
Back to estimators...

So far, we have:

• Identified estimators for common parameters

• Discussed the sampling distributions of estimators

• Introduced ways to judge the “goodness” of an estimator (bias, MSE, etc.)

• Used estimators in confidence intervals, hypothesis testing, etc.

We haven’t spent a lot of time on developing/thinking of good estimators for a
parameter. What can we do to estimate a parameter that we’ve never considered
before?



Binomial example

Let’s begin with a familiar case.

• We have a RV that we know has a binomial distribution.

• Familiar example: We have 10 people receiving a new treatment for a serious
disease? What is the probability of recovery (success) p?

• Another familiar example: What proportion of those casting ballots voted
for Gore? Try to estimate this based on a random sample of 1000 voters.

• The problem is that we don’t know what p is, now that we have implemented
a new treatment regimen.



Binomial probability histograms
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Estimating p

Pretend for a few moments that we haven’t previously discussed using p̂ as an
estimator for p.

• Our intuition would tell us that the best guess for p was the proportion of
successes in our sample (p̂).

• There is also a more mathematical way to approach the problem.

1. Think about the probability distribution for Y , the number of successes
in your sample of size n.

2. Although the parameter p is unknown, we can substitute into the
probability distribution the information we do know: Y and n.

3. Determine what value of p would give the highest probability of obtaining
that sample with y successes in n trials.



Maximum likelihood methodology

Assume that 6 of the 10 patients receiving the new
treatment regimen recover.

• Write down the probability distribution for the number
of successes in n trials. (This is the likelihood function.)

• Substitute in the information from your sample.
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Maximum likelihood methodology

• Find the value of p that maximizes L(p).

• This is your maximum likehood estimate for p.



Maximum likelihood methodology

Let’s work through the more general case and find a formula
for the maximum likelihood estimate for p - a formula which
depends just on observed data.

• As before, write down likelihood function.

• How to take the derivative, set it equal to zero, and
solve for p? Looks messy...



Maximum likelihood estimate of p

• Find the value of p that maximizes L(p).

• This is your maximum likehood estimate for p.



Invariance property of MLEs

• Say we have the MLE for parameter 1, but we want to know the MLE for
parameter 2, which is a one-to-one function of parameter 1.

• To find the MLE for parameter 2, substitute the MLE for parameter 1 into
the function that gives parameter 2.

• If t(θ) is a function of θ and θ̂ is the MLE for θ, then the MLE for t(θ) is
given by t(θ̂).



Using the invariance property

We know that for a binomial proportion of successes p, the
MLE is given by p̂. What is the MLE for the variance of Y?



More about MLEs

• Can be used to help you find an estimator for a parameter that is new to you

• Invariance property of MLEs means that for many functions, you can build a
MLE for the function using MLEs that are already known.

• MLEs are not always unbiased. However, in some cases adjusting the MLE
by a constant can yield an unbiased estimator with minimum variance.

The method of maximum likelihood is a commonly used procedure in statistics.



MLE for mean of the normal

Assume that we have a random sample x1, x2, ..., xn from a
normally distributed population for which the variance σ2 is
known. What is the MLE for the mean µ? The probability
density function for the normal distribution is: f(x) =

1
σ
√

2π
exp[− 1

2σ2 (x − µ)2] , −∞ < x < ∞ , −∞ < µ < ∞



MLE for variance of the normal

Assume that we have a random sample x1, x2, ..., xn from
a normally distributed population for which the mean µ

is known. What is the MLE for the variance σ2? The
probability density function for the normal distribution is:
f(x) = 1

σ
√

2π
exp[− 1

2σ2 (x − µ)2] , −∞ < x < ∞ , σ2 > 0



Large sample properties of MLEs

• Already know from the invariance property that if θ̂ is the MLE for θ, then
for a function of θ, t(θ), the MLE t̂(θ) is t(θ̂)

• Under certain regularity conditions (that apply for the distributions that we
will consider), t̂(θ) is a consistent estimator for t(θ)

• This means that as the sample size n grows, t̂(θ) tends to get closer to t(θ)

• For large sample sizes, we also know that t(θ̂) is normally distributed, so
that the following has an approximately standard normal distribution

Z =
t(θ̂) − t(θ)√

[
dt(θ)

dθ ]2

nE[− d2 ln f(Y |θ)
dθ2 ]



Confidence intervals using MLEs

For large sample sizes, we can obtain a confidence interval for t(θ) using the
MLE estimator and its large sample properties:

t(θ̂) ± zα
2

√√√√ [dt(θ)
dθ ]2

nE[−d2 ln f(Y |θ)
dθ2 ]

However, this formula can still depend on θ, so in practice, we can substitute the
MLE θ̂ for θ:

t(θ̂) ± zα
2

√√√√ [dt(θ)
dθ ]2

nE[−d2 ln f(Y |θ)
dθ2 ]

∣∣∣∣∣
θ=θ̂



CI for normal mean

As before, assume that we have a random sample
x1, x2, ..., xn from a normally distributed population for
which the variance σ2 is known. Show that a 100(1 − α)%
confidence interval for µ, when σ is known, is given by
x̄ ± zα

2

σ√
n
, as we learned before.



Example

Suppose that X1, X2, . . . , Xn form a random sample from a
distribution for which the p.d.f. f(x|θ) is given below. Also,
suppose θ is unknown (θ > 0). Find the MLE of θ.

f(x|θ) =


 θxθ−1 for 0 < x < 1

0 otherwise



Example continued

Find a 100(1 − α)% confidence interval for the θ2 (reference
the distribution given in the last slide).

t(θ̂) ± zα
2

√√√√ [dt(θ)
dθ ]2

nE[−d2 ln f(Y |θ)
dθ2 ]

∣∣∣∣∣
θ=θ̂


