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Abstract

Macroeconomics and monetary policies are constantly evolving. Time-varying vector autore-
gressive models (TV-VARs) in forecasting multivariate time series aims to capture these varia-
tions and allow model dynamics to change over-time. We utilize dynamic dependence networks
as an extension to TV-VARs to develop models that capture the dynamic relationships among
macroeconomic time series. Dynamic dependence network models allow univariate series to be
decoupled for fast, parallel processing, and recoupled for forecasting and decision analysis. We
focus on changes in policy-related variables such as interest rate and the resulting effects on the
economy, paying special attention to an identified policy target such as inflation. We compare
a 8-variable and 3-variable model and perform decision analysis using both at two specific time
points with a specified loss function. The insights from these models shed light on the central
banks’ decision making process.

KEY WORDS: Bayesian forecasting; time-varying vector autoregressive models; macroeco-
nomic time series; decision analysis.

1 Introduction

Macroeconomic forecasting is an important element in central banks’ monetary policymaking pro-
cesses, especially when central banks anchor certain macroeconomic variables as their policy tar-
gets. For instance, since the 1980s, the U.S. Federal Reserve has placed emphasis on targeting
inflation to stabilize the economy [Boivin and Giannoni, 2003]. To achieve policy targets, central
banks use many monetary policy instruments, including nominal interest rate targets. As a result, it
is critical to have a forecasting model that forecasts well how a change in a policy control variable
could impact policy targets over a defined time period. This paper is interested in the dynamic rela-
tionship between policy instruments and policy targets, correlated with other confounding macroe-
conomic variables which could help with central banks’ decision making processes by choosing
the values of policy control variables to best guide the economy towards some specified, desirable
policy targets.

To achieve this, we apply a stochastic time series model – a dynamic dependence network – to
model and forecast a set of macroeconomic variables multiple-steps ahead. Section 2 introduces
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the setting and notation in a macroeconomic context. Section 3 explains the setup for DDNMs, dis-
cussing the time-varying autoregressive (TVAR) features and conditional independence structure.
It also notes the evolution of state vectors through random walks and priors for forward-filtering
and 1-step forecasting. Then, we bring in decision analysis in Section 5 and develop a loss function
that best reflects the central bank’s economic goal while taking into account other considerations
like smoothness of the projected path. We derive the Bayesian risk from posterior predictive distri-
butions with technical details in Appendix.

Building on the context of the US economy from 1965 to 2016, Sections 4 and 6 compare an
8-variable model with a 3-variable model and summarize key aspects of their DDNM specifications,
predictions and decision analysis. Section 7 concludes the paper with some remarks and suggests
directions for future work.

2 General Setting

The set of q macroeconomic variables forms a q-vector time series yt = (y1t, · · · , yqt)′ over t =
0, 1, · · · , discrete time. yt can be partitioned into xt, ut, rt, where:

• xt is qx−vector of response variables whose levels into the future are of main concern to
policymakers (e.g., inflation and/or unemployment), and are selected as defining economic
goals in the decision analysis;

• ut is a qz−vector of response variables of secondary interest (e.g., consumption, investment,
etc);

• rt is a qr−vector of indices that are potential targets to control (e.g., central bank interest
rates, or other putative policy instruments).

At time point t, we model yt and predict h-steps ahead. We denote the posterior density function
of predictive distributions over the next h steps as p(yt+1:t+h|Dt) where Dt represents the prior
information available at time t, including all past observations y1:t and any additional information
used to modify the model at any past time up to the current time t. Decisions are made at time
t by setting the control variables rt = r to guide xt towards specific targets over the next h time
periods.

3 Dynamic Dependence Network Models

To address the complex dynamics arising from cross-series relationships of multiple time-varying
indices, we use dynamic dependence network models (DDNMs) developed by Zhao et al. [2016].
They are extensions of multiregression dynamic models (MDMs) by allowing for TVAR components
in each series.

The setup for DDNMs is, in a q-variable model over times t = 1, 2, ...,

yjt = cjt +
∑

i=1:pjλ

y′t−iφjit + y′pa(j),tγjt + vjt, j = 1 : q, (1)

with components as follows:

• yjt is a univariate time series observed over time t = 1, 2, ...

• yt = (y1t, ..., yqt)
′ is q × 1-vector time series.
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• cjt is a time-varying intercept.

• Each φjit is a q-vector of TV-VAR coefficients for lag i = 1, · · · , pjλ where pjλ is the maximum
lag.

• pa(j) is a parental set. It is a subset of indices of those series higher than j in the hierarchical
structure.

• ypa(j),t is the |pa(j)| × 1-vector of time t values on the series in the parental set pa(j).

• γjt is a vector of dynamic regression coefficients, linking contemporaneous values of some
other series to series j. The number of parents and dimension of γjt is |pa(j)|.
• vjt is the observation noise; these are conditionally independent over j and t with vjt ∼
N(0, 1/λjt) where λjt is the time-varying precision.

One key feature of DDNMs is the parental set for each univariate dynamic linear model (DLM).
For j = 1 : q − 1, pa(j) ⊆ j + 1 : q is a subset of indices of those series higher than j in the selected
order, and we set pa(q) = ∅ as it is at the bottom of the hierarchical structure. The parental set
pa(j) contains contemporaneous values of some other univariate series, which are unknown at
time t. These contemporaneous values, however, could be predicted using lagged predictors, and
the results are fed into the model for forecasting. This reflects the contemporaneous conditional
dependence structure: for any i > j, yit |= yjt|ypa(j),t if i /∈ pa(j). The hierarchical structure of q
independent, univariate DLMs defines a full multivariate model for yt.

The conditional independence structure of DDNMs allow models to be decoupled into the set
of univariate DLMs for fast, efficient forward-filtering and 1-step forecasting, and then recoupled
for multivariate forecasting and decision analysis. For each DLM, we define a state vector θjt =
(φ′jt,γ

′
jt)
′ and specify its dynamic model forms and precision λjt. As in Zhao et al. [2016], we

adopt random walk models with two discount factors δj ∈ (0, 1] and βj ∈ (0, 1]. δj defines the
error variance matrix in random walk evolutions for θjt and βj defines the beta random variate in
the evolution of the time-varying precision λjt. At time t − 1, θj,t−1 and λj,t−1 have the following
conditional distribution:

θj,t−1|λj,t−1,Dt−1 ∼ N(mj,t−1,Cj,t−1/(sj,t−1λj,t−1))

λj,t−1|Dt−1 ∼ G(nj,t−1/2, nj,t−1sj,t−1)/2)
(2)

where mj,t−1, Cj,t−1, sj,t−1 and nj,t−1 are parameters of the normal and gamma distribution, and
Dt−1 summarizes information at t − 1. The posterior calculation, 1-step forecast at time t − 1 and
multivariate predictive distribution 1-step ahead are detailed in Zhao et al. [2016, Section 2].

For any h > 1, forecasting h−step ahead could lead to unknown lagged predictors at the time of
forecasting. DDNMs use a simulation method to sample yt+2 conditional on the simulated samples
of yt+1. This is done recursively up to h-step. The independent samples then form a Monte Carlo
sample from the full predictive distribution p(yt+1, ...,yt+h|Dt) which can be summarized.

4 A Study of US Macroeconomic Time Series

Bayesian modeling is increasingly popular in macroeconomic studies. Some of the common meth-
ods include dynamic factor models [Stock and Watson, 2002, Forni et al., 2005, Amisano and
Geweke, 2013], vector autoregressive (VAR) models [Sims, 1980], and TV-VAR models [Primiceri,
2005, Koop and Korobilis, 2009]. Nakajima and West [2013] introduced latent threshold process to
TV-VAR modeling to ensure dynamic sparsity by shrinking some time-varying parameters to zero for
certain periods of time. This method, however, is computationally expensive, making it less suitable
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to analyze a multivariate time series with a large number of variables. DDNMs, on the other hand,
are more efficient to implement due to decoupling and recoupling features discussed in Section 3.
One main goal of the study is to utilize DDNMs to explore models in a macroeconomic context.
DDNMs with extended model uncertainty analysis have proven forecast accuracy and model sta-
bility in the context of a 13-series, high-frequency financial portfolio analysis [Zhao et al., 2016].
We are interested in examining if conditional dependence structures in macroeconomic series can
be captured by sparse DDNMs which could feed into decision analysis using multiple-steps ahead
forecasting.

4.1 Context and Data

We analyze US macroeconomic time series with yt being monthly values of these series. The dual
mandate of Federal Reserve sets price stability and maximum sustainable employment as two goals
of US monetary policy. Multiple studies suggest that the Federal Reserve has placed heavy emphasis
on price stability (in practice, low and stable inflation), especially after 1980s [Poole and Wheelock,
2008]. As such, we pick inflation as the policy target xt.

Adjusting the nominal interest rate is a major tool of monetary policy. The Federal Reserve
changes the target Federal funds rate which is the best proxy to the nominal interest rate. Here,
we assume that interest rate could be directly controlled, that is, a decision to set rt = r actu-
ally achieves that target value. In the attempt to capture the complex interaction among more
macroeconomic variables, we include 6 other series of secondary interest ut. They are wages,
unemployment, consumption, investment, M1 and M2 money supply.

The data we use comes from the Federal Reserve Economic Data and Bloomberg terminal. The
inflation rate is the annual percentage change in a chain-weighted consumer price index excluding
food and energy, and the interest rate is the Federal funds rate. The detailed description of all series
is presented in Appendix 8.1. The data cover a time period of 612 months from January 1965 to
September 2016 which includes the Great Inflation, the Great Moderation, the financial crisis and
recovery, each with different characteristics; see Figure 1.

Figure 1: US inflation and interest rate from 1965 to 2016
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4.2 8-Variable Model Setup

For DDNMs, appropriate ordering and structuring is crucial. We perform preliminary model selec-
tion using training data and a linear model. The training period is from January 1984 to December
2003 (240 observations) which excludes the volatility in the 1970s and provides ample observa-
tions for variable selection. For q = 8 identified macroeconomic series, consider each univariate
series yjt at time t:

yjt = µj + α1yj(t−1) + · · ·+ α12yj(t−12) + βT1 zt + βT2 zt−1 + · · ·+ βT13zt−12, j = 1 : q (3)

Here, µj is the intercept and zt are contemporaneous variables at time t. 12 months of lagged
values of all variables from t − 1 to t − 12 are also included in the model. Using both forward
and backward stepwise regression on each of the 8 variables with a threshold of p <0.05, we
constrain the model to have at most 1 predictor in pa(j) and 4 lagged predictors for each series to
ensure sparsity. Another way is applying DDNM with model uncertainty [Zhao et al., 2016]. Here
model probabilities and hyperparameter uncertainty is not the key focus. Hence, we do not use
this method in our case study. Based on the preliminary model selection results, we decide on the
parental set pa(j) and lagged predictors for each series detailed in Table 1.

j Name Parental Set pa(j) Lagged Predictors
1 Interest rate(r) p AR(1), AR(2), w(3), m2(12)
2 Inflation(p) ∅ AR(1),AR(3), r(1), m2(12)
3 Wage(w) u AR(1), AR(3), u(8)
4 Unemployment(u) c AR(1), AR(3) w(4), i(1)
5 Consumption(c) m2 AR(1), AR(12), i(3)
6 Investment(i) m2 AR(1), AR(12), m2(3)
7 M2 money supply(m2) m1 AR(1), r(1), i(12), c(12)
8 M1 money supply(m1) ∅ AR(1), m1(1), r(3), i(12)

Table 1: Ordering and specification for 8-variable model

It is natural that the response variable with lag 1-month AR(1) is the most significant factor in
predicting current response variable. In addition, various variables with lag 3-month and lag 12-
month are often selected, particularly M2 money supply, investment and consumption, suggesting
the presence of seasonality both quarterly and annually. M1 money supply is at the bottom of
the hierarchical structure with an empty parental set. On the other hand, interest rate as the
monetary policy instrument is at the top, reflecting the need of contemporaneous variables, aka
current economic condition in its forecast. Decisions made at time t of setting rt = r is fed into the
model starting from time t+ 1.

Using data from January 1965 to December 1969 (60 observations), we get a rough estimate of
the prior values. The prior and discount factor specifications for each series yjt are listed as follows:

• m0 is (|γjt|+ |φjt|)× 1 vector with all zeros, except for the AR(1) coefficient set to 0.95.

• C0 is (|γjt|+ |φjt|)× (|γjt|+ |φjt|) diagonal matrix with C0(1, 1) = 0.01 and C0(d, d) = 1000
for d = 2 : |γjt|+ |φjt|.
• for j = 1 (interest rate), s0 = 0.75; for j = 4 (unemployment), s0 = 0.05; for other js,
s0 = 0.15.

• n0 = 20.
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• δ = 0.99.

• β = 0.99.

We set δ and β at relatively high values to encourage stability in inferred parameter trajectories.
With the model and priors as discussed above, we run the DDNM analysis for the time period

from January 1970 to September 2016. At each time step, we perform forward-filtering, update
posteriors, and evaluate 12- to 24-step ahead forecast distributions at each time point. Each forecast
generates a Monte Carlo sample with size 100,000 from the full, multiple-steps ahead predictive
distribution.

4.3 Point Forecasts

Figure 2 displays the predictive means of 1- and 2-year ahead forecast of three major series: interest
rate, unemployment and inflation. This is done recursively: starting at January 1970 up to any
month t, we perform forward-filtering to generate predictions based on y1:t. Then, we simulate
out-of-sample predictive distributions over time t+ 1 : t+ 24. The means at time t+ 12 and t+ 24
are recorded and are compared to the actual values. We then move to the next month t+1, generate
predictions based on the updated series y1:t+1 and forecast the next 24 months t+ 2 : t+ 25. This
is repeated to September 2014, generating a series of out-of-sample forecasts for each month over
the entire time frame. From Figure 2, we can see that both 1- and 2-year ahead forecast exhibit
similar trends as the actual series, with 2-year forecasts having a larger volatility, especially in the
period of 1980 to 1985. This could be attributed to the small number of observations to train the
model since the learning period starts on January 1970. The great inflation from 1965 to 1982 also
contributes to the heightened volatility.
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Figure 2: 1- and 2-year ahead forecast vs. actual value for US interest rate, unemployment and
inflation from 1980 to 2016

4.4 Impulse Response Analysis

Another key aspect of out-of-sample prediction is impulse response analysis. It describes the reac-
tion of the economy given a shock in the system. In the context of the Federal Reserve adjusting
interest rate, we set the shock to be a 2% increase in interest rate at time t, i.e. r∗t = rt + 2. This is
a rather radical increase given that the average monthly change in interest rate is 0.005. We hope
this drastic change would give a clearer picture of the direction of movement of various macroeco-
nomic series in the economy. From the recursive forecasting analysis in Section 4.3, at each month
we sample the predictive distribution for each variable given the shock. The difference between
the predictive means with and without the shock is plotted in Figure 3.

When analyzing Figure 3, we pay particular attention to the following features: (i) whether
there is a positive or negative relationship between the series and the shock on interest rate; (ii)
the difference in impulse response trajectories between short-run (1-year ahead) and longer-run
(2-year ahead) forecasting horizons; (iii) the variation in volatility over the time period.
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Figure 3: Impulse response trajectories for 1- and 2-year ahead horizons for US macroeconomic
series from 1980 to 2016. The shock introduced is a 2% increase in interest rate.

From Figure 3, we can see that (i) interest rate, inflation, and unemployment are generally pre-
dicted to respond positively to a shock in interest rate, while consumption and M2 money supply
respond negatively. Wage exhibits minimal change. Investment responds negatively until 1997,
then, the response becomes ambiguous. The initial response of M1 money supply is also unclear,
but after 2008, it shows a clear negative response. (ii) For most series, the response is more promi-
nent with a longer forecasting horizon, except for interest rate and inflation. Excluding the volatile
period in early 1980s, interest rate exhibits a larger increase in the short-run given a fixed shock
level. Inflation, on the other hand, first exhibits similar trend as interest rate before 2004, then,
long-run response becomes more prominent. (iii) In early 1980s, the response trajectories have
high volatility. This coincides with point forecasts in that period from Figure 2. After the 1980s,
most series are stable. However, the trajectories for wage, unemployment and investment are er-
ratic throughout the forecasting period. This suggests that their DDNM parameters lie outside the
stationary region of the implied ”local” VAR models at specific time points. While it is difficult to im-
pose constraints on these parameters, one possible solution is only accepting simulated parameters
that fall inside the stationary region. Future research is needed to address this problem.
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To further examine the response of each series from an interest rate hike, we plot the impulse
response function at specific time points. We choose two baselines in different economic contexts:
June 2005 and October 2011. June 2005 was at the tail of the Great Moderation, with significant
decline in macroeconomic volatility and steady real GDP growth. The economy in October 2011,
on the other hand, was in the recovery period after the financial crisis. The Federal Reserve has
been practicing zero interest rate policy since 2008 and second round of quantitative easing has
just ended. As such, even though they both have around 2% inflation, the interest rates are very
different. In June 2005 the interest rate is 3.04% while in October 2011 it is 0.07%. We are
interested in understanding how the economy with different interest rate levels respond differently
when it is subjected to a same shock. As in the previous analysis, we introduce a 2% increase in
interest rate. Figures 4,5 show the prediction trajectories from time t+1 to t+24 given the baseline.
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Figure 4: 24-month ahead forecasting given a 2% increase in interest rate for US macroeconomic
series from baseline June 2005. Red and blue dashed lines represent means and medians of the
posterior distribution respectively. Grey regions mark 50% and 90% credible interval. The actual
values of the series are plotted using red crosses.

As illustrated in Figure 4, in response to a 2% interest rate hike at baseline, interest rate first
responds by increasing further, then drops gently. Inflation exhibits a gradual increase while unem-
ployment a slight decrease. The rest of the variables show some changes in either directions, but
level off at the end. This shows that the economy is fairly stable, even subject to a radical change.
However, the positive response of inflation and negative response of unemployment contradict the
common belief that an increase in interest rate would bring down inflation and lead to higher
unemployment.
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Figure 5: Impulse response trajectories 24-month ahead for US macroeconomic series from baseline
October 2011

Figure 5 tells a different story. With the same 2% interest rate increase, interest rate follows
a similar trajectory. Both inflation and unemployment experience declines, while consumption,
investment, M1 and M2 money supply all experience increases. This is peculiar as we expect
heightened interest rate to suppress consumption, investment and money supply, hence, bring
down inflation. This shows that the relationship between inflation and other variables is more
intricate. The economy at this period is more susceptible to external shocks, though the direction
of movement is not as expected.

5 Decision Analysis

5.1 Loss Function and Risks

We specify the loss function to have a quadratic form:

Lt(yt+1:t+h) =
∑
k=1:h

δk(xt+k − xt+k−1)
′(xt+k − xt+k−1) + ρ(xt+h − τ )′(xt+h − τ ) (4)

that accounts for reaching specified target values τ over the next h periods. τ is a qx-vector targets
for response variable xt+h. δ = (δ1, ...δh)

′ is a vector of non-negative weights that penalizes large
changes in the xt+k variables over each time period and aims to reward a smooth trajectory towards
the target. The non-negative ρ penalizes large deviations of the terminal values xt+h from the
specified target τ . In this case study, we treat inflation as the only target variable, thought it can
be extended to include more variables such as unemployment.

With the loss function specified, we can derive risks from predictive distributions generated
from the forecasting model which directly sets rt = r. The Bayesian risk is the expected loss. Thus,
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the resulting risk function is

Rt(r) = E[Lt(yt+1:t+h)|rt = r,Dt]

=
∑
k=1:h

δkE[(xt+k − xt+k−1)
′(xt+k − xt+k−1)|rt = r,Dt]

+ ρE[(xt+h − τ )′(xt+h − τ )|rt = r,Dt]

(5)

Since we use a quadratic loss, Rt(r) depends only on the means, variances and covariances of
xt1:t+h conditional on rt = r and Dt. The detailed calculation appears in Appendix 8.2. Here, Rt(r)
is only the mean of the loss distribution. We are interested in other aspects of that distribution,
for instance, the median values. The solution to this is simulation: As we simulate the predictive
distribution pt(yt+1:t+h|rt = r,Dt) from the Monte Carlo sample, we can directly calculate values
of loss in eqn. 4 and take the median.

5.2 Decision Examples

In the context of the case study, we treat interest rate as the policy control variable r and specify a
range of values of r. For each inflation target, the risk is evaluated at each value of r. By setting
ρ = 1 and δk = 0.9k, we plot the risk function Rt(r) and choose r to minimize the risk.

Figures 6, 7 show the risk function of the mean and median loss for different levels of interest
rate by setting inflation target at 1-, 1.5-, 2-, 2.5- and 3%. We constrain interest rate to be non-
negative as the US has yet to adopt the negative interest rate policy (NIRP), even though other
central banks like European Central Bank, Bank of Japan have shown that NIRP is definitely a
possibility.

Figure 6: Mean and median loss for p=1:3 over 24-month ahead forecasting horizons from baseline
June 2005 with the local minima marked by dotted lines.
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Figure 7: Mean and median loss for p=1:3 over 24-month ahead forecasting horizons from baseline
October 2011 with the local minima marked by dotted lines.

With similar inflation but different interest rates at the baseline, both Figures 6 and 7 illustrate
that as the target value of inflation increases, the local minimum of risk functions shifts to the
right. In June 2005, because interest rate is already at a relatively high level, the model suggests a
decrease with respect to baseline interest rate to both increase inflation to 3% and decrease inflation
to 1%. On the other hand, the nearly zero interest rate in October 2010 prevents it dropping
further. Hence, the model suggests an increase in interest rate to achieve inflation adjustment in
both directions and a greater interest rate increase for higher inflation.

In addition, both figures depict that mean loss is higher than median loss for a specified policy
target and control variable, suggesting a right-tailed distribution of loss. From impulse response
analysis and decision analysis, our 8-variable model suggests that an increase in interest rate tends
to result in higher inflation levels.

6 Comparison with a 3-Variable Model

To test if the insights derived from the 8-variable model are supported by other models, we reduce
the model complexity by selecting 3 key variables of interest: interest rate, inflation and unemploy-
ment. As in the previous analysis, interest rate is the policy control variable, inflation is the target
variable, and unemployment is the response variable of secondary interest.

6.1 3-Variable Model Setup

The DDNM is adapted from Nakajima and West [2013]. In that paper, the authors use latent
threshold in TV-VAR modeling of US macroeconomic data. We select predictors that their analysis
indicated based on quarterly data.We convert lagged predictors from quarterly scale to monthly
scale through a multiplication of 3. The model specification is shown in Table 2:

j Name Parental Set pa(j) Lagged Predictors
1 Interest rate(r) u, p AR(3), p(9), u(9)
2 Unemployment(u) ∅ AR(3), r(6), r(9)
3 Inflation(p) ∅ AR(3), AR(6), u(3)

Table 2: Ordering and specification for 3-variable model
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As in the 8-variable model, interest rate is placed at the top of the hierarchical structure. Priors
and discount factor specification are the same as the previous analysis. They are:

• m0 is (|γjt|+ |φjt|)× 1 vector with all zeros, except for the AR(1) coefficient set to 0.95.

• C0 is (|γjt|+ |φjt|)× (|γjt|+ |φjt|) diagonal matrix with C0(1, 1) = 0.01 and C0(d, d) = 1000
for d = 2 : |γjt|+ |φjt|.
• for j = 1 (interest rate), s0 = 0.75; for j = 2 (unemployment), s0 = 0.05; for j = 3 (inflation),
s0 = 0.15.

• n0 = 20.

• δ = 0.99.

• β = 0.99.

We rerun the DDNM analysis over the same time period – January 1970 to September 2016.

6.2 On-line Trajectories of State Variables

Figure 8 displays the evolution of state variables over time for each univariate DLM for interest
rate, unemployment and inflation series. With mean and 95% credible interval clearly marked,
this shows how coefficients of these predictors change over time, which could shed light on their
interaction when we combine the series for multivariate forecasting.
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Figure 8: On-line trajectories of state variables for each series. Posterior mean is represented by
the blue line and 95% credible interval is marked by red dotted lines.

Figure 8 illustrates some key features: (i) there is clear regime switching. In early 1980s, there
is a sudden increase in volatility as experienced by many predictors. From late 1980s through early
2000s, the economy is relatively stable. After the 2008 financial crisis, many predictors exhibit
changes in coefficient in either directions. However, except for a few, namely the intercept, interest
rate with lag 6 and lag 9 for unemployment series, there is no significant increase in volatility
post-2008. The identified regime switching demonstrates adaptivity of DDNMs. (ii) There are
some predictors (AR(3) for interest rate, AR(3) and interest rate with lag 9 for unemployment,
AR(6) for inflation) with entirely positive coefficients and some (unemployment with lag 3 for
inflation, unemployment for interest rate) with negative coefficients. The rest change signs as time
evolves, thus, affecting the response variables differently. (iii) There is no prolonged period for any
predictor which the 95% credible interval covers zero. Except for interest rate with lag 6 and lag
9 for unemployment series which appear to move concurrently in different directions, there is no
clear collinearity. This suggests that most predictors are significant in the context of this DDNM.

6.3 Impulse Response Analysis

As in the 8-variable model, Figure 9 shows impulse response trajectories for 1- and 2-year ahead
horizons for each series. The shock remains as a 2% increase in interest rate. The difference
between the predictive means with and without the shock is plotted.
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Figure 9: Impulse response trajectories for 1- and 2-year ahead horizons for US interest rate,
unemployment and inflation from 1980 to 2016. The shock introduced is a 2% increase in interest
rate.

As in the 8-variable model case, interest rate is predicted to respond positively to a 2% shock,
although the extend of increase is smaller. Unemployment and inflation, however, show different
trends. Before 2009, unemployment responds positively to an interest rate shock. Between 2009
and 2012, there is a sharp decrease, making the response negative. After 2012, 1-year forecast
remains in the negative region while 2-year forecast bounce back to around zero. On the contrary,
before 2009, inflation exhibits a long-run negative response to interest rate. This is reserved post-
2009, as inflation starts to respond positively with interest rate. Again, the erratic forecast path of
inflation reflects that its DDNM parameters lie outside the stationary region. Using accept-reject
sampling method mentioned in Section 4.4 on the simulated parameters into the future is needed
to address this issue.

The general trends of these variables resemble those under Nakajima and West [2013] latent
threshold VAR model, but the sizes of the responses from DDNM are smaller than those from the la-
tent threshold-VAR analysis. This arises from the different shock structures used. Both suggest that
before 2009, an increase in interest rate would suppress inflation and raise unemployment, which
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aligns with macroeconomic theories. After 2009, however, the effect is ambiguous, sometimes even
reversed.

6.4 Decision Analysis

The previous section has discovered a clear regime switch after the financial crisis. June 2005 and
October 2011 as the two baselines fall into two regimes. We are interested in finding out if the
model recommends different decisions at different baselines. The decision context and setting is
the same as Section 5.

Figure 10: Mean and median loss for p=1:3 over 24-month ahead forecasting horizons from base-
line June 2005 with the local minima marked by dotted lines.

Figure 11: Mean and median loss for p=1:3 over 24-month ahead forecasting horizons from base-
line October 2011 with the local minima marked by dotted lines.

Figures 10 and 11 again illustrate that as the inflation target increases, the local minimum of
risk functions shifts to the right, suggesting an increase in interest rate. This is especially apparent
in Figure 10: with baseline inflation at 2.03%, to reach a 3% target inflation, the risk function
suggests a 0.5% increase in interest rate. To reach a 1% target inflation, the risk function suggests
a 0.5% decrease in interest rate. Thus, the regime change does not impact the decision analysis
and both 3-variable and 8-variable models recommend to increase interest rate to reach a higher
inflation target.

As in Section 5.2, both figures illustrate a smaller median loss than mean loss, suggesting a right-
tailed loss distribution. Another interesting point to note is the relative risk of different targets. In
Figure 10, the risk function of a lower inflation target lies entirely above that of a higher target,
while the reverse is true in Figure 11. This shows that at baseline June 2005, it is riskier to decrease
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interest rate in order to reach a lower inflation target than to increase interest rate for a higher
target. On the other hand, with a nearly zero interest rate at baseline October 2011, increasing
the interest rate slightly to achieve 1% inflation in 2 years is less risky as increasing it drastically to
achieve higher inflation levels.

7 Summary Comments and Future Steps

DDNMs with the flexibility to customize model specifications for each univariate series, overlaying
the ability to adapt the model over time, has natural application in macroeconomic time series
analysis. By applying DDNMs to US macroeconomic data, we have explored the relationship be-
tween inflation as the policy target and interest rate as the control variable over the period of
1970 to 2016. The 8-variable model chosen by forward and backward variable selection to specify
each univariate series captures richer information about the economic conditions. Even though
the DDNM is sparse, the parental predictors and lagged predictors in a hierarchical structure give
rise to complex interactions among variables. The 3-variable model adapted from Nakajima and
West [2013] includes only interest rate, inflation and unemployment, hence reducing the dimen-
sionality and model complexity drastically. This directly translates to smaller volatility in impulse
response trajectories for the same forecast horizon. It also captures regime shifts better, clearly
identifies three periods: (i) late 1970s to early 1980s with high volatility (ii) 1990s to early 2000s
with stable economy and (iii) post-2009 with predictor coefficients moving in opposite directions.
These regimes can also be spotted in the 8-variable model, but are often masked by confounding
interactions among variables.

Another major focus of the study is decision analysis for the Federal Reserve’s monetary policy.
Using June 2005 and October 2011 as baselines of decision making, we find out that both models
recommend a higher interest rate for a higher inflation target. This suggests that traditional mone-
tary policy tools (such as a change in the Federal funds rate) may not behave exactly as suggested
by conventional economy theory on impacting inflation. Multiple papers [Silvia et al., 2014, Balke
and Emery, 1994a] find similar results, highlighting a change in relationship of the Federal funds
rate with unemployment and inflation. In fact, the positive relationship between the Federal funds
rate and inflation has become known as the ”price puzzle” [Sims, 1992, Balke and Emery, 1994b].
One possible explanation is the Federal Reserve systematically responding to signals of higher fu-
ture inflation by raising the Federal funds rate, but not by enough to fully offset the subsequent
inflation [Balke and Emery, 1994b]. This is especially apparent during the Great Inflation, as infla-
tion and interest rate move together. To capture the response of the Federal Reserve to anticipated
inflation, Christiano and Evansi [1994] propose adding commodity prices into the analysis to solve
the price puzzle as they provide information about future inflation. This method can be included
in future research.

Moreover, these discussions on the price puzzle focus on the 1960s and 1980s while our analysis
suggest that the price puzzle is also prominent in the 2000s. In the 2000s, the Federal Reserve has
practiced unconventional monetary policies. For instance, before increasing its target for the federal
funds rate in June 2004, the Federal Open Market Committee (FOMC) used forward guidance – a
sequence of changes in its statement language to signal that it was approaching the time at which a
tightening of monetary policy was warranted [FRB, 2015]. As a result, expectation change caused
by forward guidance leads to a structural change in the economy, but is not captured by the models.
Hence, the question arises: How to capture interest rate expectation in the economy?

Moving forward, we can include more series into the analysis: commodity prices as suggested by
Christiano and Evansi [1994] and long-term government bond yields to capture expectations about
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future inflation and interest rate. In view of the erratic projection paths for multiple series, we can
consider methods such as accept-reject sampling to constrain parameters to ensure local stationarity
in forecasting. There are also many aspects of the decision analysis that can be explored further. In
this paper, we assume that a decision to set rt = r actually achieves that target value. The question
is: whether setting the Federal funds target rate effective achieves the desired target r. We could
introduce a uncertainty to the intervention. In addition, in our analysis, we constrain interest rate
to be non-negative. The past recession caused a plunge in interest rate. Does the relationship
among inflation, unemployment and interest rate change around zero lower bound (ZLB) or even
pass ZLB? With the recent lifting from zero interest-rate policy, it would be interesting to analyze
the impact of this policy and potentially broaden the analysis to consider negative interest rate.

8 Appendix

8.1 Data Description

The data we used comes from the Federal Reserve Economic Data and Bloomberg terminal. We col-
lected monthly data starting from January 1965 to September 2016. We have identified 8 relevant
macroeconomic series. They are detailed in Table 3 below.

Notes on some of the series:
Inflation: This is the main response variable xt, in another words, a policy target of the Federal

Reserve. We used the annual percentage change in the CPI index.
Interest Rate: This is rt, a policy instrument of central banks as a potential target to control.

The effective Federal funds rate we used is the best proxy to the interest rate the Federal Reserve
aims to control. It refers to the overnight interest rate at which depository institutions trade federal
funds with each other overnight. The Federal Open Market Committee (FOMC) meets eight times
a year to determine the federal funds target rate. Here, we assume that the effective Federal funds
rate is directly adjustable and set rt = r actually achieves that target value.

Investment: We used ISM Manufacturing Index on business new orders to represent invest-
ment level. The index ranges in value from 0 to 100 with any number above 50 considered as
expansionary. Thus, we adjusted the data to center around the critical 50 level.

Money Supply: The Federal Reserve releases two types of money supply data: M1 Money Stock
(M1NS) and M2 Money Stock (M2NS). M1 is defined as the sum of currency held by the public
and transaction deposits at depository institutions (which are financial institutions that obtain their
funds mainly through deposits from the public, such as commercial banks, savings and loan as-
sociations, savings banks, and credit unions). M2 is defined as M1 plus savings deposits, small-
denomination time deposits (those issued in amounts of less than $100,000), and retail money
market mutual fund shares. We include both in our analysis.

Some other series we have considered are GDP, the Standard & Poor’s 500 index, and money
velocity. For GDP and money velocity, only quarterly data are available, which give us insufficient
data points for the analysis. S&P 500, on the other hand, introduces high volatility. Hence, we do
not include these series in our model.
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Variable Name Index Code Description
Seasonal
Adjust-
ment?

Treatment

Inflation CPILFENS

Consumer Price
Index for All
Urban
Consumers: All
Items Less Food
and Energy

No
Annual
percentage
change

Interest Rate FEDFUNDS
Effective Federal
Funds Rate

No
No
treatment

Wage CEU0500000008

Average Hourly
Earnings of
Production and
Nonsupervisory
Employees:
Dollars per Hour

No
Annual
percentage
change

Unemployment UNRATE
Civilian
Unemployment
Rate

Yes
No
treatment

Consumption PCE

Personal
Consumption
Expenditures:
Billions of Dollars

Yes
Annual
percentage
change

Investment NAPMNEWO

ISM
Manufacturing
Index on Business
New Orders

No
Index
minus 50

M1 Money
Supply

M1NS
M1 Money Stock:
Billions of dollars

No
Annual
percentage
change

M2 Money
Supply

M2NS
M2 Money Stock:
Billions of dollars

No
Annual
percentage
change

Table 3: Data description

8.2 Risk Function Calculation

The Bayes risk function is

Rt(r) = E[Lt(yt+1:t+h)|rt = r,Dt]

=
∑
k=1:h

δkE[(xt+k − xt+k−1)
′(xt+k − xt+k−1)|rt = r,Dt]

+ ρE[(xt+h − τ )′(xt+h − τ )|rt = r,Dt].

(6)
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Note that

xt+1 − xt
xt+2 − xt+1

xt+3 − xt+2
...

xt+h−1 − xt+h−2
xt+h − xt+h−1

xt+h − τ


=



I 0 0 · · · 0 0
−I I 0 · · · 0 0
0 −I I · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · −I I 0
0 0 0 · · · −I I
0 0 0 · · · 0 I





xt+1

xt+2

xt+3
...

xt+h−2
xt+h−1
xt+h


−



xt
0
0
...
0
0
τ


= Ezth − et

where I is the qx × qx identity matrix and 0 the qx × qx zero matrix, and with

zth =



xt+1

xt+2

xt+3
...

xt+h−2
xt+h−1
xt+h


, E =



I 0 0 · · · 0 0
−I I 0 · · · 0 0
0 −I I · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · −I I 0
0 0 0 · · · −I I
0 0 0 · · · 0 I


and et =



xt
0
0
...
0
0
τ


.

Given Dt, we of course know xt and have fixed the value τ at target, so that et is a known
vector depending on these values. Now introduce the (h + 1) × (h + 1)− diagonal matrix G =
diag(δ1, δ2, . . . , δh, ρ). It follows that the quadratic loss function in eqn. 6 is given by

Lt(yt+1:t+h) = (Ezth − et)
′G(Ezth − et). (7)

Under the forecast distribution pt(yt+1:t+h|rt = r,Dt), suppose that the implied hqx−mean
vector and hqx × hqx−variance matrix of zth are denoted by

fth(r) = E(zth|rt = r,Dt) and Qth(r) = E(zth|rt = r,Dt).

After taking expectations of eqn. 7, the resulting risk function of eqn. 6 becomes

Rt(r) = [Efth(r)− et]
′G[Efth(r)− et] + trace[GEQth(r)E

′]. (8)

This simplified form is then used to calculate Rt(r) and find r that minimizes the risk. In
models that involve r in complicated ways such that we are not able to solve it analytically, we can
simulate specify a range of values of r and simulate predictions to get a Monte Carlo sample of the
loss distribution in eqn. 7. Rt(r) is the mean of that distribution. We can also look at other values
of interest of the distribution, such as median or tail values.
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