
Measuring the fit of the model - SSR

Once we’ve determined our estimated regression line, we’d like to know how well
the model fits. How far/close are the observations to the fitted line?

• One way to do this is take some measure of how big the errors/residuals are,
where the errors/residuals are given by ei = yi − ŷi.

• This measure is called the sum of squares due to error, SSE =
∑n

i=1(yi− ŷi)2;
it is the quantity which the least squares procedure attempts to minimize.

• Note that this quantity depends on the units in which the dependent variable
is measured.



Measuring the fit of the model - R2

• Another way to measure the fit of the model is to look at the proportion of
the total variability in the dependent variable that can be explained by the
independent variable.

• We can measure the total variability in the dependent variable using the
total sum of squares SST =

∑n
i=1(yi − ȳi)2.

• We can meausure the variability in the dependent variable that can be
explained by the independent variable SSR =

∑n
i=1(ŷi − ȳ)2

• This means that the proportion of total variability in the dependent variable
that can be explained by the independent variable is SSR

SST .

• This quantity is called the coefficient of determination and denoted R2.

• Since SST = SSR + SSE, R2 can also be written SST−SSE
SST = 1 − SSE

SST



Sample correlation

• We’d like to have a way to estimate the true correlation, ρ, using the data

• This is the sample correlation r, given by:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

• This can be re-expressed in terms that we have used before. Remember, that
we can write β̂1 as Sxy

Sxx
. This yields r = Sxy√

SxxSyy

= β̂1

√
Sxx

Syy
.

• This relationship also means that we can write the regression equation given

r, Sxx, Syy, and the sample means of x and y. We know β̂1 = r
√

Syy

Sxx
.

• In the case of simple linear regression (one independent variable), the
coefficient of determination R2 = r2.



Inferences concerning the linear model parameters

• The least squares estimates β̂0 and β̂1 obtained using our sample are only
estimates of β0 and β1

• How good are these estimators?

• What are their means, variances, etc.?

• How can we make a confidence interval/hypothesis test for these parameters?



Sampling distribution for slope estimate, β̂1

• E(β̂1) = β1, so β̂1 is unbiased

• V ar(β̂1) = σ2

Sxx
where Sxx =

∑n
i=1(xi − x̄)2 and σ2 = V ar(Y ) = V ar(ε)

• The distribution of β̂1 depends on the distribution of the error term ε. It is
normally distributed if ε is normally distributed.

• We will generally be looking at models, in which we assume that ε is
normally distributed.



Sampling distribution for intercept estimate, β̂0

• E(β̂0) = β0, so β̂0 is unbiased

• V ar(β̂0) =
σ2

∑
n

i=1
(xi−x̄)2

nSxx

• The distribution of β̂0 also depends on the distribution of the error term ε.
It is normally distributed if ε is normally distributed.



Estimator for σ2

• We rarely know σ2, so we will need to estimate it based on the data

• Since σ2 represents the variance of the Yis around the line β0 + β1Xi, it
makes since to estimate it using some function of the distances between the
data points and the fitted line.

• This (unbiased) estimator for σ2 is s2 = SSE
n−2 , where SSE =

∑n
i=1(yi − ŷi)2.

• Given that β̂0 and β̂1 are normally distributed (given known σ2), when we
substitute our estimate s2 for σ2, these estimators have t distributions with
n − 2 degrees of freedom.

• Knowledge of the sampling distributions of these statistics enables us to
conduct hypothesis tests and form confidence intervals.



Hypothesis tests/CIs for coefficients

• After fitting a linear model, we might ask whether there is sufficient evidence
to conclude that the x variable is a useful predictor of the y variable.

• This is a hypothesis test with H0: β1 = 0 and HA: β1 6= 0.

• We can conduct the test as usual, formulating the test statistic as:

Tn−2 =
β̂1 − 0√

s2

Sxx

• Of course, we can also use the same methodology to test hypotheses which
involve another value of β1 (instead of 0) or to test hypotheses involving β0.

• Using the information about the sampling distributions of β̂0 and β̂1, we
can form confidence intervals for these parameters. To find a (1 − α)100%
confidence interval:

β̂i ± tα
2
SEβ̂i



Are the assumptions of the model met?

• Suppose we use least squares to obtain an estimated regression line.

• In order to make inferences concerning the parameters β0 and β1, we need to
make assumptions about the distribution/correlation of the residuals

• One way to examine the truthfulness of the assumptions is to look at a
scatter plot of the residuals (e = y − ŷ) vs. the fitted values (ŷ)

• They should form a cloud (no patterns), symmetric about 0, with fairly even
variation in the the variation of the residuals over the range of fitted values.



Confidence interval for E(Y )

• Remember that our regression line is just an estimate for the expected value
of the Y variable.

• This means we’re estimating E(Y ) = β0 + β1X
∗ with β̂0 + β̂1X

∗, where X∗

is just the value of X for which we want to estimate E(Y )

• We know that since β̂0 and β̂1 are unbiased estimators, the quantity
β̂0 + β̂1X is an unbiased estimator for E(Y ).

• The standard error for our estimate is fairly complicated to derive (see pp.

502-4), but it can be shown to be s
√

1
n + (x∗−x̄)2

Sxx

• This yields a confidence interval for E(Y ) = β0 + β1X
∗, of the form

(β̂0 + β̂1x
∗) ± tn−2

α
2

s

√
1
n

+
(x∗ − x̄)2

Sxx

where s2 = SSE
n−2 .



Prediction interval for Y when X = x∗

• Let’s say that instead of a confidence interval for the mean E(Y ), we want a
confidence interval for a prediction of Y when X = x∗.

• Before, we were estimating a parameter E(Y ). Now we want to estimate the
value of a RV, the Y we observe at some specific time when X = x∗.

• Intuitively, we would estimate this value somewhere near the middle of
the distribution for Y for X = x∗. The center of this distribution is
E(Y ) = β0 + β1x

∗, which is estimated by β̂0 + β̂1x
∗.

• So we have the same estimate for E(Y ) as we do for a prediction of Y , but
intuitively, the variance for a prediction must be larger.

• The S.E. is (again) fairly complicated to derive (see pp. 506-8). It can be

shown to be s
√

1 + 1
n + (x∗−x̄)2

Sxx
, yielding a prediction interval for Y (when

X = x∗ and s2 = SSE
n−2 )

(β̂0 + β̂1x
∗) ± tn−2

α
2

s

√
1 +

1
n

+
(x∗ − x̄)2

Sxx


