

the histogram of the entries in (KW −KW̃)/σ2 for Dr = [−2.5, 12.5] × [−2.5, 12.5].

The performance of the approximation is satisfying.
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4.3.3 Projection process approximation

Given a study region D, suppose we observe a spatial process W at s∗1, ..., s
∗
m and

wish to predict W at a new location s0 ∈ D. Assume W (s) to be weakly stationary

with mean zero and covariance function C(·). It is not too hard to show that the

best linear prediction for W (s0) given W∗ = w∗, where W∗=(W (s∗1), ...,W (s∗m))T

and w∗=(w(s∗1), ..., w(s∗m))T , is

W̃ (s0) = hT
0K

∗−1w∗ (4.34)

with the mean square error

C(0) − hT
0K

∗−1h0, (4.35)

where h0=Cov{W∗,W (s0)}, K∗=Cov(W ∗,W ∗), and C(0)=Cov{W (s0),W (s0)}.

If we assume W (s) to be a Gaussian process, then the prediction of W (s0) should

be based on the conditional distribution of W (s0) given W∗=w∗. That is,

W (s0)|W∗ ∼ N(hT
0K

−1w∗, C(0) − hT
0K

−1h0). (4.36)

Mathematically speaking, the prediction of W (s0) given W∗ is simply the projec-

tion of W (s0) on a linear manifold spanned by {W (s∗1), ...,W (s∗n)}. From a theoretical

point of view, we may consider a more general problem of predicting W (s0) based

on having observed the process W on some set A ⊂ D. A could be finite, count-

able, or uncountable. Now the linear manifold is generated by {W (s), s ∈ A} and

linear algebra is not adequate to study prediction if the set A has infinite elements.

Hilbert space is naturally introduced to study projection in this situation. For our

purpose, the Hilbert space here is generated by the process W (s) on D. More specif-

ically, it is the closure of the linear manifold of {W (s), s ∈ D}, denoted by HD(0, C)

(C is the covariance function), with the inner product (h1, h2) = E(h1h2), where

h1, h2 ∈ HD(0, C).
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Now the prediction problem becomes clear: W (s0) is an element in HD(0, C) and

its prediction given observing W on A is simply the projection of W (s0) onto the

subspace HA(0, C). The projection theorem of Hilbert space tells us that there exists

a unique element W̃ (s0) in HA(0, C) such that

‖W (s0) − W̃ (s0)‖ = inf
V ∈HA(0,C)

‖W (s0) − V ‖. (4.37)

Now it should be apparent how to approximate W (s) based on projection ideas.

First we define a set of “knots” (or grid points) {s∗1, ..., s∗m}, then we define a process

W̃ (s) to approximate W (s) as

W̃ (s) = h(s)TK∗−1W∗, (4.38)

where h(s) = Cov{W∗,W (s)}, W∗ = (W (s∗1), ...,W (s∗m))T and K∗ = Cov(W∗,W∗).

W̃ (s) is the “projection” of W (s) onto the manifold spanned by W∗. Loosely speak-

ing, if W∗ represents “good” amount of information for the process W on D, W̃ (s)

would be a good approximation. The (i, j)th element of the covariance matrix KW̃

of the vector W̃=(W̃ (s1), ..., W̃ (sn)) is

Cov{W̃ (si), W̃ (sj)} = h(si)
TK∗−1h(sj). (4.39)

The above projection calculation does not depend on the probability law of the

process. If we assume W (s) is a Gaussian process, we know from (4.36) that,

W̃ (s) = E(W (s)|W∗). (4.40)

We wish the approximation process W̃ (s) to be “close” to W (s). Intuitively, as

m tends to ∞, we expect KW̃ − KW (or KW̃|W) goes to the zero matrix. More

precisely, if {W (s∗), s∗ ∈ A} is a basis of HD(0, C), perfect prediction is possible, i.e.

KW̃|W = 0.
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Projection approximation provides an easy way to approximate a desired spatial

process (both stationary and nonstationary), not requiring to find the kernel func-

tion (which is needed in the kernel mixing approximation) or the eigenvalues and

eigenfunctions (which is needed in the Karhunen-Loève approximation). G in (4.26)

takes the form (h(s1)
TK∗−1, ..., h(sn)TK∗−1)T and W∗ is the Z vector in (4.26). W∗

is associated with “knots” and G relates locations in W with locations in W∗. It is

worth noting that the components of W∗ are dependent normal random variables,

while {Z1, ..., Zm} in the kernel mixing process approximation are independent nor-

mal random variables.

Let us consider a concrete example. Let D = [0, 1] and C(h) = σ2 exp(φ|h|). For

computational simplicity, suppose we observe W at an even number of equally spaced

knots {0,∆, 2∆, ..., (m/2−1)∆, (m/2)∆, ..., (m−2)∆, 1} and we want to approximate

W (1/2), where ∆ = 1/(m − 1) and m is the number of knots. Let ρ = exp(−φ∆).

So, h(1/2) = (ρ(m−1)/2, ρ(m−3)/2, ..., ρ1/2, ρ1/2, ..., ρ(m−1)/2)T . From Appendix A.1, we

can compute K∗−1 explicitly and after some algebra we get

Var{W̃ (1/2)} = h(1/2)TK∗−1h(1/2) = σ2 2ρ

1 + ρ
→ σ2, as m→ ∞ . (4.41)

In other words, Var(W (s)|W∗) → 0 as m → ∞. So for the one dimensional OU

model, we can do prefect prediction (kriging) if we know the model parameters.

Similarly, we can show Cov{W̃ (si), W̃ (sj)} → σ2 exp(−φ|si − sj|) as m → ∞. In

this example, as m→ ∞, {W (s), s ∈ {0,∆, ..., (m−2)∆, 1}} becomes a basis for the

Hilbert space H[0,1](0, C), where C(h) = σ2 exp(φ|h|).

An natural question to ask is how to choose the number and locations of the knots.

Large m increases the performance of approximation but makes the computation less

efficient. Generally, we choose m as large as the computation power allows. For a

fixed m, we shall choose the set of knots {s∗1, ..., s∗m} such that KW̃ = GKW∗GT is
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as close to KW as possible. See Section 4.3.2 for more discussion. In general, the

inverse of the covariance matrix K∗ is not available in a closed form. We may study

the performance of the approximation through numerical simulations. Figure 4.3

shows an approximated Matérn correlation function based on the forgoing projection

ideas.
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Figure 4.3: Approximate Matérn covariance function
C(h) = σ2 1

2ν−1Γ(ν)
(φ‖h‖)νκν(φ‖h‖) (σ2=1, φ=2/3, ν=2) using projection pro-

cess approximation.
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4.3.4 Karhunen-Loève approximation

From Section 4.2.1, we know the Gaussian processW (s) admits the following Karhunen-

Loève expansion representation.

W (s) =

∞∑

i=1

√
λiφi(s)Zi

So we can approximate W (s) by truncating the infinite series, i.e.,

W̃ (s) =

m∑

i=1

√
λiφi(s)Zi, (4.42)

where {λi, i = 1, ..., m} are first m biggest eigenvalues and {φi(·)} are associated

eigenvectors.

Now G in (4.26) takes the form (g(s1)
T , ..., g(sn)

T )T , where

g(si) = (
√
λ1φ1(si), ...,

√
λmφm(si))

T .

Z = {Z1, ..., Zm} in (4.26) are independent normal random variables. Note that

in Karhunen-Loève approximation, there is no notion of “knots” any more. A row

vector of G is a vector of basis functions and {Z1, ..., Zm} are corresponding random

coefficients. Karhunen-Loève expansion is one way of finding basis functions (they

are orthogonal). Polynomials, wavelets, Fouriers, and splines can also serve as basis

functions.

Performing Karhunen-Loève expansion approximation depends on the ability to

solve the integral equation (4.15). Typically it is a hard task and no closed-form

solutions are available except for a few special cases. In Chapter 3, we have seen

how to find the eigenvalues and eigenfunctions for the one-dimensional exponential

covariance function case (see Section 3.2 and Appendix A.1). We also discuss an

easy approach to find approximate eigenvalues and eigenfunctions. There are also
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numerical methods, for example, the “Galerkin method”, to find approximate eigen-

values and eigenfunctions. The Karhunen-Loève expansion offers the possibility of

an approximation when a process can not be represented using kernel mixing.

4.4 Formalizing the analysis in a Bayesian frame-

work

Returning to the model in (4.1), we have W (s) a mean zero Gaussian process with

covariance function σ2̺(·; φ) where φ denotes the parameters in ̺, hence in the kernel

k(·). For example, if we started with a Matérn correlation function, φ would include

a scale parameter α and a smoothness parameter ν. With samples from n locations

we obtain

Y = Xβ + W + ǫ, (4.43)

where W ∼ Nn(0, σ2R(φ)) with R(φ)ij = ̺(si − sj ; φ).

We shall use W̃ in (4.26) to approximate W. Kernel mixing approximation

form (4.28), or projection process approximation form (4.38), or Karhunen-Loève

approximation form (4.42) (if available) can be chosen. The dependence in the Z

vector (e.g. in projection process approximation) may introduce more computation

demand.

For illustration, we use W̃r,m(s) as in (4.28) to approximateW (s), the approximate

model becomes

Y = Xβ + W̃ + ǫ, (4.44)

where, suppressing the subscript r and m, W̃ = G(φ)V; G(φ)ij = k(si− tj ; φ)
√
|Bj |

(i = 1, ..., n, j = 1, ..., m); and V=(V1, ..., Vm) ∼ Nm(0, σ2I). We have W̃ ∼ Nn(0, K̃)
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and K̃ = σ2G(φ)G(φ)T where, for clarity,

K̃ij = σ2
m∑

l=1

k(si − tl; φ)k(sj − tl; φ)|Bl|. (4.45)

The parameters are (β, σ2,φ, τ 2). Fitting the approximate model in a Bayesian

framework is straightforward using MCMC methods. In particular, we work in the

space of the latent V’s updating V in addition to β, σ2, τ 2,φ.

Finally, to implement spatial prediction (kriging) (see Section 2.2.5), we would

again use the approximate model in (4.44). That is, even if we have fitted the

original model, fully Bayesian kriging requires conditional distributions for new loca-

tions given the sampled locations, again bringing in the “large n problem” (see, e.g.,

Banerjee et al., 2004, Chapter 5 for details). Based on the approximate model, the

prediction of the response Y (s0) at a new location s0 is

f(y(s0)|Y)

=

∫
f(y(s0)|Y,β,V,φ, τ 2)f(β,V,φ, τ 2|Y) dβ dV dτ 2 dφ. (4.46)

Obviously we can extend (4.46) to simultaneously prediction at a collection of

new locations. In practice, Monte Carlo methods are used to obtain estimates of

(4.46) based on the posterior draws of the parameters. Note that, conditioned on V,

Y (s0) is independent of Y. So, under the approximation model, there is no “large n

problem” in prediction.

4.5 Examples

In order to appreciate the computational advantage of our approximate model and

examine its performance, we illustrate with a simulated dataset and a real dataset of

single family house prices.
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4.5.1 Simulation example

In this simulation study, we generated 10050 data points in a [0, 10] × [0, 10] square

from a Gaussian random field with, without loss of generality, constant mean µ and

covariance matrix σ2R(φ2) + τ 2I, where R(φ2) = e−‖h‖2/φ2

, resulting in a Gaussian

kernel k(·). The true values of the parameters are µ = 0, σ2 = 5, φ2 = 15, and

τ 2 = 1. Figure 4.4 gives the plot of 10050 data locations with an illustrative choice

of 100 grid locations (empty circles).
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Figure 4.4: 10050 data points in a [0, 10] × [0, 10] square with 100 grid points(◦).
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We left out 50 data points for the purpose of prediction. Then we fitted the finite

sum approximation model using 100 grid points to the remaining 10000 data points.

We choose [−2.5, 12.5] × [−2.5, 12.5] as the cover region. Also, for comparison, we

randomly subsampled n0=100 data points from the set of 10000 data points and

estimated the parameter values by fitting the exact model without approximation to

these 100 points. (One could attempt to introduce sampling design consideration in

the selection of this subsample of locations but we have not pursued this here.) The

results are shown in Table 4.1, where µ̂m=100 denotes the estimation for µ under the

approximation model with m = 100 and µ̂n0=100 is under the subsampling model with

n0=100. It can be seen that the approximate model recovers the parameters very well.

The posterior mean and median of the parameters are fairly close to the true values.

On the other hand, the estimation based on the exact model with subsampling is not

as good as that based on the full data with the approximate model. For the latter,

the point estimators are closer to the true values and the credible intervals tend to

be shorter.

Table 4.1: Posterior summaries for the simulated data example.
Parameter Median Mean 95% interval

µ̂m=100 0.36 0.44 (-0.54 , 1.60)
µ̂n=100 0.70 0.74 (-0.88 , 2.58)

φ̂2
m=100 14.71 14.75 (12.04 , 17.98)

φ̂2
n=100 11.60 12.05 (6.24 , 20.36)

σ̂2
m=100 5.23 5.65 (2.95 , 10.01)
σ̂2

n=100 3.46 3.92 (1.67 , 9.06)
τ̂ 2
m=100 0.996 0.997 (0.97 , 1.02)
τ̂ 2
n=100 0.994 0.995 (0.79 , 1.48)

N=10000, µ = 0, φ2 = 15, σ2 = 5, τ 2 = 1
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In this regard, we note that the 95% credible intervals for µ, for φ2, and for σ2

are quite wide even when the sample size is relatively large. In fact, the parameter

µ cannot be consistently estimated as long as the sampling locations are restricted

to a bounded region. See Xia et al. (2006) for details. Also it is well known that,

for customary covariance functions, σ2 and the decay parameters φ2 are not well-

identified. See Stein (1999, Chapter 4), Zhang (2004), and Xia et al. (2006) for

extensive discussions.

Figure 4.5 turns to the 50 held out points and shows the predictive median and

the 95% predictive intervals using these two analysis. Most of the predictive inter-

vals based on the approximate model are tighter than those based on the subsam-

pling model. In both cases, 2 out of 50 true values fall out of the 95% predictive

intervals. We also computed the value of mean square predictive error (MSPE)
∑50

i=1(Ŷi,l − Y obs
i )2, l = 1, 2, where l=1 refers to the approximate model and l=2 to

the subsampling model. Y obs
i are true values of the left out data and Ŷi,l are their

predictions under the respective models. The MSPE under l=1 is 50.1 while under

l=2 the MSPE is 58.0. In both cases, we have 100 latent random effects but the

approximation strategy is 15% better with respect to MSPE.

4.5.2 Baton Rouge housing data example

There is expected to be spatial pattern in selling prices of houses adjusting for various

physical characteristics such as square feet of the living area, age of the house, number

of bathrooms, etc. So, spatial modeling for house price data is natural (see e.g.

Gelfand et al. 2004). Here we consider a real estate dataset with observations at

8774 locations in the city of Baton Rouge, Louisiana. Figure 4.6 shows the data

locations (defined by latitude and longitude) as well as 96 grid points used for the
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Figure 4.5: Prediction at 50 locations.

approximate spatial model. It is customary to model the response Y (s) as log-selling

price of the property at location s. Illustratively, we use age, living area, other area

(e.g. patios, garages, and carports), and number of bathrooms as covariates in our

analysis.

We fit the Bayesian model described in Section 4.4 for this dataset. We use a

Matérn covariance function specified in (4.22), resulting in a four-parameter variance-

covariance specification. With nearly 9000 sales, fitting the exact model in (4.43) is

infeasible. Using the approximate model in (4.44), the run time is about 1.2 hours

per 1000 iterations using C code on a Linux machine with a 3.4 GHz Intel Pentium

4 processor (the evaluation of Bessel function in the Matérn class is computational

costly). Table 4.2 provides the posterior summaries for the coefficients of house

characteristics as well as the parameters in the covariance structure. It can be seen
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Figure 4.6: Baton Rouge house locations (◦ denotes the grid points).

that all covariates are significent. The proportion of spatial variation (σ2) to total

variation (σ2+τ 2) is around 74%. The range is around 23% of the maximum distance.

Table 4.2: Posterior summaries for Baton Rouge housing data.
Variable Parameter Median Mean 95% interval

Intercept β̂0 10.18 10.18 (10.08 , 10.29)

Age β̂1 -0.0020 -0.0020 (-0.0024 , -0.0015 )

Bathrooms β̂2 0.069 0.069 (0.054 , 0.085)

Living area β̂3 0.00038 0.00038 (0.00036 , 0.00039 )

Other area β̂4 0.00023 0.00023 (0.00021 , 0.00025 )
Smoothness parameter ν̂ 1.90 1.89 (1.80 , 1.99)

Decay parameter α̂ 0.50 0.49 (0.44 , 0.54)

Spatial variance parameter φ̂ 0.0086 0.0087 (0.006 , 0.014 )
Nugget parameter τ̂ 2 0.068 0.068 (0.066 , 0.070 )
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4.6 Extensions

In this chapter, we have developed a conceptually simple and computationally straight-

forward process approximation approach for fitting spatial models to data observed at

a very large number of locations. We have implemented the approximation within a

Bayesian framework, achieving relatively short run times and satisfying performance.

It is important to note the generality of our process approximation idea. Specifically,

with a finite sum approximation for the process W (s) as in (4.26), all of the discussion

in Section 4.4 will apply. For example, the process W (s) also could be represented

and approximated using other forms of basis functions, e.g., polynomials, Fouriers,

wavelets, splines, etc.

Developing analogues of our approximation strategy for spatio-temporal (and mul-

tivariate response) data is a natural extension. We can envision dimension reduction

in both space and time. For a very large number of spatial locations and time points,

an additive approximation in space and time may provide the only feasible imple-

mentation. Extension to a spatial model with a nonGaussian first stage (i.e. the

response Y may be binary or a count) is obvious. For example, if Y takes only 0 or 1

values, the first stage of the model might be that Y (si) are conditionally independent

Bernoulli random variables given W (si), covariates and other parameters. In the

second stage, we could approximate W (si) using (4.26).
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Chapter 5

Spatial Design

5.1 Introduction

Spatial sampling design is an important area in spatial statistics. The basic problem

is to decide how to choose a set of sample locations so that a maximum amount of

information can be obtained. For example, how shall we sample house locations to

learn the real estate market in a particular area? Or, how shall we sample individuals

within a region to measure lead level in the blood?

Our focus in this chapter is on approximately optimal spatial design in the case

of one-time sampling at a large number of spatial locations. We address the design

problem in the context of environmental health research. But the application of

spatial design in other areas can be easily envisioned.

Environmental health research considers the relationship between exposure to

environmental contaminants and particular health endpoints. Many environmental

health issues are characterized by spatial structure in either the contaminant surfaces

or the pattern of observed cases. Thus, spatial modeling is making rapid inroads in

environmental health. For exposure, which is our focus, models that explicitly include

spatial structure provide better explanation of contaminant surfaces both with regard
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to estimation of levels and the uncertainty in this estimation.

By definition, if exposure surfaces are envisioned as conceptually measurable at

every (point) location in a study region, then such surfaces are inherently spatial in

nature. Anticipating spatial association in contaminant levels, with an uncountable

collection of locations, we naturally turn to point-referenced association models, i.e.,

spatial process models. In this chapter, our attention is to a particular aspect of

sampling design: How shall we choose locations to sample exposure levels (possibly

ambient or deposition) that are anticipated to be essentially static? For example,

how shall we sample individuals within a region to measure contaminant levels in

the blood? Or, how shall we sample locations to learn about ambient levels of air

toxics or perhaps arsenic levels in the water table? We are focusing on one-time sam-

pling at a large number of locations rather than designing long-term typically sparse

monitoring networks. Thus, we are not considering the costs for installing, operating

and maintaining a network but rather the cost of collecting a single observation. If

we plan to use spatial processes in building models to analyze such data, it seems

equally appropriate to use such models in developing the sampling design.

The criteria we focus on are developed from the Fisher information matrix with

the goal of learning not only about the regression structure in the model but also

about the dependence structure. Under a criterion that attempts to maximize in-

formation gain, we consider three strategies to develop an approximately optimal

design: sequential sampling, block sampling, and stochastic search. We also discuss

utility-based modification of these strategies to achieve oversampling with regard to

specified objectives. We present some theoretical and empirical properties and re-

lationships among these strategies and provide an illustrative implementation for a

simulated dataset. We also describe a real application in the context of the Toxics

Release Inventory (TRI).
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5.2 Background and literature review

A brief review of the history of spatial modeling for environmental health may be

useful. Two broad paths have been followed. The first views the surface as a ran-

dom realization of a spatial process above two-dimensional space. Measurements are

taken at point-referenced (geo-coded) spatial locations. Inference involves fitting an

explanatory process model using these measurements. In some cases, exposure levels

are essentially stable and static modeling based upon single measurements at indi-

vidual locations is the objective. In other cases, the locations are monitoring stations

whence data collection is dynamic and a temporal component is added to the mod-

eling to capture evolution of the contaminant surface over time. The literature on

spatial and spatio-temporal process modeling in environmental health is substantial.

Noteworthy examples for the static case include Le and Zidek (1992); Brown, Le

and Zidek (1994); Shaddick and Wakefield (2002); and Schmidt and Gelfand (2003).

Examples in the dynamic setting include Guttorp, Meiring and Sampson (1994);

Huerta, Sanso and Stroud (2004) and Sahu, Gelfand and Holland (2005). Gelfand,

Banerjee and Gamerman (2005) provide a general dynamic modeling development

for univariate and multivariate spatial data settings.

The second path has focused on areal partitions of the study region into, for

example, census units, zip codes, or counties. Typically, counts of some adverse

health outcome are aggregated to these units (usually for purposes of confidentiality).

Environmental risk factors are supplied for these areal units to explain the counts.

Spatially structured random effects are introduced to provide spatial smoothing of the

counts. Work here dates to Clayton and Kaldor (1987). See also Bernardinelli and

Montomoli (1992), Knorr-Held (2002), and Zhu, Carlin and Gelfand (2003). More

flexible regression settings are discussed in Assunção (2003).

With regard to sampling for point-referenced data, we first note that optimal ex-
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perimental design has a long statistical history. See the book of Pukelsheim (1993) for

a review. The dominant path has focused on design for independent data collection.

There is history for the case of correlated data dating to 1966 (Sacks and Ylvisaker,

1966). More recently, there has been attention directed at accommodating data with

structured dependence. For spatial data this has been expressed through random

fields. See the review paper of Fedorov (1996) and the book of Müller (2001). Gener-

ally, designs are classified as either probability or model-based. The former includes

widely-used simple random sampling without replacement. They tend to be robust

in that they make no population assumptions regarding, for example, mean structure

or dependence structure.

Model-based design has followed a regression model path or a random field model

path. Under regression modeling with independent data, optimality is defined with

regard to efficiency of the estimates of the regression coefficients. An optimization

criterion that is a function of the design matrix is specified and then the “best”

design optimizes this criterion over all design matrices. Again, see Pukelsheim (1993)

or Müller (2001) for details. This theory is not directly extensible to spatial design

but approximately optimal solutions based upon information-theoretic measures have

emerged, most notably the recursion in Brimkulov, Krug and Savanov (1986). (See

Fedorov, 1996, in this regard.) This recursion is elaborated in Section 5.4 below. Its

focus is exclusively on gaining information regarding the regression structure or model

mean. A different type of approximation in the context of anisotropic dependence is

proposed in recent work of Arbia and Lafratta (2002).

Model-based design, motivated by a random field specification, has been strongly

advocated in Le and Zidek (1992) and Zidek, Sun and Le (2000) as well as references

therein. The proposal is an entropy-based design where the selection of the next site

to be added will be the one with the largest entropy where entropy can be viewed
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as uncertainty. Under a Gaussian field assumption, the criterion that emerges is the

conditional variance of an observation at a new location given the locations already

selected. (This conditional variance depends only upon the previously selected loca-

tions but not on the data already collected at those locations.) The site with the most

uncertainty is the one with the largest conditional variance given the selected sites.

Extension to multivariate data at a location converts the criterion to a conditional

covariance matrix. This approach has no interest in mean structure. In fact, quoting

Zidek, Sun and Le (2000, p.66), “[I]t avoids the need to specify objectives like pa-

rameter estimation.” Implementations have been in the area of network monitoring

design and thus, initial preparation and operating costs are built into the adopted

optimization criterion.

For a stationary Gaussian process with regression structure, two types of design

questions can be asked: What is the optimal sampling design for prediction at an

unobserved set of locations? What is the optimal sampling design for estimation of

the parameters in the covariance function? Because prediction is often the primary

use for the model, the first question has received much attention. See, for example,

McBratney et al. (1981), Su and Cambanis (1993), Ritter (1996), and Zhu (2002).

For the latter question, with a constant mean, the classical procedure for estimating

the covariance structure is based upon the variogram. See, for example, Warrick and

Myers (1987), Bogaert and Russo (1999), and Müller and Zimmerman (1999). Very

recent work by Zhu and Stein (2006) focuses on designs based upon optimization using

the likelihood. They suggest working with the Fisher information as a measure in the

form of a ratio of determinants and implement the optimization using a simulated

annealing algorithm. Finally, there is some literature on Bayesian experimental design

(see e.g. Clyde, 1993; Clyde, Müller and Parmigiani, 1995, 1996; Chaloner and

Verdinelli, 1995). This methodology is based on decision theory and useful for spatial
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design. We do not pursue this direction further because Bayesian design usually is

very computational intensive.

Our approach is to also be model-based, working with the likelihood and focusing

on the information matrix as well. As noted above, our perspective is primarily prag-

matic. We conceive a sampling setting in which we envision hundreds to thousand

of sites being sampled and seek to make the required sampling design easily under-

stood and computationally manageable for the practitioners who wish to implement

it. We take as our design objectives learning about the mean structure as well as

the covariance function, noting that these objectives are usually in conflict. We also

introduce a further utility notion, providing an additional objective of sampling for

say, large values (as with contaminant surfaces). We consider the situation where we

already have a partial sample and we wish to augment the available data. After clar-

ifying that obtaining the optimal solution is a combinatorially complex computation

problem, we consider three approaches toward achieving approximate optimization -

sequential selection, block selection, and tuned stochastic search.

5.3 An overview of the issues

Our objective is, for a given study region, to develop an approximately optimal

sampling strategy to learn about the spatial distribution of a contaminant across the

region. Optimal design is intractable working with the continuum of locations so, as

is customary, we presume that the region has been gridded (not necessarily a regular

grid) to high resolution. For instance, in the context of sampling childhood blood

lead levels, the tax parcel level (equivalently the residential property on the parcel)

provides a natural discretization for sampling locations. In the ensuing development,

we assume that the parcels can be viewed as points in the region but, ultimately,

with regard to design, we have only a finite set of locations to select from.
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We will work within the model-based framework for developing designs. The two

types of criteria we might consider are:

(1) An information criterion that arises from the regression perspective (Section

5.4) but incorporates learning about strength of spatial dependence as well as the

regression component.

(2) An entropy criterion that focuses on uncertainty, yielding a conditional covari-

ance. We emphasize the information criterion in this chapter for reasons we elaborate

in Section 5.6.2. However, we reserve Section 5.6.2 for some comparison.

We also note that in the multi-parameter case (almost certainly the case of interest

in applications), both criteria emerge as matrices. So, to achieve a single number

summary for a design, we will have to summarize the resulting matrix either through

a determinant or a (possibly weighted) trace.

We further assume that sampling is not ab initio or “preposterior”. Rather, we

assume that a collection of n locations have already been sampled and that we have

this data available to us. Such collection may have been implemented by simple

random sampling or perhaps, through ad hoc methods. If not, how should the ini-

tial set of n points be selected? A convenient approach referred to as space-filling

designs, has been discussed in Nychka and Saltzman (1998). Such designs are based

upon geometric measures of how well a given set of points covers the study region,

independent of the assumed covariance function. Such designs are not optimal but

for an initial selection will work nearly as well as optimal ones. In any event, as the

number of sampling sites grows, effects of the initial selection dissipate.

Based upon the data from these n sites, we can implement a preliminary fit of the

model to obtain preliminary parameter estimates. This is crucial since our design

criteria emerge as parametric functions. To evaluate a criterion for a given set of

locations, we insert the parameter estimates into the function as well as the locations.
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We recognize that this fails to account for the uncertainty in the parameter estimation

and that averaging over a suitable distribution for these parameters would enable us

to attach uncertainty to the criterion value. However, with interest in design rather

than inference (which would come later, after all of the data collection) we adopt the

pragmatic “plug in” approach. It is also computationally much more convenient and

avoids the need for prior specification at the time of sampling.

Thus the formal goal is, given the n locations already chosen and sampled, and

given that we want to choose m additional sites to sample, how shall we choose these

m locations? Even given an explicit, evaluable criterion and a finite collection of N

sites to choose from, obtaining the optimal choice is not a tractable problem. In our

setting it would be referred to as an “N -n choose m” combinatorially hard problem.

So, we will have to consider approximate solutions to this problem. We examine

three strategies: (i) sequential selection, (ii) block selection; and (iii) stochastic search

(including a modified procedure).

5.4 The information criterion

In presenting the information criterion, rather than elaborating the formal optimal

design machinery (as described, for instance, in Pukelsheim 1993 or in Müller 2001),

we offer an intuitive development built from the well-established Fisher information

measure (see, e.g., Rao, 1973; Cox and Hinkley, 1974). The Fisher information arises

from expectation of second derivatives of the log likelihood. In the multiparameter

case, it becomes the expectation of a matrix of mixed partial derivatives (the Hessian)

associated with the log likelihood. Under normality and a linear mean form (in the

coefficients) it emerges as a parametric function of the dependence structure. The

matrix is reduced to a scalar criterion either through the trace or determinant.

121



More precisely, suppose we consider the widely used spatial model:

Y (si) = µ(si) +W (si) + ǫ(si), (5.1)

where Y (si) (i = 1, ..., n) are observations from a spatial process over a region D in

R
2 and µ(si) is the linear mean form, XT (si)β. W (si) is a mean 0 spatial process

(typically a stationary Gaussian process) and ǫ(si) is a pure error process with mean 0

and variance τ 2. W and ǫ are independent. Written in vector form Y = Xβ+W+ǫ,

where Y = (Y (s1), ..., Y (sn))T , W = (W (s1), ...,W (sn))
T , ǫ = (ǫ(s1), ..., ǫ(sn))T , and

(
W
ǫ

)
∼ N2n

((
0
0

)
,

(
σ2R(φ) 0

0 τ 2In

))
. (5.2)

Here, R(·) is the correlation matrix associated with the n locations and φ indexes the

parameters of the correlation function, for example, in the Matérn case (see Section

2.1.3), a smoothness parameter and a decay parameter.

Let θ = (σ2,φ, τ 2)T with Σθ = σ2R(φ) + τ 2In. The log likelihood for (β, θ) is

ℓ(β, θ) = −n
2

log(2π) − 1

2
log |Σθ| −

1

2
(Y −Xβ)T Σ−1

θ
(Y −Xβ). (5.3)

The expected information matrix for (β, θ) has the block diagonal form (see

Section 3.2)

I(β, θ) =

(
XT Σ−1

θ
X 0

0 I(θ)

)
, (5.4)

where the (i, j)th element of I(θ) is 1
2
Tr[Σ−1

θ

∂Σ
θ

∂θi
Σ−1

θ

∂Σ
θ

∂θj
]. The block diagonal form

in (5.4) shows that β and θ are orthogonal parameters (Cox and Reid, 1987). Infor-

mally, this means that an information criterion for design will “separate” information

regarding β from information regarding θ.

As it stands, (5.4) is not a criterion. We need to reduce it to a univariate summary

which we will then seek to maximize. Such optimization will correspond to maximiz-

ing information gain, as we detail in the next section. To achieve such reduction, we
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introduce a mapping from information matrices to scalars. Customary approaches

work with either Tr(I(β, θ)) or |I(β, θ)|. The former emerges as Tr(XT Σ−1

θ
X) +

∑
i

1
2
Tr[Σ−1

θ

∂Σ
θ

∂θi
Σ−1

θ

∂Σ
θ

∂θi
], the latter as |XT Σ−1

θ
X| × |I(θ)|. In either case, we see the

separation mentioned above. The forms also reveal that there can be tension between

the component terms. That is, for a fixed m, the set of points which maximizes our

information gain about β will be different from that for θ. Also, the trace criterion

suggests the possibility of weighted components (see Section 5.9).

Here, and in the sequel, we work with the trace of the information matrix to

provide our criterion rather than the determinant. The former is more intuitive in

appreciating the components in the information gain but requires standardization of

the covariates since it is not independent of the scale of the covariates (as the form

XT Σ−1

θ
X reveals). The latter avoids that problem since any scaling emerges as a

constant multiple of the determinant but at the expense of ease of interpretation.

Lastly, the response can be modeled on a suitably transformed scale in order

to make the Gaussian assumption more comfortable. Moreover, in what follows we

work with the foregoing modeling assumptions because they yield convenient com-

putational expressions. We are not restricted to this setting; with additional compu-

tational effort, we can accommodate non-Gaussian data, e.g., categorical outcomes

or counts and/or nonlinear means.

5.5 Approaches for approximately optimal design

To address the “N -n choose m” combinatorially hard design problem noted at the

end of Section 5.3, we consider three approximate solutions, sequential selection,

block selection and (modified) stochastic search. We consider them individually here

though one could readily envision hybrid versions.

The sequential approach would require us to (i) identify, as the (n + 1)st parcel,
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the one which provides the maximum increase in information; (ii) sample it and add

its data to the data already collected; (iii) revise our current information, now based

upon n + 1 parcels; (iv) reorder the remaining parcels; and (v) select the (n + 2)nd.

In fact, we can make a modest compromise (which is appropriate for the way that

the data collection would likely proceed) by sequentially ordering the parcels but

only assuming we have data about the underlying process model from the first n

locations. In this fashion we can order the next m parcels to be selected. Then, if

additional sampling were sought after these new m locations are sampled, we would

refit the model and revise our knowledge about the model parameters in order to

further sample.

The block selection approach would order all of the remaining parcels, given the

n already selected and then choose the m parcels with the m largest values of the

criterion. Evidently, it offers computational savings. Again, after these newm parcels

were sampled, we would update our parameter estimates before further sampling.

Hence, either scheme provides an ordering to all of the unsampled parcels. However,

as we clarify below, these two approaches provide dramatically different sampling

designs and, though the sequential scheme emerges as generally preferable, we can

not assert that for any N, n and m, it will always ensure greater information gain.

The third approach introduces stochasticity into the selection process. The most

naive stochastic selection algorithm would choose m points at random and would be

simple random sampling. Stochastic search is introduced if we make, say, b random

selections, calculate the information gain for each, and adopt the one yielding the

largest gain. Of course, the choice of b is unclear. The larger b is the closer we must get

to the optimal design; however, computation cost increases linearly in b. Refinement

of the stochastic search is possible. For instance, consider any location s which was

selected in at least one of the b searches. We can compute the average information
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gain for this location over all of the searches in which it was included. We could then

propose to sample the m locations providing the largest average information gains.

We do note that, though it is not feasible to obtain the optimal design, the fact

that we are dealing with a finite set of locationsN does enable us to compute an upper

bound on the information gain, i.e., the information gain associated with sampling

all remaining N -n locations. Evidently, the information gain for choosing m points

will tend to this bound as m increases. In fact, this raises an important theoretical

point that we discuss in detail in Chapter 3. What can we say about I(β, θ) as

N grows large? What can we say about I(β, θ) for fixed N as m increases? For

the former, the key point is whether information tends to ∞ as N→∞ or remains

bounded. For the latter, typically the information gain increases rapidly over smaller

m with diminishing returns from there on. Hence, the upper bound not only provides

a measure of what proportion of potential information we will gain from our sample

of size m but also, if we see an “elbow” in the information gain as a function of m,

we might conclude that there will be little value in spending for additional sampling.

5.6 Information gain and comparison to the en-

tropy criterion

5.6.1 Calculation of the information gain

Returning to the model in (5.1), recall that we seek to learn about the importance of

the covariates (the X’s) in explaining the responses (the Y ’s) as well as the nature

and strength of spatial dependence. Assume the Gaussian process has stationary

covariance function σ2̺(si−sj ;φ). (This is not required but does simplify the ensuing

presentation.) Here, we assume ̺ ≥ 0 and that ̺ strictly decreases from 1 to 0 as φ

goes from 0 to ∞. A typical example is the so-called exponential covariance function

with ̺(si, sj) = exp(−φ‖si − sj‖). Also included are the powered exponential and
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Matérn families of covariance functions of which the exponential is a special case.

We also assume, for the moment, that τ 2 = 0, i.e., that there is no nugget.

From information formula (5.4), if the Y ’s all have a common mean say µ, up to a

constant, the information in the sample about µ given spatial dependence measured

by φ is the scalar In(µ) = 1TR−1
n (φ)1 ≡ An where Rn(φ) is the n × n matrix with

(i, j) entry ̺(si − sj ;φ). (So, we can ignore the unknown σ2 in comparing designs.)

Despite its innocuous form, general behavior for An is not easy to prove except

in very special cases (see Section 3.4). However, we can explicitly compute the

information gain in sampling location s0. We have

An+1 − An =
(1 − 1TR−1

n (φ)rn0(φ))2

1 − rT
n0(φ)R−1

n (φ)rn0(φ)
. (5.5)

In this expression, rn0(φ) is an n× 1 vector with ith entry ̺(si − s0;φ). So, the s0

that maximizes this difference is the location that maximizes information gain. The

maximization is easy to carry out since we only have a finite number of sites and

since rn0(φ) changes with s0 but R−1
n (φ) does not. In fact, we suggest the creation of

a GIS display in the form of a choropleth map or a contour plot to reveal where in

the region information gain is high and where it is low. (See the illustrative example

in Section 5.9.) Evaluation of the criterion requires knowing the covariance function,

i.e., requires estimating φ. As discussed above, this will be done using the n data

points already collected. That is, the initial data provides our starting knowledge

regarding spatial structure. As we collect additional data, we use it to revise our

learning about this structure.

As noted above, An calculates the information in the sample about the mean µ.

There is also information in the sample about σ2 and φ. In particular, I(µ, σ2, φ), as
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a special case of (5.4), takes the form, for sample size n,

In(µ, σ2, φ) =




An/σ

2 0 0
0 n/σ2 Bn/σ
0 Bn/σ En



 , (5.6)

where An is as above, Bn =Tr(R−1
n

∂Rn

∂φ
) and En = 1

2
Tr(R−1

n
∂Rn

∂φ
R−1

n
∂Rn

∂φ
). Hence

|In(β, σ2, φ)| has the simple form σ−4An(nEn−B2
n) explicitly revealing the separation

in information contributions. Suppose that our interest focuses on the information

gain for both µ and φ (i.e., we pretend that σ2 is known). We can simplify (5.6) to

In(µ, φ) =
1

σ2

(
An 0
0 σ2En

)
(5.7)

Taking the trace of this matrix revises the criterion to An/σ
2 + En =

1TR−1
n (φ)1/σ2 +

1

2
Tr
(
R−1

n (φ)
∂Rn(φ)

∂φ
R−1

n (φ)
∂Rn(φ)

∂φ

)
. (5.8)

Evaluation of (5.8) requires estimating σ2 and φ. Again, this will be done using

the n data points already collected. Using convenient matrix identities (e.g., Harville,

1997), computational methods for the rapid calculation of the analogue of (5.5) are

available; we omit details. In fact, it may be of interest to compare the approximately

optimal designs for just the first term in (5.8) or just the second term in (5.8) (see

Section 5.9). However, for the remainder of this section we omit the contribution of

φ to the information gain.

For each site we typically have available covariate information, e.g., for tax parcels,

the age of the house on the parcel might be assumed to provide explanation regarding

the presence of biologically available lead at the location. Suppose in subsequent

analysis, once the data is collected, we anticipate using such information in the mean

specification, say in the form of a linear regression, β0 + β1X(s) where X(s) is the
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age associated with parcel s. Then, we might seek to choose the parcels to maximize

the information about the linear function in age, i.e., in β0 and β1. (Note that this is

not the same objective as choosing sites to encourage Y (s) to be large. See Section

5.8 below.)

More generally, with a p×1 vector of covariates X(s), including the intercept, we

obtain a p× p information matrix (the upper left matrix in (5.4)). Using the trace,

we now obtain
∑p

l=1X
T
l R

−1
n (φ)Xl where Xl is the lth column vector of the design

matrix X = (X1, ..., Xp) ( the ith entry of Xl is Xl(si)). Again we can compute the

information gain explicitly in selecting parcel s0. In fact, we obtain

∑p
l=1(Xl(s0) −XT

l R
−1
n (φ)rn0(φ))2

1 − rT
n0(φ)R−1

n (φ)rn0(φ)
. (5.9)

This is the recursion of Brimkulov, Krug and Savanov (1986).

5.6.2 Comparison of the information criterion and the en-

tropy criterion

From Section 5.1, the entropy criterion is phrased in terms of extent of uncertainty

and is motivated by work in pollution-monitoring network design as summarized in

Zidek, Sun and Le (2000). A scalar arises in the univariate case, the determinant of

a matrix in the multivariate case. Again, with normally distributed, dependent data

both the scalar and the determinant will be parametric functions of the dependence

structure. In the design setting it is intuitively easiest to interpret entropy as uncer-

tainty. Sites with high entropy, given those that we have already sampled, would be

desirable choices to select. That is, from the remaining sites, we would seek to learn

about those for which we are most uncertain. Hence, the criterion computes the en-

tropy given the current set of sites and adds next the site with the largest conditional

entropy. With the assumptions and notation above, it is straightforward to show that
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the conditional entropy associated with site s0 is 1− rT
n0(φ)R−1

n (φ)rn0(φ) (Zidek, Sun

and Le, 2000). As a conditional variance, this quantity is obviously nonnegative and

so, we choose s0 to maximize this. Computation is straightforward. A choropleth

map or contour plot of the values of this criterion over the collection of parcels would

provide a useful display.

It is interesting to note that the entropy criterion is the denominator of the infor-

mation criterion. This appears paradoxical since we are proposing to maximize both

criteria. In fact, the square in the numerator of the information criterion offsets the

denominator to remove the paradox. We can clarify by looking at the n = 1 case.

The information criterion becomes (1−ρ)/(1+ρ) while the entropy criterion becomes

1− ρ2. Both decrease from 1 to 0 as ρ increases from 0 to 1. However, the functions

are quite different; for instance, the former is convex while the latter is concave.

The entropy criterion can be extended to accommodate pure error as well, replac-

ing Rn(φ) with σ2Rn(φ)+ τ 2In as in Section 5.4. The resulting form for the criterion

is σ2 + τ 2 − σ4rn0(φ)T (σ2Rn(φ) + τ 2In)−1rn0(φ). The criterion can also be extended

to multivariate measurements in the form of the determinant of the conditional co-

variance matrix associated with Y(s0). With a separable specification for the error

structure, an argument similar to that for the information criterion enables us to use

the same entropy criterion as above.

Finally, the criterion would not be affected by the introduction of covariate infor-

mation for each site. The entropy measure focuses only on uncertainty arising from

spatial structure. The conditional variance is not affected by the mean specification.

As Zidek, Sun and Le (2000) note, the criterion avoids issues like parameter estima-

tion and hypothesis testing. In our context, we would not view this as advantageous

since we want to learn about the nature of the regression relationship between the

level of the response and the proposed explanatory variables. So, for our purposes,
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the information criterion emerges as preferred. In particular, it will use the available

X(s) vectors in the determination of the selection order.

5.7 Some remarks

Remark 19. Consider the model Y (s) = µ + W (s) and suppose that n locations

s1, ..., sn have already been sampled. Expression 5.5 shows that the information gain

at s0, ∆Is0
(µ) > 0 for a new s0. In fact, ∆Is0

(µ) → 0 when ‖s0 − si‖ → 0, where

si(i = 1, ...n) is any of the n samples and ‖s0 − si‖ is the Euclidean distance between

s0 and si. So, since A1 = 1, we have An > 1 and An increases in n. If Rn → In×n, the

identity matrix, then An → n. Is An ≤ n? Since we showed in the previous section

that A2 − A1 = (1 − ρ)/(1 + ρ), if ρ < 0, A2 > 2 and, in fact, A2 → ∞ as ρ→ −1.

Remark 20. Assuming that all the covariance parameters are given, the general

behavior of 1TR−1(s1, ...sn)1 is surprisingly difficult to investigate (see Section 3.4).

Results depend upon the form of ̺ and the nature of the asymptotics. For example,

under infill asymptotics and a separable covariance function that is a product of one-

dimensional exponential covariance functions, we can compute An explicitly as well

as its limit which is finite. If we allow the size of the region to grow as n grows,

then the relative rates of growth determine the behavior of An. Detailed discussion

is presented in Chapter 3.

Remark 21. If one were to think in terms of choosing a distribution to randomly

sample the locations from, intuition might suggest that the uniform distribution pro-

duces the maximum expected information for µ. In fact, if sampling is for s ∈ D,

E[1TR−1(s1, ...sn)1|si ∼ unif(D)] will not maximize E[1TR−1(s1, ...sn)1|si ∼ f(D)]

for all distributions f over D. Intuitively, appropriate systematic selection of points

will provide greater information than the average under random selection. Consider

the following simple example. Suppose we sample 4 points (s1, s2, s3, s4) uniformly on
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[0,1]. With the exponential correlation function R(si, sj) = e−7|si−sj |, we can obtain,

by Monte Carlo integration, E[1TR−1(s1, ...s4)1|si ∼ unif(0, 1)] = 2.52 (Figure 5.1

shows the density function for the information in this case). However, if we choose

(s1, s2, s3, s4) = (0, 0.33, 0.67, 1), 1TR−1(s1, ...s4)1 = 3.47. Hence, a nondegenerate

distribution that is not far from this degenerate choice will achieve a larger expecta-

tion than under uniform selection.
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Figure 5.1: Density of 1TR−11 given s1, ..., s4 ∼ unif(0, 1)

Remark 22. In considering say, In(µ, σ2, φ), the trace cumulates what we would

define as the conditional information, e.g., the information in the sample about φ

given µ and σ2 are known. We could also calculate unconditional information. We

can show that the sum of the reciprocals of the diagonal elements of I−1
n (µ, σ2, φ)

cumulates this unconditional information. Furthermore, the asymptotic behavior of

unconditional information need not agree with that of conditional information.

Remark 23. We hope that it is clear that the sequential approach need not produce

the optimal choice of m points. The useful analogy here is to variable selection in
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multivariate linear regression. A forward stepwise procedure is not guaranteed to

produce the subset of variables of a fixed size which maximizes R2.

Remark 24. As an example to illustrate a case where sequential design will be worse

than block design, suppose we have s1 at the origin. We want to select three additional

points to learn about the mean from s2, ..., s5 as shown in Figure 5.2. The block

design will select (s1, s4, s2, s5) while the sequential design will select (s1, s4, s3, s2).

The corresponding sequence of information values is (1, 1.915, 2.728, 3.539) and (1,

1.915, 2.736, 3.521), respectively; the four points selected by the block design produce

greater information than those selected by the sequential design.

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.0
0.5

1.0

Counter example, covariance function is R(si, sj)=e−3|si−sj|

Lat

Lo
n s1(0, 0)

s2(0.826,−0.480)

s3(− 0.412, − 0.659)

s4(0.892,0.530)s5(−0.590,0.508)

Figure 5.2: Sequential selection vs. block selection

Remark 25. We conclude with an illustrative comparison among the sequential

scheme, the block scheme, the stochastic search scheme (b = 500) and the refined

stochastic search scheme (again, b = 500). In Figure 5.3 (which arises from the sim-

ulation illustration in Section 5.9), we plot the information growth for the intercept.
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The information for the intercept is bounded as noted in Remark 19 and the upper

bound is given. The sequential design scheme is clearly the best, as it will be gen-

erally except for pathological examples such as in Remark 24. With 40 sites already

sampled and 960 that could still potentially be sampled, more than 95% of the up-

per bound is achieved with only 20 additional observations. For the block scheme

and the modified stochastic search schemes roughly 70 additional observations are

needed to do as well. The inferior performance of the simple stochastic search scheme

is evident. We also plotted (Figure 5.4) the information growth for I(φ), calculated

through the lower right entry in (5.4). Note the striking difference in the information

scales between Figures 5.3 and 5.4. Also, we see that, with σ2 fixed (known), infor-

mation growth for φ is not bounded. See, e.g., Xia, Hjort and Gelfand (2006) in this

regard.
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Figure 5.3: Information (I(β0)) growth in sample size for the four sampling schemes
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5.8 Modified utility spatial designs

The goal here is to propose the use of overlays of either (estimated) mean response

or covariate data layers to achieve specific objectives, e.g., to separate essentially

equivalent locations under the foregoing criteria or to modify utility for point selection

resulting in revised approximate optimization for the spatial sampling design.

For instance, the goal may be to learn about the regression relationship but this

does not imply selection of sites where the response is expected to be high, e.g., high

levels of biologically available lead or of arsenic contamination. One way to achieve

this is a model-based strategy, obtaining the estimated spatial surface based upon

the data collected thus far, i.e., based upon Y (s1), Y (s2), ...., Y (sn). Overlay of this

surface on the selection surface will reveal parcels where both layers achieve high

values in order to determine selection. Alternatively, we could multiply the surfaces

to upweight/downweight the selection surface. One might also work not with the

fitted model layer but, instead, a different data layer, perhaps external to those used

in the model fitting. Such layers might reflect established geographic gradients with

regard to say, the contaminant or distance from a site that is a known source for high

contaminant levels.

This strategy would also address the matter of locations having essentially equiv-

alent values under the criterion. They can be distinguished by using the second

weighting layer, yielding a weighted criterion. For instance, one could upweight

parcels that are expected to exhibit high levels of the contaminant being sampled.

A somewhat different objective that could be used to distinguish parcels which

are essentially equivalent under the information criterion would be to work with

demographic data layers. In this case, the second objective would be to oversample
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parcels with certain demographic features, e.g., in low socio-economic status areas

or high crime rate areas. A spatial surface reflecting such a layer would be created.

Again, overlaying or multiplication provides upweighting or downweighting of the

selection surface. Ultimately, the issue is one of utility for the data collection. If we

seek to learn not only about the exposure surface but also to achieve certain expected

features in our samples, then we need to specify a utility function that reflects this

objective.

5.9 Computational issues and a simulation illus-

tration

In providing a simulation illustration, we focus on sequential design and block de-

sign to select an additional collection of m parcels from N -n parcels given n have

already been selected. We adopt the model Y (s) = X(s)T β +W (s)+ ǫ(s), and work

with I(β, θ) as in (5.4). For the sequential design we do not update the parameter

estimates after each new location is selected. We only use the parameter estimation

based upon the original n samples.

We generalize the trace of I(β, θ) to define I(β) =
∑p

i=1wiI(βi) for vector β of

length p , I(θ) =
∑q

j=1 vjI(θj) for vector θ of length q and finally, the combined

information as I(β, θ) =
∑p

i=0wiI(βi) +
∑q

j=1 vjI(θj). The weights allow us to

rescale the components of the trace to reflect the fact that the information is affected

by scale. For example, the information value would change if we convert distance

from say kilometers to miles. Also the scale of information values for mean structure

parameters β and for dependence structure parameters θ can be very different (recall

Figures 5.3 and 5.4). However, here we do not pursue standardizations (choices of

v’s and w’s) since, as in the previous section, they too reflect utility for the design.

Instead, in the illustration below, we show approximately optimal designs for β,

135



for θ and for utility-weighted versions of these following Section 5.8. Furthermore,

motivated by Figure 5.3, we work only with the sequential sampling scheme.
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Figure 5.4: Information (I(φ)) growth in sample size for the four sampling schemes

In particular, we turn to a simulation example where we conduct the spatial design

based upon a grid of 40 × 25 parcels as Figure 5.5 shows.

We first sampled 40 of these parcels according to, for example, space-filling design

at locations indicated by + on the grid. We generated a random realization of a

Gaussian process of the form Y (s) = β0 + β1X1(s) + β2X2(s) + W (s), ignoring the

pure error term ǫ(s), for convenience. X1(s) denotes the distance of location s from
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Figure 5.5: Study region

a pollution source located at (10.5, 7.5) while X2(s) denotes the distance of s from a

different pollution source located at (18.5, 20.5) (these are indicated by @ on the grid).

The true β0 = 2, the true β1 = 0.5 and the true β2 = 1. The spatial variability σ2 is

set to 1. We use the exponential covariance function with decay parameter φ = 0.2,

resulting in a spatial range of 31.75% of the maximum distance in the region. Figure

5.6 is a three dimensional perspective plot of the true mean surface.

Figure 5.7 shows 100 selected locations (indicated by •) based on the information

gain of β0. Though the selection sequence is not numbered (the figure becomes

too cluttered if we do), adding “less dependent”, i.e., “most isolated” locations will

most increase information. Notice also the striking edge effects which are inherent in

sampling from a bounded region.
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Figure 5.8 provides 100 selected points based on the information gain of β0, β1, β2.

It can be seen that, in addition to isolated locations, we also choose locations that

are clustered around the two pollution sources. In this case, the information gain by

adding a particular point depends on the distance from that point to the pollution

sources as well as the dependence between that point and all the existing samples.

Again, edge effects are strong.

Figure 5.9 shows the design that results from the criterion which attempts to

maximize I(φ), the gain in information about the spatial dependence. The choice of

points is dramatically different from that for I(β0). To learn about decay in spatial

association, we need points near to each other. Edge effects are not an issue here.
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Figure 5.7: Sequential design based on I(β0)

Figures 5.10 and 5.11 provide the analogues of Figure 5.7 and Figure 5.8 using

the design points based upon a weighted criterion, in particular, weighted by the

estimated mean at each location. Note that in the present case, Figure 5.10 changes

dramatically from Figure 5.7 while Figure 5.11 is nearly the same as Figure 5.8.

5.10 A prospective real application

In 1984, a Union Carbide plant in Bhopal, India released methyl isocyanate into the

air at levels high enough to kill several thousand people in the immediate surrounding
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Figure 5.8: Sequential design based on I(β0, β1, β2)

area. Not long after, Union Carbide’s sister plant in South Charleston, West Virginia

also experienced a significant release of acetone and mesityl oxide. Concerned for

their safety, both industrial workers and local communities called for freely available

information on the chemicals being used in and released from industrial facilities. In

response to strong public demand, in 1986, the United States enacted the Emergency

Planning and Community Right to Know Act.

Among other things, under Section 313 the Act established the Toxics Releases

Inventory (TRI). In its original form, TRI required all businesses in Standard In-

dustrial Classification (SIC) codes 20-39 that employed ten or more employees and

released into the air, water, or ground either 10,000 pounds or more of any one of the

350 chemicals on the TRI list or 25,000 pounds or more of any combination of the 350

chemicals to report this information to the USEPA. SIC codes 20-39 cover the follow-
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Figure 5.9: Sequential design based on I(φ)

ing industries: food, tobacco, textiles, apparel, lumber and wood, furniture, paper,

printing and publishing, chemical, petroleum and coal, rubber and plastics, leathers,

stone clay and glass, primary metals, machinery, electrical and electronic equipment,

transportation equipment, instruments, and miscellaneous manufacturing. The TRI

has subsequently been expanded to include metal mining, coal mining, coal- and oil-

fired electric utilities, hazardous waste treatment and disposal facilities, chemicals

and allied products wholesale distributors, petroleum bulk plants and terminals and

solvent recovery services, reflecting a total of 667 chemicals. In addition, the USEPA

has recently reduced the reporting threshold for several chemicals that are considered

either persistent or especially toxic, including hexachlorobenzene, mercury, and lead.

Reconsideration of the TRI reporting requirements includes questions regarding:

1) whether smaller facilities (fewer than 10 employees or lower chemical use levels)
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Figure 5.10: Sequential design based on Y ∗ I(β0)

in TRI-reporting SIC codes should be required to report their emissions; 2) whether

additional SIC codes should be required to report; 3) whether additional chemicals

should be added to the TRI list; 4) whether reporting thresholds should be lowered

on particular compounds (as was done for hexachlorobenzene, mercury, and lead; 5)

whether facilities should be required to report both use and emissions; and 6) whether

facilities that previously reported, but do not report currently, should be required

to provide an explanation for this change in status. All of these policy questions

are substantially hampered by the lack of systematic data on ambient levels of air

toxics. Given the paucity of existing data and the cost of collecting new data, an

optimized method for sampling design is essential. Take, for example, question (1)

above regarding whether smaller facilities should be required to report their emissions.

Previous research where emissions are imputed to smaller facilities indicates that
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Figure 5.11: Sequential design based on Y ∗ I(β0, β1, β2)

including smaller facilities has a substantial impact on the spatial distribution of

modeled ambient air concentrations of contaminants (Dolinoy and Miranda 2004).

This work, however, necessarily relies on model-based estimates of ambient levels

that result from dispersion models. Alternatively, the facilities that already report

to TRI would be analogous to the two point sources delineated in the simulation

presented here. The smaller facilities represent known point sources with unknown

emissions levels. Since the emissions from the smaller facilities are unknown, they are

not available for considering the question of whether these smaller facilities should be

required to report. Determining how important the smaller facilities are to ambient

concentrations can be much more efficiently accomplished through optimization of

sampling design.

The optimized sampling design approach described can incorporate multiple sources
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of emissions and multiple chemicals emitted. The sampling design can also be shaped

to specifically assess exposures to specific sub-populations whose geographic distri-

bution can be characterized. Thus the approach holds great potential for helping

scientists, agencies, and communities understand the distribution of TRI chemicals

released into the environment.

5.11 Extensions

We have considered approximately optimal sampling design for the setting where

we expect intensive one-time sampling rather than sparse continuous monitoring.

We have adopted information-based performance criteria and suggested a sequential

implementation. We have shown that such a strategy is straightforward to implement

with computational demand that is not excessive. We have also suggested utility-

weighting as a mechanism for oversampling to achieve specific objectives.

We have developed the approaches in the setting of data from a Gaussian process.

However, we can work with non-Gaussian models for the data. In fact, we can

also handle discrete data, e.g., binary or count data by representing our model in a

hierarchical fashion with the process specification moved to the second stage. (See

Section 2.2.3). In these cases we merely replace the Gaussian likelihood with a

different first stage likelihood before calculating the information.

A longer view of the exposure data collection might introduce a temporal com-

ponent in the sense that we may seek to revisit locations that have been previously

sampled at a future point in time. If we introduce suitable dependence into our mod-

eling, we can extend our information-based sampling approaches to accommodate

this setting as well.

Lastly, the foregoing development is described in terms of the spatial surface of

levels for a single contaminant. A broader experiment may consider multiple contam-
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inants. If so, we can optimize location selection when levels of several contaminants

are sampled at a given location. (As a variant, we may have multiple types of sam-

pling, e.g., ambient sampling, ground deposition sampling, or organism sampling.

Similar to the above, we can optimize sampling when multiple types of sampling

will be carried out at a location.) In particular, suppose at each parcel we measure

levels of say r contaminants. Now, we replace Y (si) with an r × 1 vector Y(si).

The resulting information gain now depends on both the spatial dependence across

locations as well as the dependence between the measurements within each location.

A simplified form arises under a separable specification for this error structure (see,

e.g., Banerjee, Carlin and Gelfand, 2004 and references therein). The resulting form

is the above information multiplied by the within location covariance matrix. Since

the latter is free of n, we can use the same criteria as above in this case.
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Appendix A

Details in Chapter 3

A.1 The Ornstein-Uhlenbeck process calculation

For the Ornstein-Uhlenbeck process, with φ as correlation decay parameter, sup-

pose we observe Y at t1, ..., tn, the correlation matrix is Rn,i,j = exp(−φ|ti − tj |) and

R̄n,i,j = −|ti − tj |Rn,i,j. A Gaussian process Y (t) is Markovian when

f{Y (u) | Y (s), Y (t)} = f{Y (u) | Y (t)}, (A.1)

for time points s < t < u. This shows that the necessary and sufficient condition is

̺(s, t)̺(t, u) = ̺(s, u)̺(t, t). (A.2)

One sees from this that of all correlation functions exp{−φ|s− t|α}, where α ∈ (0, 2],

only the Ornstein-Uhlenbeck yields a Markov process.

For this process, therefore, when sampled at points t1 < ... < tn, the likelihood

may be written in two ways:

(2π)−n/2σ−n|Rn|−1/2 exp{−1
2
(y − µ1)TR−1

n (y − µ1)σ2}, (A.3)

where Rn has elements exp(−φ|ti − tj |), and

f(y1)

n∏

i=2

f{yi | yi−1}, (A.4)
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in terms of the conditional densities

Y (ti) | past ∼ N(µ+ ρi(yi−1 − µ), σ2(1 − ρ2
i )), (A.5)

where ρi = exp(−φ|ti − ti−1|). Equating these two expressions gives simplifications

for |Rn| and for R−1
n . For the case of equidistant sampling, with ti − ti−1 = ∆ and

ρ = exp(−φ∆), say, where the expression (A.4) becomes

1

(2π)1/2

1

σ
exp
{
−(y1 − µ)2

2σ2

} n∏

i=2

1

(2π)1/2

1

σ(1 − ρ2)1/2
exp
[
−{(yi − µ) − ρ(yi−1 − µ)}2

2σ2(1 − ρ2)

]
,

So, compared with formula (A.3), we have

|Rn| = (1 − ρ2)n−1, or log |Rn| = (n− 1) log(1 − ρ2), (A.6)

and that R−1
n is a bandmatrix with

Ri,i
n =

1 + ρ2

1 − ρ2
for 2 ≤ i ≤ n− 1, R1,1

n = Rn,n
n =

1

1 − ρ2
, and

Ri−1,i
n = Ri,i−1

n = − ρ

1 − ρ2
for 2 ≤ i ≤ n. (A.7)

Summing these, the µ information number has the exact formula

An = 1 + (n− 1)
1 − ρ

1 + ρ
. (A.8)

For ∆ = L/n and ρ = exp(−φ∆) for dense infill of the [0, L] interval, this leads to

An → 1 + 1
2
Lφ. (A.9)

We may also utilize the information reached here about R−1
n to work out a formula

for Bn of (3.64):

Bn = Tr(R−1
n R̄n) =

∑

i,j

Ri,j
n R̄n,i,j

=
∑

|j−i|=1

Ri,j
n R̄n,i,j = 2(n− 1)

ρ2

1 − ρ2
∆. (A.10)
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For large n, in view of ∆ = 1/n here, Bn
.
= n/φ, growing linearly with n.

Turning to En, write

diag(R−1
n ) = (a0, a . . . , a, a0),

sidediag(R−1
n ) = (b, b, . . . , b, b),

where a0 = 1
1−ρ2 , a = 1+ρ2

1−ρ2 , b = − ρ
1−ρ2 . Some work reveals that R−1

n R̄nR
−1
n is also

a bandmatrix, say with

diag(R−1
n R̄nR

−1
n ) = (c0, c . . . , c, c0),

sidediag(R−1
n R̄nR

−1
n ) = (d, d, . . . , d, d),

and zeroes outside. Hence

Tr(R−1
n R̄nR

−1
n R̄n) =

∑

i,j

(R−1
n R̄nR

−1
n )i,jR̄n,i,j = 2(n− 1)dR̄n,1,2,

in that R̄n has zeroes on its diagonal. Therefore, we only need find a formula for d.

In fact,

(R−1
n R̄nR

−1
n )1,2 =

∑

j,k

R1,j
n R̄n,j,kR

k,2
n

= R1,1
n

∑

k

R̄n,1,kR
k,2
n +R1,2

n

∑

k

R̄n,2,kR
k,2
n

= a0(R̄n,1,2R
2,2
n + R̄n,1,3R

3,2
n ) + b(R̄n,2,1R

1,2
n + R̄n,2,3R

3,2
n )

= −ρ∆ 1 + ρ2

(1 − ρ2)2
.

This leads finally to the explicit formula

En = (n− 1)dR̄n,1,2 = (n− 1)∆2ρ2 1 + ρ2

(1 − ρ2)2
. (A.11)
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For general sampling at t1 < ... < tn, Rn(i, j) = ρi,j = exp(−φ|ti − tj |) and the

joint distribution for Y (ti), i = 1, ..., n, is:

f(y1, ..., yn) = N(µ, 1)
n∏

i=2

N(µ+ ρi−1,i(yi−1 − µ), 1 − ρ2
i−1,i)

= (2π)−
n
2

[
n∏

i=2

(1 − ρ2
i−1,i)

− 1

2

][
exp

(
− 1

2
{(y1 − µ)2

+
n∑

i=2

1

1 − ρ2
i−1,i

[yi − u− ρi−1,i(yi−1 − µ)]2}
)
]
. (A.12)

From the above equation, we can find |Rn| and R−1
n . In particular, R−1

n is




1

1−ρ
2

1,2

−ρ1,2

1−ρ
2

1,2

0 0 0 . . .

−ρ1,2

1−ρ
2

1,2

1

1−ρ
2

1,2

+
ρ
2

2,3

1−ρ
2

2,3

−ρ2,3

1−ρ
2

2,3

0 0
...

0
−ρ2,3

1−ρ
2

2,3

1

1−ρ
2

2,3

+
ρ
2

3,4

1−ρ
2

3,4

−ρ3,4

1−ρ
2

3,4

0
...

...
...

. . .
. . .

. . .
...

0 0 0
−ρn−2,n−1

1−ρ
2

n−2,n−1

1

1−ρ
2

n−2,n−1

+
ρ
2

n−1,n

1−ρ
2

n−1,n

−ρn−1,n

1−ρ
2

n−1,n

0 0 0 0
−ρn−1,n

1−ρ
2

n−1,n

1

1−ρ
2

n−1,n




.(A.13)

So,

An = 1TR−1
n 1 = −E(

∂2 log f(y1, ..., yn)

∂µ2
) = 1 +

n∑

i=2

1 − ρi−1,i

1 + ρi−1,i
. (A.14)

Result 1: For an OU process on [0, L], 1TR−1
n (φ)1 increases as φ increases, i.e.

1TR−1
n (φ1)1 > 1TR−1

n (φ2)1 if φ1 > φ2 > 0.

Proof. If φ1 > φ2 > 0, 0 < ρi−1,i(φ1) < ρi−1,i(φ2). Thus
1−ρi−1,i(φ1)

1+ρi−1,i(φ1)
>

1−ρi−1,i(φ2)

1+ρi−1,i(φ2)
.

Result 2: For an OU process on [0, L], limφ→0 1TR−1
n 1 = 1 and limφ→∞ 1TR−1

n 1 =

n.
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Proof. ρi−1,i(φ) → 1 as φ → 0. Thus 1TR−1
n (φ)1 = 1 +

∑n
i=2

1−ρi−1,i

1+ρi−1,i
→ 1. Similarly,

ρi−1,i(φ) → 0 as φ→ ∞, thus 1TR−1
n (φ)1 → n.

A.2 Proof of Theorem 3

Proof. Let us first consider the finite dimensional case. Correlation matrix Rn has a

spectral decomposition Rn = UΛUT , where U = (u1, ..., un) with UUT =
∑n

i=1 uiu
T
i =

In, and Λ = diag(λ1, ..., λn) such that λi ≥ λi+1 > 0. So R−1
n = UΛ−1UT =

∑n
i=1

uiuT
i

λi
.

This leads to

xTR−1
n x =

n∑

i=1

(xTui)
2

λi

=

∫ |ψ(λ)|2
λ

dEλ, (A.15)

where Eλ =
∑n

i=1 δ(λ − λi) is a sum of Dirac measures; ψ(λ) =
∫
x(t)uλ(t) dHt;

Ht =
∑n

i=1 δ(t− ti); and uλ(t) is the eigenvector associated with λ.

For the infinite dimensional (continuous) case, we need some spectral theory re-

sults for the correlation operator K corresponding to ̺. In our case, the domain D is

compact and K is symmetric, bounded and of trace type (i.e. Tr(K) =
∫

D
̺(t, t) dt).

So K has a spectral representation in terms of a countable set of eigenvalues and

eigenvectors which looks similar to the finite dimensional case.

K =
∞∑

i=1

λiPi,

where λi is a summable series of positive eigenvalues and Pi is the corresponding

projection operators. The projection operator Pi can be represented by a unit vector

ψi(t). (ψi(·), x(·)) =
∫

D
ψi(t)x(t) dt is the Fourier coefficients of x(·) and x(t) =
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∑∞
i=1(ψi(·), x(·))ψi(t). Thus

(x,K−1x) = (K− 1

2x,K− 1

2x) =

∞∑

i=1

|(ψi(·), x(·))|2
λi

. (A.16)

A.3 Karhunen-Loève expansion for the exponential correlation function

For ̺(t, s) = e−φ|t−s| on D = [−L,L], we need to solve the integral equation

λψ(t) =
∫ L

−L
e−φ|t−s|ψ(s) ds with

∫ L

−L
ψi(s)ψj(s) ds = δij . Note that

λψ(t) =

∫ t

−L

eφ(s−t)ψ(s) ds+

∫ L

t

eφ(t−s)ψ(s) ds. (A.17)

Differentiation with respect to t leads to

λψ′(t) = −φ
∫ t

−L

eφ(s−t)ψ(s) ds+ φ

∫ L

t

eφ(t−s)ψ(s) ds.

Differentiation with respect to t again yields

λψ′′(t) = −2φψ(t) + φ2

∫ t

−L

eφ(s−t)ψ(s) ds+ φ2

∫ L

t

eφ(t−s)ψ(s) ds = (−2φ+ φ2λ)ψ(t).

So we only need to solve the differential equation

ψ′′(t) + (2φ− φ2λ)ψ(t)/λ = 0 (A.18)

with the boundary conditions

{
φψ(L) + ψ′(L) = 0
φψ(−L) − ψ′(−L) = 0

.

So the eigenfunctions have the following form:

ψ(t) = c1 cos(wt) + c2 sin(wt), c1 and c2 are constants (A.19)
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where w =
√

(2φ− φ2λ)/λ and λ = 2φ/(w2 + φ2). (It can be shown that (2φ −

φ2λ)/λ > 0 in order to make the differential equation solvable.) The boundary

conditions become

{
c1(φ cos(wL) − w sin(wL)) + c2(w cos(wL) + φ sin(wL)) = 0
c1(φ cos(wL) − w sin(wL)) − c2(w cos(wL) + φ sin(wL)) = 0

.

So the solutions are satisfying the following equations:

tan(wL) = φ/w, c2 = 0 or (A.20)

tan(wL) = −w/φ, c1 = 0. (A.21)

Denoting the solutions of (A.20) by w1,i and the solutions of (A.21) by w2,i. The

corresponding eigenvalues and eigenfunctions are

λ1,i =
2φ

w2
1,i + φ2

, ψ1,i(t) =
cos(w1,it)√

L+ sin(2w1,iL)/(2w1,i)
(A.22)

and

λ2,i =
2φ

w2
2,i + φ2

, ψ2,i(t) =
sin(w2,it)√

L− sin(2w2,iL)/(2w2,i)
. (A.23)

Finally, we have the Karhunen-Loève expansion for the exponential correlation

function:

̺(s, t) =
∞∑

i=1

(
λ1,iψ1,i(s)ψ1,i(t) + λ2,iψ2,i(s)ψ2,i(t)

)
. (A.24)
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Appendix B

Details in Chapter 4

Lemma B.1

Define

W (s) ≡ Z[K(s− ·)] =

∫

R2

K(s− t)Z(dt), (B.1)

where Z(dt) is an orthogonal random measure satisfying the three conditions below

formula (4.10). Assume Z(dt) ∼ N(0, ν(dt)). Then W (s) defines a Gaussian process

with mean 0 and covariance function in (4.18).

Proof. We first assume K(· − t) is a simple function. We will prove that the distri-

bution of W (s1) and W (s2) is jointly normal. Then we generalize two dimensional

distribution case to the finite dimensional distribution case. Finally, we relax the

simple function assumption. For a simple function K(· − t), according to the defini-

tion of Z[K] for simple functions K in Section 4.2.2, suppose W (s1) =
∑I

i=1 aiZ(Ai)

and W (s2) =
∑J

j=1 bjZ(Bj), we can make a finer partition Ck (k = 1, · · · , r) such

that W (s1) =
∑I′

i=1 a
′
iZ(Cni

) and W (s2) =
∑J ′

j=1 b
′
jZ(Cmj

), where Cni
, Cmj

∈ {Ck},

(
⋃I′

i=1Cni
)
⋃

(
⋃J ′

j=1Cmj
) =

⋃r
k=1Ck, and Ck are disjoint to each other. By our con-

struction, Z(Ck) are independent normal with mean zero and variance ν(Ck). Denote
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the vector Z(Ck) as Z, then the distribution of Z is a multivariate normal with mean

zero and covariance matrix Σ (Σij = ν(Ci)1i=j) since any linear combinations of

Z(Ck) are univariate normal random variables. Standard normal theory says that

HZ+µ, where H is any q×r matrix and µ is any non-random q-vector, has a q-variate

normal distribution with mean µ and the covariance matrix HΣHT . Here we choose

an appropriate 2× r matrix H such that HZ is

(
W (s1)
W (s2)

)
. This shows that W (s1)

and W (s2) are bivariate normal. The same argument applies when finding the joint

distribution of W (s1), · · · ,W (sn). As a result, it is an n-variate normal distribu-

tion. Finally, for a general K(·) ∈ L2(ν), there exists a sequence of simple functions

{K1, K2, · · · } which converges to K(·). Then we have a sequence of associated nor-

mal vectors {W1,W2, · · · } with corresponding distribution functions F1, F2, · · · and

characteristic functions φ1(t), φ2(t), · · · . It is easy to see that limi→∞ φi(t) exists,

denoted as φ(t), for all t. φ(t) is continuous at 0 and it is the characteristic function

of a multivariate normal vectors. Thus by the continuity theorem, the distribution

function F for the limiting random vector W is also multivariate normal.

Proposition B.2

Assume the conditions about Dr, Brj and trj described in Section 4.3.1 are sat-

isfied, then W̃r,m(s)
L2

→ W (s) as m → ∞ and r → ∞ for ever s. Moreover,

Cov(W̃r,m(s), W̃r,m(s′)) → Cov(W (s),W (s′)) as m → ∞ and r → ∞ for ever s

and s′.
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Proof. Note E(W (s)) = 0 and E(W̃r,m(s)) = 0. We have

E(W (s) − W̃r,m(s))2 = σ2
[ ∫

R2

K2(s− t) dt+

m∑

j=1

K2(s− trj)|Brj|

−2
m∑

j=1

(
K(s− trj)

∫

Brj

K(s− t) dt
)]
. (B.2)

We first consider the middle term of (B.2). Since K(·) is “nice” (i.e. square integrable

on R
2 and it decays to 0 at ∞) and Brj is a square, using familiar arguments as in

the Riemann integration theory, for a fixed r,

lim
m→∞

m∑

j=1

K2(s− trj)|Brj| =

∫

Dr

K2(s− t) dt.

Also it is easy to see limr→∞
∫

Dr
K2(s− t) dt =

∫
R2 K

2(s− t) dt.

For the third term in (B.2), similarly,

lim
m→∞

2

m∑

j=1

(
K(s− trj)

∫

Brj

K(s− t) dt
)

= 2

m∑

j=1

∫

Brj

K2(s− t) dt =

∫

Dr

K2(s− t) dt.

So limr→∞ limm→∞ E(W (s) − W̃r,m(s))2 = 0.

Next, it is easy to calculate that

Cov(W̃r,m(s), W̃r,m(s′)) = σ2
m∑

j=1

K(s− trj)K(s′ − trj)|Brj|,

which converges to
∫

Dr
K(s− t)K(s′ − t) dt for a fixed r when m→ ∞. So

lim
r→∞

lim
m→∞

Cov(W̃r,m(s), W̃r,m(s′)) =

∫

R2

K(s− t)K(s′ − t) dt = Cov(W (s),W (s′)).
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