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Abstract

We propose a general Bayesian “sum of kernels” model, named Bayesian Additive

Regression Kernels (BARK), for both regression and classification problems. The

unknown mean function is represented as a weighted sum of kernel functions, which

is constructed by a prior using symmetric α-stable (SαS) Lévy random fields. Both

truncation and continuous approximations for the SαS Lévy random fields are in-

vestigated, which lead to specifications of joint prior distributions for the number of

kernel functions, the regression coefficients and kernel parameters.

Dimension reduction and variable selection techniques are commonly used for

gaining insight and making more accurate predictions in the regression and clas-

sification problems. We detail a fully Bayesian approach for dimension reduction

through low rank Gaussian kernel functions in the non-parametric kernel logistic

regression model. We also demonstrate a direct feature selection procedure which fa-

cilitates a hierarchical mixture prior distribution of point mass at zero and a gamma

distribution on the kernel scale parameters. Finally, we present some preliminary in-

vestigation adding dependence structure into this feature selection procedure through

a Markov model on the kernel scale parameters. Reversible jump algorithms are im-

plemented to facilitate the posterior inference, and the methods are illustrated with

several simulated data sets and real data sets.
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Chapter 1

Introduction

Statistical models are used to understand the relationship between a response vari-

able and the explanatory variables, or covariates. When the response variable is

continuous, it is often referred as regression problems; when the response variable is

discrete, it is referred as classification problems. Bayesian Additive Regression Ker-

nels (BARK) provides a unified approach for both the regression and the classification

problems.

There are two major goals in those problems: making predictions for a set of future

observations, and learning the underlining structure of how the explanatory variables

influence the response. The prediction task can be done with a flexible model for the

mean function. Typically, people used “sum of generating functions” to capture both

the additive and the interactive effects from the explanatory variables. In this thesis,

we shall focus on “sum of kernels” models, and compare its predictive performance

with the classical kernel model Support Vector Machines (SVM), and the “sum of

trees” model Bayesian Additive Regression Trees (BART). Making inference for the

kernel functions reveals the relationship of the explanatory variables and the response.

For example, with low rank Gaussian kernel functions, the model effectively projects

the original covariate space to a dimension reduced subspace; while shrinking the

diagonal elements to zero in the diagonal Gaussian kernels selects out those variables

in the regression model.

The mean function in BARK is a stochastic integration of the kernel function,

whose prior distributions are specified through random measures. In section 1.1,

we define the terminology and review Lévy random measures. In section 1.2, we
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present a brief review of Lévy random fields, and its construction using Poisson

random measures. In section 1.3, we present a brief review of symmetric α-stable

Lévy random measures and the corresponding Lévy random fields. In section 1.4, we

outline the structure of the remaining chapters in this thesis.

1.1 Lévy Random Measures

A Lévy random measure L on Ω assigns independent infinitely-divisible random vari-

ables L(Ai) to disjoint Borel sets Ai ∈ Ω. In general, the characteristic function for

any infinitely-divisible random variable has the following form

E
[

eitL(A)
]

= exp
{

itδh(A) − 1

2
t2Σ(A) +

∫∫

R×A

(

eitβ − 1 − ith(β)
)

ν(dβ, dω)
}

, (1.1)

where δh is a finite signed measure on Ω, Σ is a positive measure on Ω (Khinchine

and Lévy, 1936; Rajput and Rosiński, 1989). The σ-finite measure ν on R × Ω is

called the Lévy measure, which satisfies the L2 local integrability condition

∫∫

R×K

(1 ∧ β2)ν(dβ, dω) < ∞

for each compact K ∈ Ω and ν({0}, Ω) = 0, for more details see Jacod and Shiryaev

(1987, p. 75), Cont and Tankov (2004, pp. 457-459).

The compensator function h in (1.1) is determined uniquely by the characteristic

triplet (δh, Σ, ν). When the Lévy measure satisfies the stronger L1 local integrability

condition

∫∫

R×K

(1 ∧ β)ν(dβ, dω) < ∞
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for each compact K ∈ Ω, we can set h ≡ 0 with appropriate δh. This non-negative

Lévy random measure is called a “completely random measure” by Kingman (1967).

If the Lévy measure is only L2 local integrable, but not L1 local integrable, in order

to make the integrand in (1.1) bounded and O(β2) near β ≈ 0, the compensator

function must be a bounded measurable function satisfying

h(β) = β + O(β2), β ≈ 0.

Since the random measure L maybe written as the sum of a Gaussian part, which

assigns independent distributed normal random variables with mean δh(Ai) and vari-

ance σ(Ai) to disjoint sets Ai, and a remaining part, which assigns independent

random variables with characteristic function

exp

{∫∫

R×A

(

eitβ − 1 − ith(β)
)

ν(dβ, dω)

}

. (1.2)

We call a random signed measure L without the Gaussian component a Lévy random

measure. In chapter 2, we used the Lévy random measure on Ω = X×R
r
+, the product

space for the kernel location and scale parameters, and in chapter 3, we used the Lévy

random measure on Ω = X, the kernel location space only.

1.2 Lévy Random Fields

The Lévy random measure that maps Borel set A to the random variable with char-

acteristic function (1.2) can be viewed as a linear operator that maps the indicator

function 1A(ω) to the same random variable. In general, the Lévy random measure

induces a linear mapping from functions g : Ω → R to random variables L[g], with

3



following characteristic function

E
[

eitL[g]
]

= exp

{∫∫

R×Ω

(

eitβg(ω) − 1 − ith(β)g(ω)
)

ν(dβ, dω)

}

. (1.3)

Such a mapping is called a Lévy random field. It is straight forward to verify that the

domain of the Lévy random field includes all simple functions, thus by continuity, it at

least includes all bounded measurable compactly-supported functions, see (Wolpert

and Taqqu, 2005), or (Rajput and Rosiński, 1989; Kwapień and Woyczyński, 1992, p.

9) for a general discussion on all possible functions g that the integral in 1.3 are well

defined. This includes kernel functions, in particular, the Gaussian kernel functions,

we are going to use in the later chapters.

The key for making tractable Bayesian posterior inference using Lévy random

fields is through the construction based on Poisson random fields. Specifically, when

ν satisfies the L1 local integrability condition, we may set the compensator h ≡ 0.

Denote by the Poisson random measure N (dβ, dω) ∼ Po(ν(dβ, dω)) on R×Ω, which

assigns independent Poisson random variables with Po(ν(Bi)) distributions to disjoint

Borel sets Bi ⊂ R × Ω. For any bounded measurable compactly-supported function

g(ω), the random variable induced by the Lévy random field can be constructed as

follows

L[g] =

∫∫

R×Ω

βg(ω)N (dβ, dω) =
J
∑

j=0

βjg(ωj),

where {(βj, ωj)} is the set of J ≤ ∞ support points in N (dβ, dω).

When ν(dβ, dω) is not L1 locally integrable, but L2 locally integrable, we need to

take care of the compensator function in the Poisson construction. Let N ∼ Po(ν) be

the same Poisson random measure introduced above, denote by the centered Poisson

4



random measure Ñ (dβ, dω) = N (ν(dβ, dω) − ν(dβ, dω), which induces an isometry

from L2(R × Ω, ν(dβ, dω)) to square-integrable zero-mean random variables (Sato,

1999, pp. 38). The random variable induced by the Lévy random field can be

constructed from

L[g] =

∫∫

R×Ω

[β − h(β)] g(ω)N (dβ, dω) +

∫∫

R×Ω

h(β) g(ω)Ñ (dβ, dω) (1.4)

for any measurable function g that (1.4) converges.

1.3 Symmetric α-Stable Lévy Random Fields

In general, a random variable X is said to have a stable distribution St(α, βs, γ, δ) if

its characteristic function has the following form

E
[

eitX
]

=











exp
{

iδt − γ|t|α − iβsγ tan πα
2

(t − |t|αsgnt)
}

if α 6= 1

exp
{

iδt − γ|t| − 2iβsγt
π

log |t|
}

if α = 1

where 1 < α ≤ 2 is the stable index, 1 ≤ βs ≤ 1 is the skewness parameter, γ > 0

is the intensity parameter, and δ ∈ R is the drift parameter, see Samorodnitsky and

Taqqu (1994, pp. 113-117) for more details. In this thesis, we shall focus on the

case that 0 < α < 2 and βs = δ = 0, which is called the symmetric α-stable (SαS)

distribution, with characteristic function

E
[

eitX
]

= exp {−γ|t|α} =

∫

R

(

eitu − 1 − it sin u
)

ν(du), (1.5)

where ν(du) = αγ
π

Γ(α) sin πα
2
|u|−1−α du is called the SαS Lévy measure. In particular,

when α = 1, X has Cauchy distribution, with probability density function (πγ)−1(1+

x2/γ2)−1. The function sin u serves as the role of a compensator, making the integrand

5



in (1.5) finite. In addition, the random measure constructed from this compensator

function with drift δ = 0 does not involve a Gaussian component, which is indeed a

Lévy random measure described in section 1.1.

Specifically, to construct a SαS Lévy random measure on Ω, we start from Lévy

measure ν(dβ, dω) on R × Ω

ν(dβ, dω) =
αγ

π
Γ(α) sin

πα

2
|β|−1−αdβπω(dω),

where πω(dω) is a σ-finite measure on Ω. In this thesis, we will use probability mea-

sure πω(dω) in the regression and classification problems. This induces a SαS Lévy

random measure mapping disjoint Borel sets Ai ∈ Ω to independent SαS random

variables L(Ai) ∼ St(α, 0, γπω(Ai), 0).

Furthermore, the corresponding SαS Lévy random field maps function g : Ω → R

to SαS random variable L[g] ∼ St(α, 0, γ∗, 0), where γ∗ = γ
∫

Ω
|g(ω)|απω(dω). With

the compensator function h(β) = sin β, the random variable can be constructed from

(1.4), or

L[g] =

∫∫

R×Ω

[β − sin β] g(ω)N (dβ, dω) +

∫∫

R×Ω

sin β g(ω)Ñ (dβ, dω).

1.4 Overview

The remainder of this thesis investigates various models that use SαS Lévy random

fields as the prior distribution for the unknown mean function in both regression and

classification problems.

Chapter 2 focus on problems where a lower dimensional structure is embedded

in the original covariates. Unlike traditional dimension reduction techniques, we

6



propose a fully Bayesian approach to make joint inference for both making dimension

reduction and learning the unknown regression mean function. The low dimension

structure is captured by a common eigenvector matrix in the low rank Gaussian kernel

functions, which induces a projection mapping from the original covariate space to the

dimension reduction space. We focused on binary classification models, and built a

non-parametric logistic kernel regression model. We introduced a SαS Lévy random

measure for both the kernel location parameters and the kernel eigenvalues, which

induces a mapping from the kernel function to a SαS random variable for modeling

the logistic regression function. Truncation approximation for the SαS Lévy random

field is used, and a reversible jump algorithm is implemented for making tractable

Bayesian posterior inferences.

As oppose to the dimension reduction problem, chapter 3 focus on another set

of problems where variables are either in or out of the model. Feature selection is

done through the inference for the scale parameters in the diagonal Gaussian kernel

functions. With a hierarchical mixture prior distribution of point mass at zero and a

gamma distribution for the kernel scale parameters, the importance of each variable

can be interpreted from the posterior inclusion probabilities. We introduced a SαS

Lévy random measure for the kernel location parameters, which induces a mapping

from the kernel function to a SαS random variable for modeling the unknown mean

function. Continuous approximation for SαS Lévy random field is used, resulting

a tα prior distribution for the regression coefficients. Marginalizing the regression

coefficients greatly improved the mixing of the Markov chain compared with the

truncation method. We illustrate the Bayesian Additive Regression Kernels (BARK)

model with various simulated and real data sets for both regression and classification

problems.

Chapter 4 extends the BARK model to problems with a large number of vari-

7



ables. We looked at a particular set of problems where the variables exhibits an one

dimensional Markov correlation structure. We present some preliminary results on

the performance of kernel models with a large p for classification problems. Although

the kernel models are efficient classifiers, they are sensitive to the choice of baseline,

hence not so attractive for selecting out features.

8



Chapter 2

Bayesian Dimension Reduction with

Kernel Logistic Models

2.1 Introduction

Advances in computing have broadened scientists’ horizon for investigating infor-

mation from many explanatory variables for classification problems. The response

variable, however, may depend only on a small subset of the explanatory variables,

or a few linear combinations of those variables. In situations with many predictor

variables, it is common to use variable selection techniques (Clyde and George, 2004;

George and McCulloch, 1997, 1993), or dimension reduction methods (Cook and Ni,

2005; Globerson and Tishby, 2003; Li, 1991) to reduce the model complexity.

While variable selection procedures are typically applied after specifying a par-

ticular model, dimension reduction methods can be used before identifying a specific

parametric model, for example, see Chiaromonte and Cook (2002). With p explana-

tory variables X = (X1, X2, . . . , Xp), sufficient dimension reduction seeks a few in-

dependent linear combinations UT
1 X, . . . , UT

r X, such that all the information about

the response Y is contained in these d linear combinations. The space spanned by

UT
1 , . . . , UT

r is called the dimension reduction space, and the goals are determining

the smallest dimension d and the corresponding directions UT
1 , . . . , UT

r . In particular,

if each Ul contains only one non-zero element, the dimension reduction space can be

attained by variable selection procedures. Several methods have been proposed to

find the reduction space. Principle Hessian directions (PHD; Li, 1992; Cook, 1998)

locates the main axes along which the regression surface shows the largest curvature

9



in an aggregated sense; sliced inverse regression (SIR; Li, 1991; Duan and Li, 1991)

looks at the first moment E(X|Y ) in the inverse regression problem to learn about

the dimension reduction space; sliced average variance estimation (SAVE; Cook and

Weisberg, 1991) uses the first and the second moments in the inverse regression prob-

lem to estimate the directions. Recently, Wu et al. (2007) generalizes the SIR settings

to non-linear dimension reduction using kernel models.

Given a set of directions U1, . . . , Ul, one may build a parametric model for classi-

fying the response, and kernel models are one flexible family of parametric models.

The regression model can be easily extended to classification problems through link

functions. Kernel logistic regression (KLR; Cawley and Talbot, 2002, 2004) is com-

monly used for binary classification problems, which imposes a linear structure on

the kernel functional space, capturing the complex non-linear relationship in the re-

gression function. It differs from the Support Vector Machines (SVM; Boser et al.,

1992; Cristianini and Shawe-Taylor, 2000), because SVM focuses on estimating the

optimal decision boundary separating difference classes, while KLR estimates the pos-

terior probabilities of the class membership and subsequently establishes a decision

boundary at some fixed threshold probability.

While KLR models are good classifiers for making predictions, it lacks the abil-

ity for interpreting the explanatory variables, especially in high dimension problems.

In this chapter, we incorporate the dimension reduction idea into KLR through low

rank Gaussian kernel functions. The Gaussian kernel is characterized by the preci-

sion matrix, which can be decomposed to a eigenvector matrix and corresponding

eigenvalues. The p × r eigenvector matrix U = (U1, . . . , Ur) converts the original

explanatory variables to d linear combinations of them UT
1 X, . . . , UT

r X, which spans

the dimension reduction space. The dimension d can be determining through a series

hypothesis testing (Shao et al., 2007; Cook and Ni, 2005). In our nonparametric

10



KLR model, we preselect several candidates d, make a fully Bayesian inference for

each d, and then compare those models with cross-validation error rates. The kernel

functions are centered on the training samples like SVM, but the number of kernel

functions is treated as a random variable. Furthermore, different eigenvalues in the

Gaussian kernel precision matrix creates different kernel functions even if the kernel

locations are the same. This leads to a flexible setting that could capture different

type of interactions among the features in the dimension reduction space.

In the next section, we present the details of the nonparametric low rank kernel

logistic regression model, which makes simultaneous inference for the kernel regression

parameters and dimension reduction parameters. The prior distributions for the

number of kernel functions, regression coefficients, and kernel parameters are jointly

specified through an approximation for the SαS Lévy random field in Section 2.2.2.

Lévy random field has been used in kernel regression problems (see Clyde et al., 2005,

2006; Tu et al., 2006; Clyde and Wolpert, 2007), and we extend it to KLR models for

binary classification problems. The dimension reduction idea is implemented through

the inference for the eigenvector matrix in the Gaussian kernels, which is further

illustrated in Section 2.2.3. We developed a novel proposal distribution on the Stiefel

manifold, which facilitates the MCMC for the dimension reduction projection matrix.

Section 2.2.4 details the elicitation for the hyperparameters. Then we demonstrate

the model with some simulation studies and real data analysis in Section 2.3. Finally,

we conclude with a discussion in Section 2.4.

2.2 Method

In this section, we introduce the nonparametric kernel logistic regression model. We

extend it to the nonparametric setting, and detail the joint prior specification for

11



the regression coefficients and the kernel parameters. We detail the choice of the

prior distributions, which approximates the symmetric α stable process, and then we

illustrate the elicitation for the hyperparameters. Finally, we present the algorithms

to make posterior samples for all parameters.

2.2.1 Kernel Logistic Regression

Given a set of training samples

{(yi,xi)}n
i=1, yi ∈ {0, 1}, xi ∈ R

p,

where xi is the vector of p explanatory variables for the ith training sample. Let

zi = P (yi = 1 | xi) ∈ (0, 1) be the probability that the ith sample belongs to the

class “1”, then the logistic regression procedure aims to construct a linear model of

the form

logit{z} = f(x) = β0 + xT β, where logit(z) = log
z

1 − z
.

Assuming that the class labels yis are drawn from independent distributed Bernoulli

distributions with probabilities zis, the likelihood of the data is given by

n
∏

i=1

zyi

i (1 − zi)
1−yi =

n
∏

i=1

{g[f(xi)]}yi{1 − g[f(xi)]}1−yi , (2.1)

where g[f(x)] = 1/(1 + exp {−f(x)}). This likelihood holds not only for the regular

logistic function, but for more general regression functions f(x). We shall mainly

focus on the regression term f(x) for the following kernel logistic regression models. A

standard way to estimate the parameters for the regular logistic regression is through

iterative weighted least squares algorithm.
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A kernel K : R
p × R

p → R induces a mapping from input vector x into a kernel

function K(·,x), and KLR implements a linear logistic regression model on the kernel

functional space,

logit{z} = f(x) = β0 +
n
∑

i=1

βiK(x,xi).

Due to the non-linearity of the kernel mapping, this model is actually models the

non-linear actions on the original covariate space. The kernel functions in KLR cen-

ter at those n training sample points, and they share the same kernel parameters

other than the location parameter. One way to estimate the parameters is via it-

erative algorithms, first estimate the regression coefficients by standard techniques

conditional on the kernel parameters, by substituting the original variables by the

kernel matrix, then estimate the kernel parameters by gradient method conditional

on the regression coefficients, repeat those steps until convergence occurs.

In this chapter, we shall focus on rank d Gaussian kernels with following form

Kr(x,χ,Λ) = exp

{

−1

2
(x − χ)TΛ(x − χ)

}

, (2.2)

where the kernel precision matrix Λ is rank-d, i.e.

Λ = U diag {λ}UT =
r
∑

l=1

λlUlU
T
l . (2.3)

Here λ = {λ1, · · · , λr} is the eigenvalue vector of Λ, and U = {U1, · · · , Ur} is the

p × r eigenvector matrix of Λ. Notice that λl > 0, and the column vectors in U are

orthonormal, or UT
l Ul′ = δl′

l . In other words, the eigenvector matrix U lies in the

13



Stiefel manifold

O(p, r) = {U ∈ R
p×r | UTU = Ir}. (2.4)

In particular, when r = p, the Stiefel manifold becomes the orthogonal group of p×p

orthogonal matrices.

With the matrix factorization (2.3), the kernel function (2.2) is also denoted as

Kr(x,χ,λ,U). Additional restrictions for the eigenvalue vector λ and eigenvector

matrix U are needed for an identifiable model. The eigenvector matrix U serves as a

dimension reduction matrix, which projects the point x ∈ R
p to x̃ = UTx ∈ R

r, and

projects the point χ ∈ R
p to χ̃ = UT χ ∈ R

r. In other words, the rank r Gaussian

kernel function with parameter λ and U on the original covariate space can be treated

as a full rank diagonal Gaussian kernel function on the dimension reduction space,

i.e.

Kr(x,χ,λ,U) = exp

{

−1

2
(x̃ − χ̃)T diag(λ)(x̃ − χ̃)

}

= Kr(x̃, χ̃,λ, Ir).

Dimension reduction techniques are commonly used to generate summary plot,

which serve as a guidance to build parametric models. For example, when d is 1 or

2, it is possible to plot the projected data points on the dimension reduction space,

and then discover important features that can be used for more sophisticated model

building (Cook and Lee, 1999). Alternatively, we avoid any specific parametric model,

and try to build a flexible nonparametric kernel regression model on the dimension

reduction space.
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2.2.2 nonparametric Kernel Logistic Regression

One disadvantage of the traditional KLR models is that all kernels have the same

shape parameters, such as they share the common precision matrix Λ in the Gaussian

kernel (2.2). Therefore, there are at most n different kernel functions in the regression

term, where n is the number of training samples. Alternatively, if we allow some of the

kernel shape parameters to vary for different kernel functions, the regression function

could explore a much bigger functional space. In particular, with Gaussian kernel

(2.2), suppose the regression function is a linear combination of random number of

kernel functions,

f(x) = β0 +
J
∑

j=1

βjKr(x,χj,λj,U). (2.5)

Under this formulation, all kernel functions share the same eigenvector matrix U, but

they are allowed to have different eigenvalues λ and location parameter χ. Denote

by X the n×p covariate matrix, then the orthonormal matrix U projects the original

covariate space to a dimension reduction space spanned by X̃ = XU. The regression

model (2.5) can be viewed as first project the original covariate space to a lower

dimensional space, then build a kernel regression model on the lower dimensional

space with diagonal kernel functions, whose eigenvalues do not need to be the same.

We need to construct a joint prior distribution for the projection orthonormal

matrix U, the number of kernels J , the kernel locations χj, the kernel eigenvalues λj

and the regression coefficients β0 and βj, where j = 1, . . . , J . Some of the parameters,

such as β0 and U, do not need to change when the number of kernels changes, while

other parameters, such as β1:J , χ1:J , and λ1:J , depend on the the number of kernels.

They need to be treated differently.
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Prior distributions for dimension changing parameters

Conditional on the number of kernel functions J , we would like to assign independent

identical prior distributions for (βj,χj,λj), j = 1, . . . , J . Generally, suppose the prior

for J is a Poisson distribution with an finite mean ν+, the prior for βj, χj, λj are

independent from proper distributions with density function πβ(β), πχ(χ) and πλ(λ)

respectively, it defines a Poisson random measure N ∼ Po(ν), whose control measure

is

ν(dβ, dχ, dλ) = ν+πβ(β)πχ(χ)πλ(λ).

Denote by X the space the kernel location χ lies, R
r
+ = {(λ1, . . . , λr) | λ1 >

0, . . . , λr > 0} the space kernel eigenvalue vector λ lies, then ν is a positive mea-

sure on R × X × R
r
+. The kernel regression function (2.5) can be also represented as

a stochastic integration of βK(·) with respect to this Poisson random measure, i.e.

f(x) = β0 +

∫

βK(x,χ,λ,U)N (dβ, dχ, dλ).

Rewrite the regression term as a stochastic integration of the kernel function K with

respect to a signed measure

L(dχ, dλ) =
∑

j

βjδ(χj ,λj)(χ,λ).

L can be viewed as a functional operator, who maps a L2 functions K(x, ·, ·,U) to a

random variable L[K(x, ·, ·,U)] =
∫

K(x,χ,λ,U) dL, with characteristic function

E
[

eitL[K]
]

= exp

{∫

(

eitβK(x,χ,λ,U) − 1
)

ν(dβ, dχ, dλ)

}

.
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Here ν is called the Lévy measure, the random signed measure L(dχ, dλ) is called the

Lévy random measure, and the functional operator L(·) is called the Lévy random

field.

This procedure holds not only for finite measures ν, but also for more general

positive measures. For example, the symmetric α-stable (SαS) Lévy random field

takes Lévy measure

ν(dβ, dχ, dλ) = γcα|β|−1−αdβπχ(dχ)πλ(dλ), (2.6)

where cα = (α/π)Γ(α) sin(πα/2), and πχ(dχ), πλ(λ) are probability measures on

X, R
r
+ respectively. Here 0 < α < 2 is called the stable index, and γ > 0 is called

the intensity parameter. Notice that the SαS Lévy random measure ν is not finite,

directly sampling from the random variable L[K] =
∫

K dL is not feasible. However,

we can approximately sample from this random variable by truncating the regression

coefficients β. Omit all βs whose absolute magnitude is less than or equal to ǫ, where

0 < ǫ < 1 is some prespecified threshold, the stochastic integral Lǫ[K] =
∫

|β|>ǫ
K dL

is well defined. We do not need to worry about the compensator functions, because

the truncation is symmetric about 0, see appendix A for details.

The approximated SαS Lévy random field induces a joint prior distribution for

the number of kernels J , the regression coefficients β, kernel locations χ, kernel

eigenvalues λ,

J ∼ Po(ν+
ǫ (α, γ, ǫ))

{βj}J
j=1 ∼ αǫα

2
|β|−1−α1[−ǫ,ǫ]c(β)dβ

{χj}J
j=1 ∼ πχ(dχ)

{λj}J
j=1 ∼ πλ(dλ)
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where the expected number of kernel functions is

ν+
ǫ =

∫

[−ǫ,ǫ]c×X×Rr

ν(dβ, dχ, dλ) =
2γΓ(α)

πǫα
sin(

απ

2
). (2.7)

In particular, for the Cauchy random field, α = 1, and ν+
ǫ = 2γ/(πǫ).

The regression coefficients associated with kernel functions have an identically

independent two-sided Pareto prior distributions. The absolute value of these regres-

sion coefficient are restricted to be greater than ǫ, which is an acceptable assumption

if ǫ is small. The tail of the Pareto distribution is polynomial, which is heavier than

that of the normal distribution or the t distribution.

Like the most kernel regression models, we assume the kernel location parameters

comes from the discrete set of the training samples. The kernel location space X =

{x1, . . . ,xn} is the collection of the training sample input vectors. It is natural to

use a uniform prior distribution on this discrete set for the kernel locations, i.e.

πχ(χ) = 1X(χ)/n.

Because the original p dimensional covariate space has already been reduced to a r

dimensional subspace by the projection matrix U, we would like to assume that all the

eigenvalues in the rank d kernel are positive. Here we assign independent identically

log normal prior distributions LN(µλ, σ
2
λ) for the eigenvalues λl, l = 1, . . . , r, whose

density function is

1√
2πσλλl

exp

{

−(log λl − µλ)
2

2σ2
λ

}

.
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Prior distributions for β0 and U

Since the intercept β0 is always included in the kernel logistic regression model (2.5),

we assign a double exponential prior distribution DE(b0), whose density function is

b0 exp{−b0|β0|}/2.

Also U appears in every kernel function, a proper prior distribution on the Stiefel

manifold (2.4) would be satisfactory. One natural choice is the uniform distribution

on O(p, r). Given the rank d, all eigenvectors U lies in the same Stiefel manifold

(2.4). We do not need to calculate the volume of O(p, r) in practice, because the

ratio of the prior densities for two different Us is 1.

2.2.3 Implementation

To make inference for the nonparametric logistic regression model, we need to draw

samples of the parameters from the posterior distribution. The hyperparameters

α, ǫ, aλ, bλ, b0, µµλ
, σ2

µλ
, aσ−2

λ
and bσ−2

λ
are fixed by some default values. Because

the data set have been standardized before the modeling, the default set up of the

hyperparameters are not sensitive to the data sets.

The stable intensity γ has a Gamma hyper-prior distribution, which can be inte-

grated out, and forms a negative binomial marginal prior distribution for the number

of kernels. Other intermediate hyperparameters µλ, σ−1
λ can be updated conjugate

from their conditional distributions. Suppose the current model has J kernels, whose

eigenvalue vectors are λ1, . . . ,λJ , where λj = (λj,1, . . . , λj,r), then the conditional
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distributions are

µλ | σ2
λ, µµλ

, σ2
µλ

,λ ∼ No

[(

J
∑

j=1

r
∑

l=1

log λj,l + µµλ

)

/

(rJ + 1),

(

rJ

σ2
λ

+
1

σ2
µλ

)−1
]

,

σ−2
λ | µλ, µµλ

, σ2
µλ

,λ ∼ Ga

[

aσ−2
λ

+ rJ/2, bσ−2
λ

+
J
∑

j=1

r
∑

l=1

(log λj,l − µλ)
2/2

]

.

The regression intercept β0 and the kernel eigenvector projection matrix U ap-

pears in every model. However, the likelihood (2.1) involves the logistic function,

there is no conjugate update for these parameters, therefore we rely on Metropolis-

Hasting steps to build the Monte Carlo Markov chain.

MCMC on the Stiefel Manifold

In order to make a random walk on the Stiefel manifold, we need to find a distri-

bution with certain “center” and “spread” parameter on the Stiefel manifold. One

choice is the von Mises-Fisher distribution (see Downs, 1972; Khatri and Mardia,

1977), which can be derived as the conditional distribution of a multivariate normal

distribution on the unit sphere. Sampling from the von Mises-Fisher distribution can

be done straightforwardly (see Hoff, 2007), but it is not very convenient to be used

as a proposal distribution in the Metropolis-Hasting steps in our setting. On the

other hand, projecting a multivariate normal distribution onto the unit sphere leads

to another commonly used distribution for unit vectors. This is called the projected

normal distribution, or the offset normal distribution by Mardia (1972). The pro-

jected normal distribution has a better interpretation in its parameters, which is also

easier to sample from (see Presnell et al., 1998; Nuñez Antonio and Gutiérrez-Peña,

2005).

Specifically, suppose X is a p dimensional multivariate normal random variable,
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which has mean µ and covariance matrix Σ, let U be the standardized X, i.e. U =

X/||X||, where ||X|| = (X2
1 + · · · + X2

p )1/2 is the L2 norm. We call U has the

projected normal distribution. Clearly the parameters (µ,Σ) are not identifiable

without further constraints, since for any c > 0, taking µ∗ = cµ and Σ∗ = cΣ does

not alter the distribution of the standardized variable. The difficulty could be address

by restriction the determinant of Σ to be one. A common approach is to set Σ = Ip,

the identity matrix, and the corresponding density function for U is (see Watson,

1983)

f(U) =

∫∞

0
xp−1φ(x − µT U) dx

(2π)p/2e||µ||2/2φ(µT U)
,

where φ and Φ are the standard normal density and cumulative distribution functions

respectively.

Now we can construct the proposal distribution for the eigenvector matrix U

from this vector form projected normal distribution. When r < p, let the proposal

distribution for U only changes one column of the matrix at a time. First, select a

column in U randomly, say Ul, and denote by S the vector space spanned by the

remaining vectors in U. Let HS be the p × p projection matrix onto the space S,

then Ip − HS is the projection matrix onto the orthogonal space of S. Pre-select a

number ρ > 0, generate a multivariate normal random variable e ∼ No(0, Ip), project

the vector ρUl + e to the orthogonal space of S, standardize it, and set it to Ũl. In

other words, Ũl is the following vector projected onto the unit sphere,

(Ip − HS)(ρUl + e) = ρUl + (Ip − HS)e ∼ No(ρUl, Ip − HS).

Notice that the vectors Ul and Ũl are orthogonal to column space S, therefore the

probability density of obtaining Ũl from Ul from this proposal distribution is the

same as the probability density of obtaining Ul from Ũl. The proposal distribution
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is symmetric, and we do not need to calculate the density in the Metropolis-Hasting

steps.

When r = p, any matrix on the Stiefel manifold is rank p, We randomly select

two columns Ul1 and Ul2 . First, ignore Ul2 and make a proposal for Ũl1 from Ul1 as if

r = p− 1. Then project Ul2 to the orthogonal space spanned other vectors, including

the newly proposed Ũl1 . Similarly, the joint proposal distribution for Ul1 and Ul2 is

also symmetric.

The scale parameter ρ in the proposal distribution controls the spread of the

distribution. When ρ = 0, the proposal distribution for Ũl is a uniform distribution

on O(p, r), and when ρ = ∞, the proposal distribution for Ũl is a point mass at Ul

with probability one. By symmetry, the proposal density from U to U∗ and from U∗

to U is the same, therefore, the proposal density ratio q(U | U∗)/q(U∗ | U) = 1.

Reversible Jump MCMC

The kernel regression coefficient βj, kernel location parameter χj and kernel eigen-

value vector λj depends on the total number of kernel functions J . Since they may

involve dimension change in the model, these parameters are updated by the re-

versible jump MCMC algorithm (see Green, 1995).

We propose regular birth step from the prior distribution, and death step uni-

formly for existing kernels. In addition, when updating the regression coefficient βj,

we generate β∗
j from a t distribution centered at βj. Since the βj is restricted in

[−ǫ, ǫ]c, there is a positive probability that β∗
j lies within [−ǫ, ǫ]. In that case, we kill

the corresponding kernel. When computing the Metropolis Hasting ratios, we need

to account for the deaths from both the regular death step, and the out-of-domain

update step.

To be more specific, write θ = (β1:J ,χ1:J ,λ1:J), and we omit other parameters
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except J , because they are not changed in the reversible jump MCMC. With J

kernels, suppose the probability to take a birth, death, or update step is pb,J , pd,J , or

pu,J respectively, with pb,J + pd,J + pu,J = 1. For a birth step, we propose (J + 1,θ∗)

from (J,θ) by adding a new kernel θ∗ = (β∗,χ∗,λ∗). The probability to move

(J + 1,θ∗) back to (J,θ) through a regular death step is 1
J+1

pd,J+1, and through a

out-of-domain update step is P(|β∗| < ǫ)pu,J+1. Therefore, the acceptance rate for

the birth step is the minimum of 1 and

p(y | θ∗)π(θ∗)

p(y | θ)π(θ)

1
J+1

pd,J+1 + P(|β∗| < ǫ)pu,J+1

1
J+1

q(θ∗)pb,J

,

where π(·) is the prior distribution density function, and q(·) is the the proposal

distribution density function.

Similarly, the acceptance rate for (J,θ) from (J + 1,θ∗) through a regular death

step is the minimum of 1 and

p(y | θ)π(θ)

p(y | θ∗)π(θ∗)

q(θ∗)pb,J

pd,J+1

,

and the acceptance rate for (J,θ) from (J + 1,θ∗) through a out-of-domain update

step is the minimum of 1 and

p(y | θ)π(θ)

p(y | θ∗)π(θ∗)

1
J+1

q(θ∗)pb,J

P(|β∗| < ǫ)pu,J+1

,

2.2.4 Elicit the hyperparameters

There are three hyper parameters α, γ, ǫ in this approximation of the SαS Lévy

random field. The stable index α serves as the polynomial exponent in the two

sided Pareto prior distribution for the regression coefficient β. We fix α = 1, which
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corresponds to the Cauchy process prior distribution.

The intensity parameter γ serves as a scalar in the expected number of kernels

ν+
ǫ in (2.7). It measures the prior belief on how many kernels should be used in

the regression function. We add a gamma hyper prior distribution Ga(aγ, bγ) for the

intensity parameter γ. As a result, marginally the number of kernel functions J has a

negative binomial prior distribution with size α and mean 2aγΓ(α) sin(απ
2

)/(πbγǫ
α). If

we have some prior information on how many kernels should be used in the regression,

for example, the probability no kernel is used, and the 95% quantile of the J , then

we can solve the equations to elicit reasonable aγ and bγ.

The approximation parameter ǫ measures the minimal evidence for a kernel func-

tion to appear in the regression. It is typically determined by the computational

power, and it is not very sensitive to the prediction result.

We have assigned independent identical prior distributions for the kernel eigenval-

ues, we need to assume that the projected features from the original covariate space

are on the same scale. Since the projected variables are linear combinations of the

original variables, whose weight vector lies on the unit sphere, the original variables

should be on the same scale. Therefore, we standardize the variables before running

the nonparametric kernel logistic regression. For the hyperparameters µλ and σ2
λ, we

assign normal inverse gamma conjugate hyper prior distributions

µλ ∼ No(µµλ
, σ2

µλ
), σ−2

λ ∼ Ga(aσ−2
λ

, bσ−2
λ

).

This allows us to combine the information of λ for different kernel functions. We fix

µµλ
, σ2

µλ
, aσ−2

λ
, bσ−2

λ
to allow the kernel eigenvalues to explore in a reasonable space for

the standardized data, for example µµλ
= 0, σ2

µλ
= 1, aσ−2

λ
= 1, bσ−2

λ
= 1. This hyper

prior distributions on µλ and σ2
λ collect information for the eigenvalues for all kernel
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functions, and guide them towards high posterior probability regions.

2.3 Examples

We fit the low rank kernel logistic regression model for two simulated data sets and

two real data sets. For simulation studies, we first generated 200 samples as training

data set, then generated 1000 samples as testing data set, and recorded the out-of-

sample prediction error rate. For real data analysis, we randomly split the data set

into five parts, and train the model with four parts, and test it on the remaining

part. We recorded the average out-of-sample prediction error rate in the 5-fold cross-

validation study. Each experiment is repeated 20 times, and the performance of

these models versus BART and SVM is shown in Figure 2.1. The variables of all

studies are pre-standardized to mean 0 with standard deviation 1. We fit the low

rank kernel regression model with r = 1, 2 and 3 for all data sets using the same

default hyperparameters: α = 1, ǫ = 0.1, aγ = 1, bγ = 1, µµλ
= 0, σ2

µλ
= 1, aσ−2

λ
=

1, bσ−2
λ

= 1, b0 = 1.

For the simulation studies, we can see that if the data is indeed generated from a

lower dimensional structure, the low rank model will out perform SVM and BART.

For the real data analysis, we do not know the if there is a low dimensional structure,

the low rank model with small d still performs comparable with SVM and BART.

2.3.1 Simulation Studies

The first simulation study D4in1 have four variable, and the response variable is deter-

mined by one linear combination of those four variables. The variables X1, . . . , X4 are
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sampled from independent uniform distributions Un[−1, 1], and the binary response

Y =











1, if X1 + X2 − X3 − X4 ∈ (−1, 0] ∪ (1, 4];

0, if X1 + X2 − X3 − X4 ∈ [−4,−1] ∪ (0, 1].

The second simulation study D4in2 also have four variable, but the response

variable is determined by two linear combinations of those four variables. Again, the

variables X1, . . . , X4 are sampled from independent uniform distributions Un[−1, 1].

The binary response

Y =











1, if (X1 + X2)(X1 − X3) ≥ 0;

0, if (X1 + X2)(X1 − X3) < 0.

The out-of-sample prediction (Figure 2.1) shows that the rank 1 model is the best

for D4in1 and the rand 2 model is the best for D4in2, and they are all better than

SVM and BART. This is not surprising, because our simulated data are generated

with a low dimensional structure in mind. In addition, the low rank model with a

misspecified d does not perform as good as the one with the correct d. As a result,

we could use the out-of-sample performance as a guidance to select the dimension d

in practice.

Notice that although we are using the SAVE method to obtain the initial value of

the eigenvector matrix in the low rank kernel, our method can adjust the directions

automatically when the initial value via SAVE is not good. For example, in one

simulation run of D4in1, SAVE estimated the direction as 0.63x1 − 0.12x2 − 0.09x3 −

0.76x4, which hardly separates the two classes, see the left panel in Figure 2.2, while

the posterior mean direction in the low rank 1 kernel regression model is 0.50x1 +

0.51x2 − 0.48x3 − 0.51x4, which clearly separates the two classes, see the right panel
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in Figure 2.2.

2.3.2 Real Data Analysis

The Swiss bank notes data (Flury and Riedwyl, 1988) contains 100 genuine notes

(y = 0) and 100 counterfeit notes (y = 1). There are six predictors, each giving a

different aspect of the size of the note: the bottom edge length, the diagonal length,

the left edge length, the center length, the right edge length and the top edge length.

The task is to identify counterfeit notes from these six features.

The out-of-sample prediction performance suggests the low rank model should

choose r = 2 for Swiss bank data set, which is in line with the results in Cook and

Lee (1999). Interestingly, SAVE detects three clusters along its first two directions,

the low rank model with r = 2 detects another pattern which also well separates the

genuine notes and the counterfeit notes, see Figure 2.3.

The Wisconsin diagnostic breast cancer (WDBC) data set (Wolberg et al., 1995)

contains 357 benign samples (y = 0) and 212 malignant samples (y = 1). The 30

real-valued variables are geometric features , such as radius, texture, smoothness of

the cell nucleus. The task is to diagnose cancer from these geometric features.

Although the low rank models perform slightly worse than SVM for the WDBC

data set, the directions obtained from the low rank models give us a new perspective

to look at the data. Use the marginal tests for SAVE (Shao et al., 2007), there is

not a particular small dimension d that can present the full information for those 30

geometric features. If we plot the data on the first three SAVE directions, we could

hardly see a separation for the cancer cases and the controls. However, with the rank

3 model, we are able to adjust the directions, and the plot on the posterior directions

in the rank 3 model shows a much better separation for the cancer cases and the
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controls, see Figure 2.4.

2.4 Discussion

In this chapter, we have described a Bayesian dimension reduction technique using

kernel logistic models for classification problems. We introduced SαS Lévy random

field to serve as the prior distribution on the unknown mean function, and the di-

mension reduction is done automatically through Bayesian posterior inference on the

eigenvector matrix of the low rank Gaussian kernel functions. This approach can be

extended to general regression problems where the response variable is continuous.

Instead of using the logistic likelihood for the binary response, we can use normal or

gamma likelihood for continuous response depending on specific regression problems.

A fully Bayesian approach with low rank kernels will discover the low dimensional

structure in the data, and the methodology still works.

As an alternative to dimension reduction, variable selection is wildly used to

reduce the complexity of the model when the number of variables p is large. Instead

of using a few linear combinations of the original variables, variable selection picks a

subset of original variables, which is potentially more efficient when p is large. Lots of

method have been proposed for Bayesian variable selection, for example, see George

and McCulloch (1993, 1997); Clyde and George (2004). With a hierarchical prior

distribution with a mixture of a point mass at 0 and a continuous distribution, we

can make feature selections through the kernel scale parameters (see Chapter 3).
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Figure 2.1: Performance comparison of the low rank model versus BART and SVM.
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Figure 2.2: The feature dimension generated from SAVE (left) and the posterior
mean of the rank 1 kernel model (right) in D4in1.
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Figure 2.3: The feature dimension generated from SAVE (left) and the posterior
mean of the rank 2 kernel model (right) in Swiss bank data set. The genuine notes
are marked with blue open circles, and the counterfeit notes are marked with pink
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Figure 2.4: The feature dimension generated from SAVE (left) and the posterior
mean of the rank 3 kernel model (right) in Wisconsin diagnostic breast cancer data
set. The controls are marked with blue open circles, and the cancer cases are marked
with pink solid circles.
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Chapter 3

Bayesian Additive Regression Kernels

with Feature Selection

3.1 Introduction

In supervised learning, we are given a set of observed input vectors {xi}n
i=1 along

with the responses {yi}n
i=1. Typically, the response variable Y is one dimensional,

which could be continuous (as in regression) or discrete (as in classification), while

the covariate is multidimensional, say X = (X1, . . . , Xp) ∈ R
p. The goal is to learn

the unknown relationship between the response variable and the covariate from the

training data set, hence we can make accurate predictions of Y for a new observation

X = x.

Regression models are typically used to understand the relationship between the

response Y and covariate X. Denote E(Y | X = x) = f(x), and one popular

candidate for the mean function is constructed by the sum of generating functions,

f(x) =
∑

j

g(x,θj), (3.1)

where θj is the parameter in the jth generating function. For example, Bayesian

Additive Regression Trees (BART) (Chipman et al., 2007) uses tree models as the

generating functions. Alternatively, kernel functions can be used as the generating

too. Specifically, g(x,θj) = βjK(x,χj), where βj and χj are the corresponding

regression coefficient and the kernel location parameter for the jth kernel. Both

the “sum-of-trees” model and the“sum-of-kernels” model explore the additive effects
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through the linear combination of the different generating functions, and explore the

interactive effects through individual non-linear generating functions.

Kernel methods have been studied for a long time in both machine learning and

statistics literature, (Hofmann et al., 2008; Pillai et al., 2007). The goals are obtaining

a sparse representation with few kernels in the sum, and getting good values for both

the weight β and the kernel parameter χ for prediction. The representation (3.1)

with kernel generating functions includes a variety of popular models. For example,

the Support Vector Machine (SVM) (Cristianini and Shawe-Taylor, 2000; Boser et al.,

1992), uses n kernels that center at every observed point. It seeks the optimal β that

minimize the error loss function and model complexity, where the prediction is based

on

f(x) = β0 +
n
∑

j=1

βjK(x,xj).

Relevance Vector Machines (RVM) (Tipping, 2001) also uses n kernels centered

at training samples. In the regression case, RVM assumes a Gaussian additive noise,

yi = f(xi) + ǫi, ǫi
iid∼ No(0, φ−1). (3.2)

It maximizes the type-II likelihood under following prior distributions,

βj
iid∼ No(0, ϕ−1

j ), ϕj
iid∼ Ga(a, b), φ ∼ Ga(c, d). (3.3)

Both SVM and RVM search for the regression coefficient β that optimizes the target

function. Since most of the βjs in the solution are zero or effectively zero, they all have

sparse representations. However, SVM and RVM only deliver a point estimator, and

they do not provide the predictive distribution for future observations. In addition,
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no fully Bayesian procedure can be applied for RVM under the recommended setting

a = b = c = d = 0. The improper prior distribution for regression coefficient leads to

an improper posterior distribution, which is problematic for making inferences.

A fully Bayesian approach has the advantage of making probabilistic statement for

the prediction and model parameters. Chakraborty et al. (2004) developed a Bayesian

version of SVM and RVM. In their hierarchical Bayes relevance vector machine, with

Gaussian noise model (3.2), they used proper prior distribution for the full Bayesian

analysis.

In this chapter, we detail another fully Bayesian framework for supervised learning

with mean function (3.1), a.k.a. Bayesian Additive Regression Kernels (BARK). In-

stead of using a fixed number of kernel functions, as in SVM, RVM and the Bayesian

counterpart of these models, we allow the number of kernel functions to be random.

Conditional on the number of kernels J , adopt similar prior distributions for the re-

gression coefficients as in RVM (3.3). When b goes to zero, the posterior distribution

for β is improper if J is fixed. One way to overcome this impropriety problem is to

specify the prior distributions for β and J jointly. A small b yields a large ϕ and a

small β. Since the mean function f(x) is constructed by the sum of these kernels, if

each of the regression coefficients is small, it needs a large amount of small kernels

to re-build the mean function on the same scale. Allowing the number of kernels

goes to infinity while the regression coefficients shrinks to zero defines the prior dis-

tributions consistently. In the limit, the mean function can be viewed as the sum of

infinitely many tiny kernel functions. This prior distribution becomes an infinite di-

visible random field with independent increments, or Lévy random field in the limit.

Lévy random field has already been used in kernel regression problems, such as Clyde

and Wolpert (2007); Clyde et al. (2006); Tu et al. (2006); Clyde et al. (2005), and we

shall extend this approach to supervised learning problems in this chapter.
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We introduce a generalization of independent Cauchy prior distributions for non-

parametric regressions, which is called symmetric α-stable Lévy random field. It

induces a heavy polynomial tail for the prior distribution on regression coefficient,

which favors a sparse representation in the model. In practice, we need to approxi-

mate the random measure due to computing limitations, but the theory guarantees

consistency when the approximation approaches the true measure, hence we have a

valid full Bayesian specification in the limit. We extend this approach to the classi-

fication problems, which is the first time to apply the Lévy random field theory in

this scenario.

Most kernel regression models only focus on the learning of kernel location pa-

rameters, but not the kernel scale parameters. For example, the original SVM, the

hierarchical Bayes SVM and RVM in (Chakraborty et al., 2004) uses kernels with

a single scale parameter, such as the Gaussian kernel whose precision matrix is a

scale multiplied by the identity matrix. These kernels assume homogeneity across all

covariates, which is usually not true in modern applied problems, particularly when

the number of covariates p is large. We use Gaussian kernels with diagonal precision

matrix, which assigns a scale parameter for each covariate. This facilitates a variety

of structures that can be used in feature selection. Similar to the approach described

in George and McCulloch (1997), we incorporate the hierarchical mixture prior dis-

tribution of a point mass at zero and a continuous distribution for the kernel scale

parameters to enable selection process.

In the next section, we present the details of BARK using symmetric α-stable

Lévy random field as the prior distribution. We describe the prior distributions on

the kernel location parameters that induces sparse representations. We detail four

different settings for the kernel scale parameters so that feature selection can be

achieved under different scenarios. We explain how to elicit the hyperparameters,
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and how marginalization can be used to make the Markov chain mix faster. The

framework is then extended straightforwardly to the classification problems in Section

3.3. We demonstrate the approach through several simulated and real data sets in

Section 3.4, and concludes in Section 3.5.

3.2 Bayesian Additive Regression Kernels

Given observed covariate vectors {xi}n
i=1 in R

p and the response {y}n
i=1, assuming

independent additive Gaussian noise, BARK is formulated by

yi =
∑

j

βjK(x,χj) + ǫi, ǫi
iid∼ No(0, φ−1). (3.4)

Notice that the mean function as a weighted sum of kernel functions can be also

represented as the integral of the kernel function with respect to a signed Borel

measure,

f(x) =
∑

j

βjK(x,χj) =

∫∫

R×X

K(x,χ)L(dχ), (3.5)

where L(dχ) =
∑

j βjδχj
(χ) is the signed Borel measure, which puts mass βj at

location χj. A random measure L induces a linear mapping g 7→ L[g] from L2

functions g to random variables L[g] =
∫

X
g(χ)L(dχ); such a mapping is called

a random field. In particular, for any x, bounded kernel function K(x, ·) is L2

integrable on χ with respect to probability measure πχ(dχ). Therefore, specifying a

prior distribution for the unknown mean function f(·) is equivalent to specifying a

prior distribution for the random measure L(dχ) with a random field.
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3.2.1 Symmetric α-stable Lévy Random Fields

Lévy random field L is a particular choice for the prior distribution on the random

measure L(dχ). For example, given a finite positive measure ν(dβ, dχ) on R × X

with mass ν+ = ν(R × X) =
∫∫

R×X
ν(dβ, dχ) < ∞, f(x) from equation (3.5) can be

evaluated by drawing

J ∼ Po(ν+), {(βj,χj)}1≤j≤J | J
iid∼ ν(dβ, dχ)/ν+,

where ν(dβ, dχ) is called the Lévy measure for the Lévy random field L. Generally,

the Lévy measure do not need to be finite (more details on the general Lévy measure

see Cont and Tankov, 2004, pp. 457-459).

The symmetric α-stable (SαS) Lévy random field is the limiting case for the

prior specification (3.3) as b goes to zero and the number of kernels n goes to infinity.

Denote by the SαS Lévy measure

ν(dβ, dχ) = γcα|β|−1−αdβπχ(dχ), (3.6)

where cα = (α/π)Γ(α) sin(πα/2), and πχ(dχ) is a probability measure on X. Here 0 <

α < 2 is called the stable index, and γ > 0 is called the intensity parameter. It induces

a Lévy random measure that maps disjoint Borel sets Aj ∈ X to independent infinite

divisible stable random variables L(Aj) ∼ St(α, 0, γπχ(Aj), 0) (see Samorodnitsky

and Taqqu, 1994, pp. 118).

In practice, Lévy random fields can be constructed from Poisson random measures,

which can be further used in making posterior Bayesian inference, see Tu et al. (2006)

for details. When the stable index α is equal or greater than 1 in the SαS Lévy

random field, compensator functions are required. Luckily, notice that the SαS Lévy
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measure (3.6) is symmetric about 0 on β, the effects of any odd compensator function

cancel out (see Tu et al., 2006; Sato, 1999, pp. 38).

Since the symmetric SαS Lévy random measure is not finite, approximations are

required to generate samples from the random variable f(x) in (3.5). One common

approach is to truncate the mass β with respect to a given threshold ǫ > 0. The Lévy

measure is approximated by

νT
ǫ (dβ, dχ) = γcα|β|−1−α1{|β|>ǫ}(β)dβπχ(dχ),

which has a finite mass

νT+
ǫ (α, γ, ǫ) =

2γΓ(α)

πǫα
sin(

απ

2
).

In particular, for the Cauchy random field, α = 1 and ν+
ǫ = (2γ)/(πǫ).

The truncation approximation yields a finite Lévy measure, which induces a joint

prior distribution for the number of kernels J , regression coefficient β and kernel

locations χ as follows,

J ∼ Po(νT+
ǫ ), {βj}1≤j≤J

iid∼ αǫα

2
|β|−α−11|β|>ǫ dβ, {χj}1≤j≤J

iid∼ π(χ), (3.7)

where the prior distribution for the regression coefficients β’s are called two-sided

Pareto distributions. The approximated Lévy random Field LT
ǫ maps function g to

LT
ǫ [g]. Tu et al. (2006) has shown that LT

ǫ [g] converges to L[g] in L2, and the expected

squared discrepancy of the truncation approximation is finite:

E
∣

∣L[g] − LT
ǫ [g]

∣

∣

2
= ||g||22

2γΓ(α + 1)

π(2 − α)
sin
(πα

2

)

ǫ2−α,
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or (2γǫ/π)||K(x, ·)||22 for the Cauchy case with g(χ) = K(x,χ).

Although truncating facilitates the Bayesian inference with SαS Lévy random

field, the mixing of the Markov chain in practice is not satisfactory due to the nature

of hard cut-off in truncating β. Alternatively, we approximate the SαS Lévy random

field continuously by the following Lévy measure

νC
ǫ (dβ, dχ) = γcα(β2 + αǫ2)−(α+1)/2dβπχ(dχ),

which has a finite mass

νC+
ǫ (α, γ, ǫ) =

γα1−α/2

21−αǫα

Γ(α/2)

Γ(1 − α/2)
. (3.8)

In particular, for the Cauchy random field, α = 1 and ν+
ǫ = γ/ǫ.

The continuous approximation also yields a finite Lévy measure, which induces a

different joint prior distribution for the number of kernels J , regression coefficient β

and kernel locations χ,

J ∼ Po(νC+
ǫ (α, γ, ǫ)), {βj}1≤j≤J

iid∼ t(α, 0, ǫ2), {χj}1≤j≤J
iid∼ π(χ), (3.9)

where the density function for a student t distribution t(α, 0, ǫ2) is

Γ ((α + 1)/2)
/

Γ (α/2)

(αǫ2π)1/2

(

1 +
β2

αǫ2

)−α+1
2

The stable index α automatically becomes the degree of freedom in the t distribu-

tion in the approximation. As ǫ goes to zero, the random variable f(x) in (3.5)

constructed from the approximated Lévy random field converges to the one without

approximation in L2. Formally, this is stated in the following theorem,
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Theorem 1. Let ν(dβ, dχ, du) = γcα|β|−1−αdβ πχ(dχ) du be a Lévy measure on

R × X × (0, 1), where γ > 0, cα = (α/π)Γ(α) sin(πα/2) and πχ(dχ) is a proba-

bility measure on X. It induces a Lévy random field L that maps a function g ∈

L2 (X, πχ(dχ)) to the random variable

L[g] =

∫

R×X×(0,1)

(β − sin β)g(χ)N (dβ, dχ, du) +

∫

R×X×(0,1)

sin β g(χ)Ñ (dβ, dχ, du) (3.10)

where

N ∼ Po(ν), Ñ (dβ, dχ, du) = N (dβ, dχ, du) − ν(dβ, dχ, du).

Then L[g] ∼ St(α, 0, γ∗, 0) with γ∗ = γ
∫

X
|g(χ)|απχ(dχ).

For any ǫ > 0, construct the approximate Lévy random field LC
ǫ that maps any

function g ∈ L2 (X, πχ(dχ)) to the random variable

LC
ǫ [g] =

∫

R×X×(0,1)

βg(χ)1{u<(1+αǫ2β−2)−(α+1)/2}(u)N (dβ, dχ, du). (3.11)

Then LC
ǫ [g]−L[g] converges to 0 in L2 as ǫ goes to zero, for any g ∈ L2 (X, πχ(dχ)).

The proof of the theorem is shown in appendix B, and the squared discrepancy

of the continuous approximation is finite:

E

∣

∣

∣
L[g] − LC

ǫ [g]
∣

∣

∣

2

≤ ||g||22
2γ

π
Γ(α + 1) sin

(πα

2

)

(

(1 + α)αα/2

2
+

α(2−α)/2

2 − α

)

ǫ2−α.(3.12)

In particular, for the Cauchy the squared discrepancy can be calculated exactly when
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α = 1,

E

∣

∣

∣L[g] − LC
ǫ [g]

∣

∣

∣

2

=

∫

R×X

g(χ)2 γ

π

(

1 − 1

β2 + ǫ2

)

dβdχ = γǫ||g||22. (3.13)

This offers guidance on the choice of parameters γ and ǫ, which is further discussed

in Section 3.2.4.

3.2.2 Sparse Representation

In this section, we shall detail the remaining prior distributions for BARK (3.4) that

obtains a sparse representation while selecting the features from the original covariate

space.

Denote by X the support set for kernel location parameter χ. One possible deci-

sion is to set X = R
p, and the kernel functions can be centered at any point in R

p.

This would lead to a flexible model, but the computation is demanding for large p

problems. On the other hand, we could continue the idea of SVM and RVM, whose

kernels sit on observed data points, i.e. X = {x1,x2, . . . ,xn}. This reduced the space

R
p to n discrete points. Let πχ(dχ) be a discrete probability measure on X, which is

usually a uniform distribution if no additional information about kernel locations is

known before modeling. In order to incorporate the intercept term in the regression

seamlessly into this representation, we add an imaginary point x0 to X, such that

X = {x0,x1,x2 . . . ,xn}, with K(x,x0) = 1. It is natural to set the prior distribution

for χ be uniformly over the set of possible kernel locations

{χj}1≤j≤J
iid∼ Un({x0,x1, . . . ,xn}). (3.14)

This prior specification guarantees that there are at most n+1 distinct kernels in
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the model (3.4). When ǫ goes to zero, the prior distribution induces more and more

kernels in the expression (3.4), many of which will share the same location parameter.

It is equivalent to the representation with unique kernels whose regression coefficients

are the sum of all coefficient with the same kernel parameters. Suppose there are ni

kernels centered at location xi, and J =
∑n

i=0 ni. The regression mean function can

be rewritten as

f(x) =
n
∑

i=0

β̃iK(x,xi), β̃i =
∑

{j |χj=xi}

βj.

In particular, if α = 1, not only the Cauchy process is infinite divisible, the approx-

imated Cauchy prior distributions on the regression coefficients are also infinitely

divisible. Therefore, the prior specification in (3.9-3.14) becomes

J ∼ Po(ν+
ǫ (α, γ, ǫ))

n | J ∼ MN(J,1/(n + 1))

{β̃i}0≤i≤n | n ind∼ Cauchy(0, n2
i ǫ

2) (3.15)

where n = (n0, n1, . . . , nn). As a result, kernels with the same location collapse, and

this yield a sparse representation even when ǫ is small.

3.2.3 Feature Selection

In this chapter, we focus on Gaussian kernels with diagonal covariance matrix, i.e.

K(x,χ) = exp

{

−
p
∑

l=1

λl(xl − χl)
2

}

, (3.16)
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where the scale parameters λls measure the contribution of the lth variable in the

kernel function. We standardize each covariate before the analysis, i.e. variable Xl

has mean 0 and standard deviation 1 among the training samples. If λl is zero, there

is no contribution made by the lth variable through the kernel function; on the other

hand, if λl is large, the lth variable is important in the kernel regression.

We demonstrate four possible prior specifications for the scale parameters in the

kernel function, BARK with equal weights, BARK with different weights, BARK

with selection and equal weights, BARK with selection and different weights. The

sum of the scale parameters in those four settings have the same prior distribution,

which keeps the kernel function (3.16) roughly in the same range since all variables are

standardized. BARK with equal weights does not make any feature selection, BARK

with different weights makes feature selection through soft shrinkage only, BARK

with selection and equal weights makes feature selection through hard shrinkage only,

while BARK with selection and different weights can make feature selection through

both soft and hard shrinkage.

BARK with equal weights

The simplest kernel structure is to set the scale parameters λls all equal. Suppose

the prior distribution for the sum of all λls is Ga(aλ, bλ), then we can assume the sum

divided by p is still a gamma distribution. Specifically,

λl = λ, λ ∼ Ga(aλ, pbλ),

where l = 1, . . . , p, and p is the total number of variables. The exponent term in

the Gaussian kernel (3.16) reduced to −λ
∑p

l=1(xl − χl)
2, which is also the most

commonly used kernel in SVM.
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When all explanatory variables contain the same amount of information on the

response variable, or their difference cannot be detected in a small data set, we use

the equal weights prior structure. For example, the ionosphere study (Newman et al.,

1998) in Section 3.4 falls into this category.

BARK with different weights

However, for most problems, given that all explanatory variable are relevant, it is

common to believe that they have different effects on the response variable. This

translate to different variables contribute to the regression differently through a dif-

ferent kernel scale parameter in BARK. Suppose the prior distribution for the sum

of all λls is Ga(aλ, bλ). Notice that gamma distribution is infinitely divisible, we can

splits the total gamma mass equally into individual scale parameters λl. Specifically,

λl
iid∼ Ga(aλ/p, bλ),

where l = 1, . . . , p, and p is the total number of variables. The independent gamma

prior distributions guarantees that all kernel scale parameters are different.

When we believe that all explanatory variables are relevant to the response vari-

able, and there is enough evidence in the data to detect the different contributions in

different variables, BARK with different weights are appropriate for the data analysis.

The posterior Bayesian inference would shrink the scale parameters for the variables

with little effects to values near zero, and features can be selected through the soft

shrinkage. For example, the Boston housing data set (Harrison and Rubinfeld, 1978)

in section 3.4 falls into this category.
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BARK with selection and equal weights

Sometimes, hard shrinkage is preferred, i.e. the explanatory variable is either selected

and having a reasonable contribution to the response variable, or not selected thus

have no contribution to the response variable. This can be achieved by using a prior

distribution that is a mixture of a point mass at 0 and a continuous distribution, for

example, see George and McCulloch (1997).

In BARK, introduce an indicator vector δ ∈ {0, 1}p for the scale parameter λ in

the kernel function. Typically, we use a Bernoulli prior distribution for each indica-

tors. The use of a hierarchical prior increases the flexibility of the prior distribution

and reduces the dependency of the posterior distribution on the prior assumptions.

Therefore, making the inclusion probability pλ random is more desirable than fixing

it, for example, see Clyde and George (2004); Nott and Kohn (2005). Specifically,

the prior distribution for the kernel scale parameters are

λl =











λ∗
l , if δl = 1

0, if δl = 0
, {δl}1≤l≤p

iid∼ Bi(1, pλ), pλ ∼ Be(ap, bp). (3.17)

where λ∗
l is positive for all l with δl = 1.

If we believe that the variables that are related to the response are equally impor-

tant, or if we do not have enough evidence in the data to discriminant the different

influence for variables related to the response, we can set all non-zero kernel scale

parameters to be the same.

Specifically, on top of (3.17), let

λ∗
l = λ ∼ Ga(aλ, dbλ),
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for all l with δl = 1, where d =
∑p

l=1 δl is the number of 1s in the indicator vector

δ, or the number of non-zero kernel scale parameters. Given δ, the sum of all kernel

scale parameters
∑p

l=1 λl =
∑

l:δl>0 λ∗
l = dλ has a gamma distribution with shape aλ

and scale bλ.

In Section 3.4 we use the Circle simulation studies to illustrate how the prior

distributions work. The simulation studies are cooked in a way that the data is

generated from models with equal weights signals and some pure noise. It shows that

BARK with selection and equal weights can effectively select those signal dimensions,

and drop the noise dimensions out.

When not all variables are relevant, and the sample size is not big enough to

catch up the different effects of the signal variables, BARK with selection and equal

weights can be used for both regression and classification problems. For example, the

body fat date set (Johnson, 1995) in Section 3.4. falls into this category.

BARK with selection and different weights

Similarly, allowing the non-zero scale parameters to be different yields the fourth

setting. Specifically, on top of (3.17), let

λ∗
l

iid∼ Ga(aλ/d, bλ), (3.18)

for all l with δl = 1, where d is the number of non-zero kernel scale parameters.

Again, it induces the same Gamma prior distribution with shape aλ and scale bλ for

the sum of all kernel scale parameters.

This is the most flexible setting which contains both hard shrinkage via mixture

prior distribution with point mass at zero, and soft shrinkage by allowing different

non-zero kernel scale parameters. However, this is also the most demanding for the
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data set. In other words, it requires more samples if the number of explanatory

variables are kept fixed in order to both filter out the irrelevant dimensions, and

detect the differences within the signal dimensions.

3.2.4 Elicitation

There are three parameters in the SαS prior specification, {α, γ, ǫ}. In the continuous

approximation, the stable index α serves as the degree of freedom in the student t

prior distribution for the regression coefficient β. In particular, α = 1 corresponds

the Cauchy random field, which induces Cauchy prior distribution on the regression

coefficient β. Our experience suggest that α = 1 is a pretty good default choice, and

it works well for both the simulation studies and the real data analysis that we have

tried.

Set α = 1, we detail the elicitation for γ and ǫ as follows. The approximation

threshold ǫ serves as the scale parameter in the Cauchy prior distribution for the

regression coefficient β, and both ǫ and the intensity parameter γ determines the

number of kernels J in BARK. With the continuous approximation, J has a Poisson

prior distribution, with mean γ/ǫ. In addition, it is desirable to control the level of

approximation through the L2 discrepancy (3.13). In particular, for kernel function

K(x,χ) with a discrete uniform prior for χ on n + 1 locations, the L2 discrepancy

E|L[K(x, ·)] − Lǫ[K(x, ·]|2 = γǫ||K(x, ·)||22 =
γǫ

n + 1

n
∑

i=0

K(x,χi)
2

With a smaller ǫ, the L2 discrepancy is smaller, but we need to use more kernels to

make up the smaller regression coefficient associated with each kernel function. We

recommend eliciting γ and ǫ through observable quantities the expected number of

kernels γ/ǫ and the approximation factor γǫ. In practice, we found that γ = 5 and
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ǫ = 0.5 works well for various simulated data sets and real data sets. Although the

approximation is very crude under this setting, the nonparametric model is flexible

enough to obtain good predictions.

The spread of the kernel function (3.16) is controlled by the scale parameters λl’s.

Since the variables Xl are standardized to have mean 0 and variance 1 before the

analysis, if the kernel center χ is also standardized, and is independent of Xl, the

square differences (xl −χl)
2 are independent, with mean 2 and variance about 8 with

normal approximations for X and χ. When λl’s are very close to zero, the kernel

function is similar to a point mass at 1; when λl’s are very large, the kernel function

is similar to a point mass at 0. These cases need to be avoid, because we do not

want the kernel behave like the trivial intercept kernel K(x,x0). Four different prior

distributions are specified in Section 3.2.3, and we recommend using fixed hyperpa-

rameters aλ = bλ = 1, because they lead to well behaved kernel functions. To be more

specific, let S = −∑p
l=1 λl(xl − χl)

2. Assuming that (xl − χl)
2/2 ∼ Ga(1/2, 1/2), the

mean and variance of S is −2aλ

bλ

and
4a2

λ

b2
λ

(

1

aλ

+
2

d
+

2

daλ

)

respectively when non-

zero λl’s are equal, or −2aλ

bλ

and
4a2

λ

b2
λ

(

3

aλ

+
2

d

)

respectively when non-zero λl’s are

different, where d is the number of non-zero λl’s. In particular, when aλ = bλ = 1,

those numbers are −2 and 4 in BARK with equal weights, or −2 and 12 in BARK

with different weights. Although it is difficult to obtain the exact distribution for eS,

we verified that the interquantile range of the kernel function with aλ = bλ = 1 is

greater than 0.5 for all integer d with simulations. In other words, half of the mass

in the kernel function will span at least length 0.5 out of all possible values in (0, 1]

The typical kernel value EK is in [0.3, 0.5], which can be used to elicit the intensity

parameter γ.

In BARK with selection, the probability that each λl is non-zero has a Beta prior
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distribution in (3.17). This generates a prior distribution for the number of non-zero

scale parameters d that corresponds to the Binomial-Beta distribution (see Bernardo

and Smith, 1994, pp. 117), with probability mass function

P(d = k) =

(

p

k

)

Γ(ap + bp)Γ(ap + k)Γ(bp + p − k)

Γ(ap)Γ(bp)Γ(ap + bp + p)

We recommend using the uniform hyper-prior distribution, i.e. ap = bp = 1, which

induces a discrete uniform prior for the number of non-zero λl’s with P(d = k) = 1
p+1

for k = 0, 1, . . . , p. In other words, the expected number of signal variables in the

prior specification is k/2. One can also elicit the hyperparameters from the prior

expected number of signal variables, denoted by m. For example, Ley and Steel

(2008) suggests fixing ap = 1, and let bp = (p − m)/m.

We put a Gamma prior distribution Ga(c, d) for the overall precision φ. Since φ

is always in the model, we can set c = d = 0, which reduced to the non-informative

prior with π(φ) ∝ 1/φ. This is an improper prior distribution, but yields proper

posterior distribution for the model (3.4).

3.2.5 Inference

From the independence assumption for yi, the likelihood for the training data set can

be written as

p(y | φ, J,β,χ,λ) =
φn/2

(2π)n/2
exp

{

−φ

2
||y − Kβ||2

}

where y = {y1, . . . , yn}T and K is the n × J kernel matrix, with Ki,j = K(xi,χj).

Having defined the prior distributions and calculated the likelihood, the Bayesian
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inference relies on sampling the parameters from the posterior distribution

p(φ, J,β,χ,λ | y) =
p(y | φ, J,β,χ,λ)π(φ, J,β,χ,λ | y)

p(y)

where p(y) is the marginal likelihood of y which integrates out all parameters. Given

a new observation at x∗, the predictive distribution for y∗ is

p(y∗ | y) =

∫

p(y∗ | x∗, φ, J,β,χ,λ)p(φ, J,β,χ,λ | y) dφ dJ dβ dχ dλ (3.19)

If we have a random sample from the posterior distribution, simulate y conditional

on those sampled parameters, which is the predictive distribution for y∗. In practice,

we use the MCMC draws as samples drawn from the posterior distribution.

With the truncation on β approximation to the SαS Lévy random field (3.7), the

regression coefficients have independent symmetric Pareto prior distributions with

density

f(β) =
αǫα

2
|β|−α−11|β|>ǫ(β).

There is no conjugate update for the regression coefficient, and sampling from its

conditional posterior distribution relies on Metropolis-Hasting updates. Because β

is highly correlated with the unknown regression mean, the Markov chain converges

very slowly.

Similarly, it is not so convenient to work with tα prior distributions (3.15) directly

on the regression coefficients directly in the continuous approximation. However, we

can represent tα as a mixture of normal distributions, improving the mixing of the

Markov chain by integrating out the regression coefficients and making inference on

the precision parameters. In particular, when α = 1, we can collapse the regression
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coefficient with the same kernel locations. To be more specific, decompose the Cauchy

prior distributions to

β̃i
ind∼ No(0, n2

i ϕ̃
−1
i ), ϕ̃i

iid∼ Ga

(

1

2
,
ǫ2

2

)

, for i ∈ {i | ni > 0}.

Conditional on the number of kernels J and kernel locations {χ1, . . . ,χJ}, we can

integrate the regression coefficient β and use ϕ to replace the role of β in the like-

lihood function. In the collapsed representation, denote the index of the non-zero

elements in n is i = (i1, . . . , im), i.e. nij > 0 for j = 1, . . . ,m. Let β∗ and ϕ∗ be the

length-m sub-vector of β̃ and ϕ̃, where β∗
j = β̃ij , ϕ∗

j = ϕ̃ij . The n × (n + 1) kernel

matrix K̃ is defined by K̃j,k = K(xj,xk), where 1 ≤ j ≤ n, 0 ≤ k ≤ n. Denote by

K∗ the n × m sub-matrix of K̃, where K∗
j,k = Kj,ik .

After integrating out β∗, the likelihood is

p(y | n,ϕ∗,λ, φ) =

∫

p(y | n,β∗,ϕ∗,λ, φ)p(β∗ | ϕ∗) dβ∗

=

φn/2
∏m

j=1

(

ϕ∗

j

n2
ij

)1/2

(2π)n/2|Σ∗|−1/2
exp

{

−1

2

(

φ||y − K∗µ∗||2 +
m
∑

j=1

ϕ∗
j

n2
ij

µ∗2
j

)}

,

where

Σ∗ =

(

φK∗T K∗ + diag

{

ϕ∗
1

n2
i1

, . . . ,
ϕ∗

m

n2
im

})−1

, µ∗ = φΣ∗K∗Ty. (3.20)

Denote θ = (n,ϕ∗,λ, φ), after integrating out β, instead of sampling from full

joint posterior distribution, we only need to sample from p(θ | y). Conditional

on θ, the posterior distribution for β∗ is No(µ∗,Σ∗), where µ∗ and Σ∗ is defined

in (3.20). Given a new observation x, suppose {θ(m)}M
m=1 are samples of θ from

the posterior MCMC, then 1
M

∑M
m=1 f(x | θ(m),µ∗(m)) is a point estimator for the
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prediction y. This estimator has a smaller variance than 1
M

∑M
m=1 f(x | θ(m),β∗(m))

with β∗(m) ∼ No(µ∗(m),Σ∗(m)) due to Rao-Blackwellization.

Because the dimension of θ is not fixed, we use Reversible Jump Monte Carlo

Markov chain (RJ-MCMC) algorithm to sample from the posterior distribution, de-

tails see appendix C. By integrating out β, we reduced the correlation of θ and the

unknown regression mean function. By sacrificing the conjugacy for ϕ and β in the

Gibbs algorithm, we benefit from the weak correlation, which results a better mixed

Monte Carlo Markov chain.

3.3 Bayesian Additive Classification Kernels

We call the classification counterpart of BARK as Bayesian Additive Classification

Kernels (BACK), which augment latent random variables to represent the discrete

class labels, as shown in Albert and Chib (1993). In this chapter, we focus on binary

classification, where the response variable y ∈ {0, 1}. With the Probit link function,

P(yi = 1 | xi) = Φ(f(xi)),

where Φ(·) is the cumulative distribution function for standard normal distribution,

we can decompose the model into

yi = 1(zi > 0), zi
iid∼ No(f(xi), 1).

Conditional on z, this is exactly the BARK we described in the previous section,

except that φ is fixed at 1 in the Probit model. Another difference in this specification

is that we need to obtain the values of f(x) in order to update z. Previously, we

integrated out β in the regression for better mixing Markov chains, but now we need
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to obtain those regression coefficients to calculate the mean function f(x) explicitly.

Notice that the conditional posterior distribution for β is Normal with mean µ and

variance Σ as described in (3.20), the Gibbs sampling is straightforward. After

obtaining f(x), we can sample z from its conditional distribution. If yi = 1, the

conditional distribution for zi is No(f(xi), 1) truncated above zero; if yi = 0, the

conditional distribution for zi is No(f(xi), 1) truncated below zero.

As a result, given a new observation x, we cannot use the Rao-Blackwellization

trick as in the regression case. Instead, the prediction for y is obtained by the

sign of the auxiliary variable z = 1
M

∑M
m=1 z(m), where z(m) = f(x | θ(k),β(k)), and

(θ(k),β(k)) are posterior samples from the Markov chain.

3.4 Simulation Studies and Examples

We present the summaries of the performance of BARK for both regression and

classification problems on some example data sets, comparing results with support

vector machine (SVM) and Bayesian adaptive regression tree (BART) for illustrative

purposes. Before doing the analysis, we standardized all covariates to have mean

0 and standard deviation 1. For all studies, the hyperparameters are chosen to be

α = 1, ǫ = 0.5, γ = 5, aλ = bλ = ap = bp = 1. We discard the initial 2,000,000

iterations for burn in, and keep the chain running for additional 2,000,000 iterations.

For practical reasons, we only keep 4000 samples (one out of every 500) in the Markov

chain in the posterior inference. For each simulation study, we use 1000 additional

data points to evaluate the predictive performance; for each real data set, we use

5-fold cross-validation to evaluate the predictive performance, and we repeat each

experiment 20 times.
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3.4.1 Regression Examples

For regression problems, we calculate predictive mean square error and normalize

it with respect to the best method for each run, and then report the average of 20

replicated runs, see Table 3.1. We demonstrate the performance of our model by

three simulation studies and three real data sets.

Table 3.1: Predictive mean square errors in regression problems.

Data Sets
BARK

SVM BART
equal diff select + equal select + diff

Friedman1 7.31 1.22 2.26 1.93 5.36 1.97
Friedman2 1.99 1.07 1.09 1.04 4.36 3.64
Friedman3 3.07 1.46 2.30 1.44 2.70 1.00
Boston Housing 1.44 1.09 1.23 1.20 1.56 1.01
Body Fat 1.39 1.81 1.01 2.19 4.04 1.68
Basketball 1.01 1.01 1.01 1.02 1.16 1.10

The simulation studies, Friedman 1, 2, and 3, are described in (Friedman, 1991;

Breiman, 1996). The Friedman 1 data set uses 10 independent variables uniformly

distributed on the interval [0, 1], and the regression mean function only depend on

the first five variables,

f1(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.

The Friedman 2 and 3 data sets use four independent variables that are uniformly

distributed over the ranges

0 ≤ x1 ≤ 100, 40 ≤ x2 ≤ 560, 0 ≤ x3 ≤ 1, 1 ≤ x4 ≤ 11.
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The corresponding regression mean functions are

f2(x) = (x2
1 + (x2x3 − 1/(x2x4))

2)1/2,

f3(x) = arctan((x2x3 − 1/(x2x4))/x1).

Independent Gaussian noise with mean 0 and standard deviation 1, 125 and 0.1 are

added to the mean function in the three data sets respectively.

In Friedman 1 simulation study, since there are five noise variables, both BART

with equal weights and SVM won’t work so well, and they have a relatively higher

out-of-sample mean square errors. However, other BART models with either soft

or hard shrinkage can filter out the noise variables, and obtain good out-of-sample

predictions. In Friedman 2 and Friedman 3 simulation studies, there are 200 samples

with only four variables. Therefore, we have enough data to detect the different

effects among the variables, and BARK with different weights performs better than

BARK with equal weights. Although BARK lose to BART for Friedman 3 simulation

study, the overall performance of BARK is comparable with BART.

The Boston housing data set (Harrison and Rubinfeld, 1978) contains 506 data

points with 13 covariates, and the goal is to predict the median home value. The

data set is originally proposed to address how does the environmental conditions

affect the housing price. It is also a well studies data set for variable selection in

statistics literature. For example, Breiman and Friedman (1985) discovered that

RM, TAX, PTRATIO and LSTAT were the four most important variables using ACE

transformations, and Smith and Kohn (1996) argues that NOX, RM, DIS, TAX and

LSTAT were most important using Bayesian variable selection. Although BART

beat the BARK model for this data set, BARK with either soft or hard shrinkage

beats SVM, which has no feature selection property. Figure 3.1 shows the box plot
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for the those scale parameters in the Boston housing data set in model BARK with

different weights. A larger value on λ corresponds more influence on the regression

mean through the kernel function. As we can see, kernel scale parameters correspond

to NOX, RAD and LSTAT are significantly bigger than others, hence these variables

are crucial in the prediction of the median housing price. On the other hand, we see

λs on ZN, CHAS and B are tiny, hence we conclude that these three variables does

not effect the housing price much.
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Figure 3.1: Box plots for the kernel scale parameters in Boston Housing data set in
BARK with different weights.

The body fat data set (Johnson, 1995) lists estimates of percentage of body fat de-

termined by underwater weighing and various body circumference measurements for

252 men. The goal is to use 14 relevant covariates to predict the body fat percentage.
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The cross-validation results from Table 3.1 suggests that model BARK with selection

and equal weights makes the best prediction. In fact, the body fat percentage can be

well predicted by just two variables, the density determined from underwater weigh-

ing and the wrist circumference, as shown in the box plots of the scale parameters

for each variable in Figure 3.2.

0.
00

0
0.

01
0

0.
02

0

Body Fat in BARK with selection and equal weights

λ

de
ns

ity

ag
e

w
ei

gh
t

he
ig

ht

ne
ck

ch
es

t

ab
do

m
en hi
p

th
ig

h

kn
ee

an
kl

e

bi
ce

ps

fo
re

ar
m

w
ris

t

Figure 3.2: Box plots for the kernel scale parameters in body fat data set in BARK
with selection and equal weights.

The basketball data set (Simonoff, 1996) contains the data for 96 players. The

goal is to predict the points scored per minute played from assist credited per minute

played, height, minute played per game and age. Table 3.1 shows that the BARK

models, SVM and BART are comparable in terms of out-of-sample prediction mean

square errors.
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3.4.2 Classification Examples

For classification problems, we calculate the predictive misclassification rate, and

report the average of the 20 replicated runs in table 3.2. We demonstrate the perfor-

mance of our model with three simulated studies and three real data sets from the

UCI Machine Learning Repository.

The simulation studies are called Circle 2, 5, 20, which have 2, 5, 20 variables

respectively. All variables are generated from a uniform distribution in [−1, 1], but

the class label only depend on the first two variable, y = 1{x2
1+x2

2≤2/π}(x). Under this

formulation, both class have roughly the same number of sample points.

Table 3.2: Predictive mis-classification rate in classification problems.

Data Sets
BARK

SVM BART
equal diff select + equal select + diff

Circle 2 1.93% 4.91% 1.88% 1.93% 5.03% 3.97%
Circle 5 13.50% 4.70% 1.47% 1.65% 10.99% 6.51%
Circle 20 49.16% 4.84% 2.09% 3.69% 44.10% 15.10%
Bank 1.05% 1.25% 0.55% 0.88% 1.12% 0.50%
WDBC 2.70% 4.02% 2.49% 6.09% 2.70% 3.36%
Ionosphere 5.33% 8.59% 5.78% 10.87% 5.17% 7.34 %

As we can see from Table 3.2, SVM suffers greatly from the increasing noisy

dimensions, and so does BARK with equal weights. Using a common scale parameter

for all covariates in the kernel function won’t work when there are a lot of noisy

variables. On the other hand, other BARK models with feature selection property

does not suffer from this problem as the number of noisy dimensions increases. The

prior distribution enables the model to automatically shrink the contributions of the

noisy dimensions to zero or negligible values, thus focusing the regression only on

the first two signal dimensions. Under the simulation setting, it is clear to see that

BARK with selection and equal weights is the most efficient. It is not surprising,
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because the simulated data are generated with equal signal dimensions, where as

the remaining noisy dimensions do not contributed to the classification at all. The

posterior probability that λl > 0 are 1, 0.996 for the first two dimensions, and near

zero for the rest 18 dimensions, which confirm that BARK with selection and equal

weights indeed focused on the first two dimensions in making the classification. Other

BARK models with feature selection property does not take advantage of “knowing

the variable structure ahead of time and building it into the prior distribution”, they

are less efficient than BAKR with selection and equal weights, however, they still

beat BART in the out-of-sample prediction.

The Swiss bank notes data (Flury and Riedwyl, 1988) contains 100 genuine notes

(y = 0) and 100 counterfeit notes (y = 1). There are six predictors, each giving

a different aspect of the size of the note: the bottom edge length, the diagonal

length, the left edge length, the center length, the right edge length and the top

edge length. The task is to identify counterfeit notes from these six features. Table

3.2 suggest that BARK with selection and equal weights has a very good out-of-

sample prediction. However, the posterior probability that λl > 0 are for the six

predictors are 0.14, 0.252, 0.302, 0.776, 0.278, 0.962 respectively, and the box plots for

those kernel scale parameters in shown in Figure 3.3 This is very different from Circle

20 simulation study or the Body Fat data set, where BARK with selection and equal

weights suggests that the posterior model only contains two variable, while BARK

with selection and equal weights for Swiss Bank data set suggest that the posterior

model is a complicated mixture of all six variables. A closer look at the prediction

process in BARK reveals that the prediction is actually based on an average estimator

from lots of posterior models. Although each posterior model is a BARK contains a

subset of variables with equal weights, the average of all those models can be much

more flexible. For this particular data set, parametric models with direct selection

59



on the original six variables is not ideal, but BARK can make very good predictions

by jumping among different “variable selection models” in the posterior sampling.

In fact, Cook and Lee (1999) suggest to make classification based on two linear

combinations of the original six variables. In Chapter 2, we extends BARK with

lower rank models to capture those structures.
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Figure 3.3: Box plots for the kernel scale parameters in Swiss bank note data set
in BARK with selection and equal weights.

The Wisconsin diagnostic breast cancer (WDBC) data set (Wolberg et al., 1995)

contains 357 benign (y = 0) samples and 212 malignant samples (y = 1) with 30

real-valued geometric features for the cell nucleus. The task is to diagnose cancer

from these geometric features. Table 3.2 suggests that BARK with equal weights

have the same performance as that of SVM, which also use Gaussian kernel with a

60



common scale parameter. Because there are 30 different explanatory variables, 506

samples are not big enough to discover different influences of important variables

on detecting cancer. Therefore, BARK with different weights, or with selection and

different weights do not perform as good as BARK with selection and equal weights.

The original ionosphere data set (Newman et al., 1998) contains 351 observations

with 34 measures signals on different frequency domains. Because the second co-

variate is zero for all observations, we exclude it in the analysis, resulting only 33

effective covariates. The goal is to detect whether there is evidence of some type

of structure in the ionosphere. Table 3.2 shows that BARK with equal weights has

the best performance among different BARK models, which is also comparable to

SVM and BART. This actually suggest that the signals from all different frequency

domains contribute to the structure in the ionosphere, and their contributions are

the same.

3.5 Discussion

In this chapter, we have developed a fully Bayesian kernel method, for both non-

parametric regression and classification. The model is based on a linear expansion

of kernel functions, which combines the interactive effects through addition. The

unknown mean function is formulated as a stochastic integral of a kernel function

with respect to a random signed measure, which can be approximated by a finite

sum of a random number of kernel functions at random locations. The kernel scale

parameters are covariate specific and thus adapt to the features of the data. The

RJ-MCMC algorithm developed for fitting the model provides an automatic search

mechanism for finding sparse representations of the mean function, and the posterior

analysis for the kernel scale parameters provides insights for making feature selection
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on the original covariates.

The model presented in Section 3.2 admits a number of extensions. In this chapter,

we restrict the kernel functions located at the training data points, which reduced

the computation when n is small and p is large. However, for lower dimensional

problems, say p = 1 or 2, it is more flexible to allow the kernel located at any

place on R
p. One natural extension to the discrete uniform prior distribution on

the training sample points is a mixture of continuous distributions centered at the

training samples. Then we increased model flexibility, and still focus on exploring

the space close the the observed data.

Another restriction in our model is that all kernel functions share the same shape

parameter. We can extend the Lévy random field ν to R×X×Λ, where Λ is the space

of the kernel scale parameters Then the model induced by this prior specification will

have kernel functions with different shape parameters. This allows the model to

adopt different local features at different regions of the sample space. Notice that the

parameter space increases greatly under this formulation, so it may be necessary to

use a sparse prior distribution on Λ such that most of the scale parameters are zero

for each kernel.

We only demonstrated our model for binary classification in Section 3.3, but it

is straightforward to extend this model to ordered multi-class case. For d different

classes, introduce d + 1 cut-off real values −∞ = c0 < c1 = 0 < c2 < · · · < cd−1 <

cd = ∞. Use the same latent normal random variable z, such that y is in class k

if ck−1 < z < ck. Incorporating the update schemes for ck, the model described in

Section 3.3 is applicable for the multi-class classification problems.
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Chapter 4

Structural Baysian Additive Classification

Kernels

4.1 Introduction

Variable and feature selection has become the focus of scientific research when hun-

dreds or thousands of variables are available. This is very common in biomedical

applications, such as analyzing protein mass spectroscopy and single nucleotide poly-

morphism (SNP) data sets. The scientific goals are to identify regions of interest

among the explanatory variables that differentiates samples from different exper-

imental groups. We got inspired by a Matrix-assisted laser desorption/ionization

(MALDI) data set in the breast cancer study. Consider a classification problems

with n observations, the response variables y1, y2, . . . , yn are either 0 or 1, indicating

samples are in the normal tissue group or in the invasive tumor tissue group. For

each sample i, we observe the intensity xij for many time-of-flight values tj, where

j = 1, 2, . . . , p. Time of flight values are directly associate to the mass over charge

ratio m/z of the corresponding proteins in the tissue samples. In this study, we

looked at 24 normal tissue samples and 56 invasive tumor tissue samples. The goal

is to find m/z regions that discriminate between two groups. A unique feature of

this data set is that the variables are ordered a priori according to the m/z values.

In other words, if a peak is observed at an m/z site, the intensities of nearby m/z

sites are high. Similar structure can be found in SNP data, where the variables are

aligned according the biology order on the DNA.
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Figure 4.1: Average mass spectroscopy data for normal tissues (blue solid line) and
invasive tumor tissues (red dash line).

Tibshirani et al. (2005) introduced the fused Lasso model to tackle this problem.

It penalizes the L1 norm of both the regression coefficients and their successive dif-

ferences, encouraging sparsity of the coefficients and also sparsity of their differences,

i.e. local constancy of the coefficient profile. This shed light to Bayesian treatment

of this problem by putting correlated structures on the prior distribution for the re-

gression coefficients. Recently, Li and Zhang (2008) proposed a Bayesian variable

selection method in structured high-dimensional covariate space using Ising prior

distributions on the regression coefficients, and we would like to extend this idea to

kernel regression models.

The kernel function maps the original covariate space to a functional feature space,

hence the regression coefficients measure the contributions of each kernel function in

stead of the original variables. Selecting few kernel functions in the regression through

the regression coefficient corresponds to a sparse representation, while selecting some
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non-zero kernel scale parameters corresponds to selections on the original variables,

which is easier to interpret. For example, in a diagonal Gaussian kernel function,

K(x,χ,λ) = exp
{

−λ1(x1 − χ1)
2 − λ2(x2 − χ2)

2 − · · · − λp(xp − χp)
2
}

the kernel scale parameter λl is the bridge linking variable Xl to the regression func-

tion. Shrinking λl to zero effectively drops out the variable Xl in the regression.

Chapter 3 described a feature selection procedure through a hierarchical prior distri-

bution on λl’s in the Bayesian Additive Regression Kernels (BARK) model. However,

this approach cannot to used directly in large p problems, because exploring all pos-

sible combinations of the variables are very expensive in the one-change-at-a-time

MCMC scheme. Because the non-linearity from the kernel functions joins the Gaus-

sian likelihood for the regression mean function, direct sampling from the posterior

distribution is impossible, and the data augmentation trick in the Swendsen-Wang

algorithm (Higdon, 1998) cannot be applied.

To overcome this difficulty, we propose a novel proposal distributing that accom-

modate the correlated structural prior distribution on the kernel scale parameters.

In the next section, we detail the Markov prior structure, and the relationship to the

commonly used Ising prior distribution. We demonstrate how to use the novel pro-

posal distribution to make Metropolis-Hasting updates. And we illustrate the elicita-

tion of the hyper-parameters for the Markov prior distribution. Next, we demonstrate

the performance and limitations of this model through some simulated data set and

real mass spectroscopy data set in Section 4.3. Finally, we end with a discussion on

potential extensions and future direction in Section 4.4.
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4.2 Bayesian Additive Classification Kernels with

Dependence Prior Structure

Continue with the Bayesian Additive Classification Kernels (BACK) model in Section

3.3, the model can be summarized by

yi = 1(zi > 0)

zi =
J
∑

j=1

βjK(xi,χj,λ) + ǫi

ǫi ∼ No(0, 1)

J ∼ Po
(

νC+
ǫ

)

{βj}1≤j≤J | J
iid∼ t(α, 0, ǫ2)

{χj}1≤j≤J | J
iid∼ Un{x0,x1, . . . ,xn}

where νC+
ǫ is the mass of the continuous approximated SαS Lévy measure in (3.8).

All kernel functions share the same scale parameter λ. Since the number of variables p

is large compared with the number of observations n, there is not enough information

to discriminate different contributions for all variables. Similar to prior specification

in BARK with selection and equal weights in Section 3.2.3, we restrict all the non-

zero scale parameters have the the same value. Specifically, denote δl = 1(λl > 0,

conditional on the indicator vector δ,

λl | δl =











λ, if δl = 1

0, if δl = 0
λ | δ ∼ Ga(aλ, d bλ)

where d =
∑p

l=1 δl is the number of non-zero kernel scale parameters in λ. Instead

of using independent identically Bernoulli prior distribution on δl as in Section 3.2.3,

we introduce the correlation on the scale parameters from the following prior distri-
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bution.

4.2.1 Structural Prior Specification

The prior distribution on the indicator vector δ ∈ {0, 1}p is specified through a

Markov model, which is uniquely determined by an initial Bernoulli prior distribution

on δ1 and a transition matrix. Specifically, let P (δ1 = 1) = q
(init)
1 , and the transition

matrix

A =







q0 1 − q0

1 − q1 q1






(4.1)

i.e., P (δl+1 = 0 | δl = 0) = q0 and P (δl+1 = 1 | δl = 1) = q1. Therefore, the

stationary distribution of this Markov chain has a Bernoulli distribution with success

rate q = (1 − q0)/(2 − q0 − q1). It is typical to set the initial probability q
(init)
1 to be

the stationary probability q, in which case the distribution for δ1 and δp at both ends

of the indicator vector are close when p is large.

Suppose there are d 1’s in δ, which are coming from k continuous blocks of 1’s,

then we can calculate the prior probability for δ explicitly. Denote by

A(q0, q1) = qp−d−k
0 qd−k

1 (1 − q0)
k(1 − q1)

k/(2 − q0 − q1),

1. If δ1 = 0, δp = 0, there are k + 1 blocks of 0’s, and

P (δ) = (1 − q)q
p−d−(k+1)
0 qd−k

1 (1 − q0)
k(1 − q1)

k =
1 − q1

q0

A(q0, q1)
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2. If δ1 = 0, δp = 1, there are k blocks of 0’s, and

P (δ) = (1 − q)qp−d−k
0 qd−k

1 (1 − q0)
k(1 − q1)

k−1 = A(q0, q1)

3. If δ1 = 1, δp = 0, there are k blocks of 0’s, and

P (δ) = (1 − q)qp−d−k
0 qd−k

1 (1 − q0)
k−1(1 − q1)

k = A(q0, q1)

4. If δ1 = 1, δp = 1, there are k − 1 blocks of 0’s, and

P (δ) = (1 − q)q
p−d−(k−1)
0 qd−k

1 (1 − q0)
k−1(1 − q1)

k−1 =
q0

1 − q1

A(q0, q1)

Let B(δ) = (q0/(1 − q1))
δ1+δp−1 be the deviation effect of the boundary terms, then

the prior probability mass can be summarized as P (δ) = B(δ)A(q0, q1).

On the other hand, Ising prior distribution is commonly used on 0/1 vectors. The

prior probability for δ is defined up to a normalizing constant

πδ(δ) = Z(αδ, βδ)
−1 exp

(

αδ

∑

δl + βδ

∑

δlδl+1

)

,

where the normalizing constant Z(αδ, βδ) is typically very difficult to calculate due to

the complex combinatorics for large p. The benefit of using Ising prior distribution

is that the full conditional distribution for one particular location is only depend on

its adjacent locations, and does not involve the normalizing constant, i.e.

P(δl = 1 | δ−l) = P(δl = 1 | δl−1, δl+1) =
exp[ αδ + βδ(δl−1 + δl+1)]

1 + exp[ αδ + βδ(δl−1 + δl+1)]
, (4.2)

for l = 1, 2, . . . , p and set δ0 = δp+1 = 0 as the boundary condition. This is also
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called the auto-logistic model by Besag (1972, 1974). There is a close relationship

between the Markov prior and the Ising prior. In fact, if there are d 1’s in δ, which

are coming from k continuous blocks of 1’s, the prior probability for δ under the Ising

prior distribution is

P (δ) = Z(αδ, βδ)
−1 exp {αδd + βδ(d − k)} ,

which is very similar to the probabilities from the Markov prior distribution. Set

αδ = log

[

(1 − q0)(1 − q1)

q2
0

]

, βδ = log

[

q0q1

(1 − q0)(1 − q1)

]

.

It is straightforward to verify that the full conditional probabilities from the Markov

prior distribution is also (4.2) for l = 2, 3, . . . , p − 1. which only differs on the

boundaries. From simulation, the difference of two specifications are not big when p

is large. We advocate the Markov prior specification, because it can be easily extend

to making inference for different hyper-parameters q0 and q1, since the normalizing

constant can be evaluated explicitly when calculating the prior probability ratio for

different hyper-parameters.

4.2.2 Novel Proposal Distributions

Conditional on the SαS parameters {α, γ, ǫ} and the kernel regression parameters

{z, J,β,χ, λ}, the posterior distribution for the indicator vector δ is proportional to

exp

{

−1

2

n
∑

i=1

(

zi −
J
∑

j=1

βjK
(

xi,χj, λdiag(δ)
)

)2
}

× (dbλ)
aλ

Γ(aλ)
λaλ−1e−dbλλ × πδ(δ)(4.3)
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where d =
∑p

l=1 δl is the number of non-zero δ’s in the indicator vector, and πδ(δ) is

the prior probability mass function for δ as described in Section 4.2.1. The posterior

probability for δ = 0 is slightly different, because the kernel is then the intercept,

and the kernel scale parameter λ vanished. We need to use reversible jump algorithm

for this particular case, and regular Metropolis-Hasting algorithm is applicable when

both δ and the proposed new δ∗ are not vector of all zeros.

The simplest way to make a move for δ is randomly flip the value at a particular

location. Imagine a sparse problem, which expects most variables are not relevant.

In other words, δ have much more zeros than ones. A flip procedure at a completely

random location may not be efficient, because it flips a zero to one most of the time

under this scenario. Alternatively, we may prefer having similar probability to flip a

one to zero and flip z zero to one. Treat the consecutive 1’s in δ a meaningful block

unit in the structural high dimensional problem, a flip move may corresponds to five

different type of “logical moves” in terms of the block units.

1. Birth of a new block. For example, δ = (· · · , 0, 0, 0, · · · ), δ∗ = (· · · , 0, 1, 0, · · · ),

then the prior probability ratio for δ∗ and δ is

P(δ∗)

P(δ)
=

B(δ∗)

B(δ)
× (1 − q0)(1 − q1)

q2
0

.

2. Death of a existing block of single 1. For example, δ = (· · · , 0, 1, 0, · · · ), δ∗ =

(· · · , 0, 0, 0, · · · ), then the prior probability ratio for δ∗ and δ is

P(δ∗)

P(δ)
=

B(δ∗)

B(δ)
× q2

0

(1 − q0)(1 − q1)
.

3. Merge of two very close blocks into one block. For examples, δ = (· · · , 1, 0, 1, · · · ),
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δ∗ = (· · · , 1, 1, 1, · · · ), then the prior probability ratio for δ∗ and δ is

P(δ∗)

P(δ)
=

B(δ∗)

B(δ)
× q2

1

(1 − q0)(1 − q1)
.

4. Split of a block into two very close blocks. For example, δ = (· · · , 1, 1, 1, · · · ),

δ∗ = (· · · , 1, 0, 1, · · · ), then the prior probability ratio for δ∗ and δ is

P(δ∗)

P(δ)
=

B(δ∗)

B(δ)
× (1 − q0)(1 − q1)

q2
1

.

5. Stretch or recess a block of 1’s one location on the left or the right end. This

does not change the total number of blocks, and we plan to incorporate it to

more general Stretch and recess moves.

If we decide to make a flip move, first calculate all possible locations that will

yield a birth, a death, a merge or a split move. We postpone the stretch and recess

moves to more general moves that keep the number of blocks unchanged. Then we

pick a possible type of move at random, and finally pick a random location of that

type of move to finish the proposal flip. For example, if we move δ to δ∗ via a birth

flip from this proposal distribution, then the proposal probability ratio is

q(δ | δ∗)

q(δ∗ | δ)
=

P (a death flip location | death move in δ∗) P (death move | δ∗)

P (a birth flip location | birth move in δ) P (birth move | δ)
.

Combining this with the posterior probability (4.3), we can calculate the Hasting’s

ratio in the Metropolis-Hasting algorithm easily.

Keeping the number of blocks unchanged, we can also propose moves that change

δ at multiple locations. Three natural moves are

1. Stretch one end of a block with k additional 1’s, while avoiding combining two
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blocks together. For example, move δ = (∗, 1, 0, ..., 0, 0, ∗) to δ∗ = (∗, 1, 1, ..., 1, 0, ∗),

or move δ = (∗, 0, 0, ..., 0, 1, ∗) to δ∗ = (∗, 0, 1, ..., 1, 1, ∗). Therefore, the prior

probability ratio for δ∗ and δ is

P(δ∗)

P(δ)
=

B(δ∗)

B(δ)
× qk

1

qk
0

.

2. Recess one end of a block to delete k 1’s, while keeping the block have at least

one 1. For example, move δ = (∗, 1, 1, ..., 1, 0, ∗) to δ∗ = (∗, 1, 0, ..., 0, 0, ∗), or

move δ = (∗, 0, 1, ..., 1, 1, ∗) to δ∗ = (∗, 0, 0, ..., 0, 1, ∗). Then the prior probabil-

ity ratio for δ∗ and δ is

P(δ∗)

P(δ)
=

B(δ∗)

B(δ)
× qk

0

qk
1

.

3. Shift one block of 1s to the left (or right), while keeping both the total number

of 1’s and the total number of blocks unchanged (avoiding the merging of two

sections). It is easy to see the prior probability ratio reduced to P(δ∗)/P(δ) =

B(δ∗)/B(δ).

The general proposal scheme that keep the number of blocks unchanged is described

as follows. First, calculate possible types of moves for all ends of each block in δ,

and the the maximum step of each type of move. Then propose the step size of the

move according to a prespecified distribution. For example, we used a discritized

truncated normal density whose standard deviation depends on the length of block,

such at longer blocks can be stretched/recessed with more locations. For example, if

we move δ to δ∗ via a stretch move of step size k on the left end of the first block

(denoted as (1, L)) from this proposal distribution, then the proposal probability

72



ratio is

q(δ | δ∗)

q(δ∗ | δ)
=

P (recess with size k | recess on (1, L) of δ∗) P (recess on (1, L) | δ∗)

P (stretch with size k | stretch on (1, L) of δ) P (stretch on (1, L) | δ)
.

4.2.3 Elicitation

The elicitation for the parameters in the SαS prior distribution is described in Sec-

tion 3.2.4, and we will only focus on the elicitation for q0 and q1 in the Markov prior

distribution for the indicator vector δ. Let q = (1−q0)/(2−q0−q1) be the probability

of 1 in the stationary distribution of the Markov chain, Li and Zhang (2008) recom-

mends using r = (1− q0)/(1− q1) = q/(1− q) and w = q0/(1− q1) to parametrize the

model, where r is the prior odds of δl = 1, and w reflects the increase in probability

of δl = 0 if we know δl−1 = 0. To our experience, we found it more convenient to elicit

the prior distribution through q and s = 1− q1. Assuming that there are p variables

in total, pq is the expected number of 1’s in δ, and pqs is the expected number of

blocks of 1’s in δ. In other words, 1/s is the expected length of 1 blocks.

All pairs of (q0, q1) ∈ (0, 1)2 yield valid prior specification, but not all pairs of

(q, s) ∈ (0, 1)2 are legitimate. In fact, sq/(1−q) = 1−q0 ∈ (0, 1), hence s < (1−q)/q.

In other words, we can select q and s from the prior information on how many

variables and blocks of variables should be involved in the regression, and transform

them back to q0 and q1 to specify the Markov prior distribution on δ via

q0 = 1 − qs

1 − q
, q1 = 1 − s.

For example, if we expect approximately 100 variables in 10 blocks are relevant among

1000 variables, set q = s = 0.1, i.e. q0 = 0.989, q1 = 0.9.
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4.3 Examples

We first illustrate this method using a very nice simulated data set. Suppose there

are 5 simulated spectra in group y = 0 and 5 simulated spectra in group y = 1. Each

spectra have three peaks with 100 mass to charge ratio values: one is unique in the

each group, one one shares the same location with same intensities in two groups,

and the remaining one shares the same location but has different intensities in two

groups. The simulated data is shown in Figure 4.2, where spectra with y = 1 are

plotted in blue solid lines, and spectra with y = 0 are plotted in red dash lines. To

avoid overlaying lines, we plot the red lines downwards, but with the same intensity

scale.

Simulated Spectra

m/z
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5
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5

1

Figure 4.2: Simulated 3-peak mass spectra with length 100, 5 with response y = 0
(blue solid lines) and 5 with response y = 1 (red dash lines).

In this simulated study, we expect two groups differ in about 20 out of 100 mass

to charge locations, hence we set q = 0.2. In addition, we expect to see three block

of different sections, hence we set s = 0.15. Figure 4.3 shows the posterior inclu-
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sion probabilities of each λl > 0 with different starting values of δ. We have tried

four different starting values for δ, all zeros (denoted as 00), all ones (denoted as

11), alternative zeros and ones (denoted as 01, and a estimate from the quantile of

the difference of the mean spectrum in two groups (denoted as diff ). After 100, 000

burning iterations, we kept 1000 iterations out of the following 100, 000 iterations for

posterior inference (i.e. one out of every 100 samples are kept). The inclusion prob-

ability Figure 4.3 captures the locations that the intensities are differently expressed

in two groups, and the mixing of the chain is good, since the curve from different

starting values are very similar.
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Figure 4.3: Inclusion probabilities for the kernel scale parameters λl’s in BACK,
with q = 0.2 and s = .15.

The inclusion probability plot does reveal three peaks, which corresponds to the

three locations that the intensities are expressed differently in two groups. In ad-

dition, it does not pick up the location of the common peak with same intensity in

two groups, which is expected because the kernel functions in BACK only uses the
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difference of the explanatory curve and the kernel center curve. However, we see

a relative high baseline at locations that two groups have the similar intensities in

the inclusion probability curve. This is due to the Markov prior structure, which

makes adjacent locations correlated. Furthermore, we notice that the peak in the

inclusion provability curve is not particularly high, only about 0.3 in this simulation

study, which is much less than 1. The result is not satisfactory, but is reasonable in

BACK. The likelihood only interested in the classification problem, which only want

to find some regions that completes the classification task. In the simulated spec-

tra, even some consecutive mass-to-charge locations have different intensities in two

groups, maybe just one of the location (for example, the center of the peak location)

can already complete the classification task. The Markov prior structure pushes the

adjacent locations into the model, which have similar effect as the middle location

and create redundancy in the model. Similarly, maybe one peak is good enough to

discriminate two groups, so there is also redundancy in multiple peaks in this model.

Like variable selection in linear model, if there are two co-linear covariates, the pos-

terior model will pick each variable half of the time, the inclusion provability curve

demonstrate this dilution in BACK.

We also looked at a small section of the mass spectroscopy data in the breast

cancer study, where the mass to charge ratio is ranging from 6391 Dalton to 6464

Dalton, shown in Figure 4.4. The baseline for each mass spectrum is different. A typ-

ical multistage approach to analyze mass spectroscopy data involves pre-processing,

which removes the baseline and normalizes each spectrum, for example, see Noy and

Fasulo (2007); Morris et al. (2005); Tibshirani et al. (2004). We use locally-weighted

polynomial regression (LOWESS Cleveland and Devlin, 1988; Cleveland, 1979) to

estimate the baseline for each mass spectrum. Notice that the peak width increases

as mass to charge ratio increases, we apply LOWESS on the intensity versus the nat-
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Figure 4.4: A small section of the mass spectroscopy data for normal tissues (blue
solid line) and invasive tumor tissues (red dash line).

ural logarithm of the mass to charge ratio. Figure 4.5 shows the normalized spectra

after subtracting the LOWESS baseline (denoted as baseline 1), along with the pos-

terior inclusion probability plot for each mass-to-charge location. Clearly something

is wrong, as the inclusion probability plot does not recover the “obvious” different

peak in the normal group and the invasive tumor group. A closer look at the differ-

ence of the intensities for the mean spectra in two group reveals that the difference

at all locations are greater than zero, see the black curve in Figure 4.7. This suggests

that any location is a good indicator to discriminant two groups. If we additionally

subtract a small constant for the mass spectra of the normal tissues, pulling the

difference of the two group mean spectra towards zero, see the pink curve in Figure

4.7. With this new baseline subtraction (denoted by baseline 2) in Figure 4.6, the

inclusion probability detects the difference peak for discriminating two groups. From

this really simple real data analysis, we find that the baseline subtraction is crucial
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in interpreting BACK model.
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Figure 4.5: Spectra subtracting baseline 1 and the inclusion probabilities.

4.4 Discussion

In this chapter, we explored the Bayesian Additive Classification Kernels with a

structural prior distribution on kernel parameters when the number of variables p are

large. We illustrated this method using fixed hyper-parameters in the Markov prior

distribution (or equivalently the Ising prior distribution for large p) in some simulated

examples and real data analysis. We found this method have two major drawbacks:

dilution on the inclusion probability from both adjacent locations and multiple blocks,

and sensitivity to the initial choice of baseline. This warns us although kernel methods

are very effective in classification tasks, it may not be the ideal tool to make feature

selections when lots of covariates are correlated, especially in modern large p small n

problems.
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Figure 4.6: Spectra subtracting baseline 2 and the inclusion probabilities.

Section 4.2.3 discussed about the elicitation of the hyper-parameters q0 and q1.

Alternatively, if we are not certain how to choose a point estimator for q0 and q1, we

can put a prior distribution for the hyper-parameters. In fact, with independent Beta

prior distributions on q0 and q1, we have conjugate updates for q0 and q1 conditional

on other parameters. In practice, we would like to specify the prior distributions for

q and s rather than q0 and q1, because q and s are easier to interpret. In addition, we

prefer specifying independent prior distributions for q and s, because q represents the

proportion of 1’s and s represents the stickiness of those 1’s. This results dependence

in prior specification for q0 and q1. Because q and s are restricted by s < (1 − q)/q,

we suggest specifying a bivariate logistic normal prior distribution for (q0, q1), and

then transform it back to (q, s) domain the check whether the prior distributions are

appropriate. The bivariate logistic normal distributions are easy to work with, and

the correlation for two variables can be induced from the logistic normal covariance

matrix. Our preliminary experience with the hyper-prior distribution suggests more
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Figure 4.7: The difference of the intensities of the mean spectra in two groups
subtracting baseline 1 and 2.

dilution in the inclusion probability for kernel scale parameters.

Another potential research area is to go beyond the Gaussian kernel function.

For example, for single nucleotide polymorphism data sets, the value at each location

is categorical, i.e. A, C, T or G. The kernel function can be constructed with the

counting measure, which fits naturally in the BACK framework.
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Appendix A

Truncation Approximation for SαS Lévy

Random Fields

The symmetric α-stable (SαS) Lévy random measure ν(dβ, dχ, dλ) is defined on

R × X × R
r
+. Thus it induces a SαS Lévy random field mapping functions g ∈

L2(X × R
r
+) to random variables L[g] =

∫

X×R
r
+

g(χ,λ)L(dχ, dλ), with characteristic

function

exp
{

∫

X×R
r
+

g(χ,λ)dδh(χ,λ) +

∫

R×X×R
r
+

(

eitβg(χ,λ) − 1 − it h(β)g(χ,λ)
)

ν(dβ, dχ, dλ)
}

(A.1)

where h(β) is a compensator function determined uniquely by the signed drift measure

δh(dχ, dλ) on X×R
r
+ (see Tu et al., 2006; Rajput and Rosiński, 1989). For example,

when h1(β) = sin β, the corresponding drift measure δh1 ≡ 0. Another convenient

compensator function is h2(β) = β1[−1,1](β), and the corresponding drift measure δh2

satisfies

δh2(A) = δh1(A) +

∫

R×A

it (h2(β) − h1(β))ν(dβ, dω)

=

∫

R×A

it
(

β1[−1,1](β) − sin β
)

ν(dβ, dω)

for any measurable A ∈ X × R
r
+.

Because SαS Lévy measure ν(dβ, dχ, dλ) in (2.6) is not locally β integrable.

with compensator function h(β), the SαS random variable mL[g] with characteristic
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function (A.1). can be constructed by

L[g] =

∫∫

R×X×R
r
+

[β − h(β)] g(χ,λ)N (dβ, dχ, dλ) +

∫∫

R×Ω

h(β) g(χ,λ)Ñ (dβ, dχ, dλ)(A.2)

where mN ∼ Po(ν) is the Poisson random measure on R×X×R
r
+, and Ñ (dβ, dχ, dλ) =

N (dβ, dχ, dλ)− ν(dβ, dχ, dλ) is the centered Poisson random measure, inducing an

isometry from L2(R × X × R
r
+, ν) to the square integrable zero-mean random vari-

ables, (see Sato, 1999, page 38). In particular, take h(β) = h2(β) = β1[−1,1](β), (A.2)

may be re-written as

L[g] =

∫

[−1,1]c×X×R
r
+

βg(χ,λ)N (dβ, dχ, dλ) +

∫

[−1,1]×X×R
r
+

βg(χ,λ) dÑ (dβ, dχ, dλ).(A.3)

Because the SαS Lévy measure in (2.6) is not finite, we cannot sample from the

construction (A.3) directly. Instead, approximate the Lévy random field with Lǫ,

such that

Lǫ[g] =

∫

[−ǫ,ǫ]c×X×R
r
+

βg(χ,λ) dN . (A.4)

The expected L2 discrepancy is finite:

E
∣

∣L[g] − Lǫ[g]
∣

∣

2
=

∫

R×X×R
r
+

g(χ,λ)2β21|β|≤ǫν(dβ, dχ, dλ)

= ||g||22
2γΓ(α + 1)

π(2 − α)
sin
(πα

2

)

ǫ2−α.

In other words, L[g] − Lǫ[g] converges to 0 in L2 as ǫ goes to zero.
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Appendix B

Proof of Theorem 1

For any g ∈ L2 (X, π(dχ)), rewrite the Poisson construction (3.10) as

L[g] =

∫

(−1,1)×X×(0,1)

βg(χ)Ñ (dβ, dχ, du) +

∫

(−1,1)×X×(0,1)

(β − sin β)g(χ)ν(dβ, dχ, du) +

∫

(−1,1)c×X×(0,1)

βg(χ)N (dβ, dχ, du) −
∫

(−1,1)c×X×(0,1)

sin βg(χ)ν(dβ, dχ, du). (B.1)

Because β − sin β = O(β2) when β ≈ 0, and 1|β|<1(β)β2g(χ) is ν-integrable,

the second term in (B.1) is finite. In addition, β − sin β is an odd function, and

ν(dβ, dχ) is symmetric about zero on the first dimension, so
∫

(−1,1)×X×(0,1)
(β −

sin β)g(χ)ν(dβ, dχ)du = 0. Similarly, the fourth terms in (B.1) is also zero.

Notice that the difference between (B.1) and (3.11) is

L[g] − LC
ǫ [g] =

∫

(−1,1)×X×(0,1)

1{(1+αǫ2β−2)−(α+1)/2≤u<1}(u)β g(χ)Ñ (dβ, dχ, du) +

∫

(−1,1)c×X×(0,1)

1{(1+αǫ2β−2)−(α+1)/2≤u<1}(u)β g(χ)N (dβ, dχ, du).

Since g ∈ L2 (X, πχ(dχ)), ||g||22 =
∫

X
g2(χ)π(dχ) < ∞. The L2 discrepancy of

this approximation is

E

∣

∣

∣
L[g] − LC

ǫ [g]
∣

∣

∣

2

=

∫

R×X×(0,1)

1{(1+αǫ2β−2)−(α+1)/2≤u<1}(u)β2 g2(χ)ν(dβ, dχ, du)

= ||g||22
2γΓ(α + 1)

π
sin
(πα

2

)

∫ ∞

0

(

1 −
(

1 +
αǫ2

β2

)− 1+α
2

)

β1−αdβ(B.2)
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Set δ = 1/(ǫ
√

α), then when β > δ, 0 < αǫ2β−2 < 1. From the binomial theorem,

(

1 +
αǫ2

β2

)−(1+α)/2

≥ 1 − α(1 + α)ǫ2

2β2
.

Therefore,

∫ ∞

δ

(

1 −
(

1 +
αǫ2

β2

)−(1+α)/2
)

β1−αdβ ≤
∫ ∞

δ

α(1 + α)ǫ2

2β1+α
dβ =

(1 + α)ǫ2

2δα
=

(1 + α)αα/2ǫ2−α

2
.

In addition,

∫ δ

0

(

1 −
(

1 +
αǫ2

β2

)−(1+α)/2
)

β1−αdβ ≤
∫ δ

0

β1−αdβ =
δ2−α

2 − α
=

α(2−α)/2ǫ2−α

2 − α
.

Combining these two bounds into (B.2),

E

∣

∣

∣L[g] − LC
ǫ [g]

∣

∣

∣

2

≤ ||g||22
2γ

π
Γ(α + 1) sin

(πα

2

)

(

(1 + α)αα/2

2
+

α(2−α)/2

2 − α

)

ǫ2−α.

Because 0 < α < 2, the above term goes to zero as ǫ approaches zero. In conclusion,

L[g] − LC
ǫ [g] converges to 0 in L2 for any g ∈ L2 (X, π(dχ)).
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Appendix C

Details on the MCMC for BARK

We shall use reversible jump Monte Carlo Markov Chain (RJ-MCMC) algorithm

(Green, 1995) to implement this trans-dimensional Markov chain.

For regression problems, use the same notations in section 2.4, the full parame-

ter set {J,β,ϕ,χ,λ, φ} reduced to {n,β∗,ϕ∗,λ, φ} in the collapsed representation.

Since β∗ is integrated out in the likelihood, we only need to sample (n,ϕ∗,λ, φ | y).

1. Update (n,ϕ∗) using RJ-MCMC algorithm, conditioned on other parameters.

2. Update λ using standard Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970), conditioned on other parameters. Pick one of λl, say

λl(prop) from vector λ at random, and update it via normal random walk on the

log scale to λ
(prop)

l(prop) . The acceptance rate is the minimum of 1 and

p(y | θ(prop))πλ(λ
(prop)

l(prop))λ
−1
l(prop)

p(y | θ)πλ(λl(prop))λ
(prop)−1

l(prop)

.

3. Update φ using standard Metropolis-Hastings algorithm, conditioned on other

parameters. The prior density for φ is proportional to φ−1, which cancels the

proposal density, hence the acceptance rate is the minimum of 1 and

p(y | θ∗)φ∗−1φ−1

p(y | θ)φ−1φ∗−1
=

p(y | θ∗)

p(y | θ)
.

For classification problems,
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1. Update (n,ϕ∗,λ) as in the regression case (1-2), conditioned on the latent

normal random variable z. Notice that φ ≡ 1 in the classification case.

2. Simulate β∗ ∼ No(µ∗,Σ∗), where µ∗ and Σ∗ is defined in (3.20).

3. Simulate z from its full conditional distribution given y, n, β∗, i.e.

zi ∼











1(z ≥ 0)No(z; K∗β∗, 1), if yi = 1

1(z < 0)No(z; K∗β∗, 1), if yi = 0

Now we detail the RJ-MCMC algorithm. Suppose the current θ have k kernels,

i.e. k =
∑n

i=0 ni. Set the probability of taking a birth, death, or update step be pb(k),

pd(k), or pu(k) respectively, with pb(k) + pd(k) + pu(k) = 1.

1. Birth. First, we need to propose a new kernel. Set the new kernel location

χ
(prop)
j uniformly from {x0,x1, . . . ,xn}, say χ

(prop)
j = xi(prop) . If there is already

some kernel located at χ
(prop)
j , or ni(prop) 6= 0, update n

(prop)

i(prop) = ni(prop) + 1, and

keep ϕ∗ unchanged. If no existing kernel located at χ
(prop)
j , or ni(prop) 6= 0,

update n
(prop)

i(prop) = 1, propose a new regression coefficient precision from the prior

distribution ϕ∗ ∼ (α/2, αǫ2/2), and add it into the current ϕ∗.

In order to calculate the acceptance ratio of the proposal, we need to set up

a death scheme. Let’s kill an existing kernel with probability proportional to

some fixed power δ of its regression precision. In other words, the probability

of selecting kernel at location xi to kill is proportional to niϕ̃
δ
i . Denote by p(kill)

the probability to kill the newly proposed kernel from the new parameters.

Notice that the Jacobian is 1 under this proposal, hence the acceptance rate

is the minimum of 1 and the product of the conditional posterior density ratio
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and the proposal density ratio,

p(y | θ(prop))π(θ(prop))q(θ | θ(prop))

p(y | θ)π(θ)q(θ(prop) | θ)
=

p(y | θ(prop))ν+(α, γ, ǫ)pd(k + 1)p(kill)

p(y | θ)n
(prop)

i(prop)pb(k)
.

2. Death. Reverse the birth step, first select one existing kernel to kill, say kernel

located at xi(prop) . Denote by p(kill) the probability to kill that kernel. The

acceptance rate is the minimum and

p(y | θ(prop))π(θ(prop))q(θ | θ(prop))

p(y | θ)π(θ)q(θ(prop) | θ)
=

p(y | θ(prop))n
(prop)

i(prop)pb(k − 1)

p(y | θ)ν+(α, γ, ǫ)pd(k)p(kill)
.

3. Update. The update step does not change the number of kernels used in the

regression.

(a) Update ϕ. Keep all kernels centered at previous locations, i.e. keep n

fixed, pick one element from vector ϕ∗, and update it via normal random

walk on the log scale. Suppose we propose ϕ∗
i(prop) to ϕ

∗(prop)

i(prop) , then the

acceptance rate is the minimum of 1 and

p(y | θ(prop))Ga(ϕ
∗(prop)

i(prop) | α/2, αǫ2/2)ϕ
∗(prop)

i(prop)

p(y | θ)Ga(ϕ∗
i(prop) | α/2, αǫ2/2)ϕ∗

i(prop)

(C.1)

(b) Update (n,ϕ). We can also keep the number of kernels fixed, by propos-

ing a birth and a death step together. First, choose a location in {0, 1, n}

with probability proportional to n, and subtract 1 from that coordinate,

then add 1 to a random location in n. Similar to the birth step, if the

newly proposed kernel already exist, keep the old ϕ∗, otherwise, propose

a new ϕ∗ from its prior distribution. The multinominal prior density for

n exactly cancels the proposal density, hence the acceptance rate is the
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minimum of 1 and

p(y | θ(prop))

p(y | θ)
. (C.2)
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