
Inference topics we’ve covered so far...

• Identified estimators for common parameters

• Discussed the sampling distributions of estimators

• Introduced ways to judge the “goodness” of an estimator (bias, MSE, etc.)

• Used confidence intervals and hypothesis testing to make inferences about
one mean, one proportion, or differences between two means

• Used maximum likelihood estimation to identify potential estimators for a
parameter

None of the methods that we’ve discussed so far allow us to model the
relationship (correlation) between two variables.



Describing the linear relationship

• Imagine that you have two quantitative variables that are correlated

• Think back to our coefficient of correlation, ρ. Now instead of just measuring
the strength of the linear relationship, we want to get a more specific idea of
what the relationship is

• In particular, we might want to predict values of one variable given the other
variable.

• If the relationship between the 2 variables is not linear, sometimes
appropriate transformations of the data may yield a more linear relationship.



Deterministic linear relationships

If the relationship between the two variables is a linear one, we can try to
quantify/describe it based on the equation for a line If the correlation between
the two variables is known to be perfect, or very close to it, we might use a
deterministic model

• Then, we are saying that for every value of the independent variable X, we
can exactly (or very close to it) predict the dependent variable Y

• This model may be appropriate for well-established laws of science, say:

momentum=mass*velocity

• If I take an object, cause it to move with various velocities, then I can
predict its momentum (with perhaps small measurement errors).

• This can be modeled by
Yi = β0 + β1Xi

where (Xi, Yi) are (velocity, momentum) measurements, and β0 and β1 are
the intercept and slope for the line that describes the relationship.



Probabilistic linear models

What if the correlation between two variables is not perfect? What if there seems
to be a scatter cloud of points that has a general linear trend?

• We can express the relationship using the model

Yi = β0 + β1Xi + εi

• This means that for every observation (Xi, Yi), Yi is a linear function of Xi

plus some random “noise” given by εi.

• The noise is assumed to have mean 0 and be uncorrelated from data point to
data point. This means that the errors (the noise that scatters data points
around the underlying trend), are independent and are fall symmetrically
around the mean of zero

• We cannot exactly predict Y for every X, but we can say what the expected
value for Y given X is. Then, we are modeling the means of the Yis given
the changing Xis

E(Yi) = β0 + β1Xi



Example of two correlated variables

We may be interested in predicting a student’s second
midterm score, given his/her first midterm score. We could
look at a sample of such scores to help us determine how
these grades are correlated.
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Figure 1: Sample of scores on the two midterms



Interpretations of estimates

• Since the data we have is just a sample from the population, we can only
estimate the slope and intercept of the “true” regression line.

• These estimates are denoted β̂0 and β̂1, and the fitted values that they yield
are denoted ŷ

ŷi = β̂0 + β̂1xi

• β̂1 gives the estimated change in the dependent variable associated with a
one unit change in the independent variable

• β̂0 gives the estimated value of the dependent variable when independent
variable is 0



How to fit the line?

• We want the line to be as close to the data points as
possible, but since there is so much variation from a
strict linear pattern, the methodology for doing this is
unclear.

• How do we measure the distances between the data
points and the line? We could use vertical distance,
horizontal distance, or closest distance (perpendicular
approach from each data point to the fitted line).



Least squares approach

• We choose to minimize the sum of the squared vertical distances between
each data point and the regression line.

• These distances are called the errors, and denoted by ei = yi − ŷi

• The approach is called “least squares” since it minimizes the sum of the
squared distances. (The sum of the vertical distances, not squared, is 0.)

• This provides us with the following least squared estimates for the slope and
intercept of the regression line:

β̂1 =
∑n

i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄



Back to our grades data
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Figure 2: Fitted regression line: ŷ = 44.396 + 0.382x

∑
(xi − x̄)(yi − ȳ) = 2290.73

∑
(xi − x̄)2 = 5996.445

x̄ = 82.31 ȳ = 75.84



When are these estimates good?

When certain conditions are met, we can say that our least
squares method yields good estimates β̂1 and β̂0 of β1 and
β0. These are called the Gauss-Markov conditions.

• E(εi) = 0 for all i

• V ar(εi) = σ2 for all i

• Cov(εi, εj) = 0 for all i 6= j

These assumptions are also necessary for us to make
statements about the mean and variance of the estimates
and for further inference about the model parameters.


