Models for DNA Evolution

e D. Graur and W. H. Li: Fundamentals

of Molecular Evolution



e We were talking about closely related
sequences and remotely relates

sequences.

e How can we measure the degree of

divergence?



e We need a global alignment, and we
assume it 1is correct.
e Naive answers:

— Percentage of identical positions

in the alignment.
— Edit distance

— Global alignment score



Percentage of identical positions in the alignment:

Let us play evolution again. We start
with a comon ancestor, and then we let
the sequence evolve along two

independent branches.

In both branches we randomly choose
positions and randomly mutate them.
We do this with a rate of 0.002

mutations per unit of time.

The average percentage of identical

positions decreases with time.

Starting in 100% and converging to
25%.

Even unrelated sequences have in
average 25J, positions that are

identical.






Problem

e Early mutations have a significant

impact on the percentage identity.

e Late mutations almost do not have any
additional effect.



The problem of multiple mutations

Ancestor S1 T??GFC?TGFTA
Inter- s2 TITITMG|AcldTG|TAA
mediate | | | |
End product S3 TAIQGIACAT G[T|H A
Total number of mutations: 9

Number of differences between S1 and S2: 4
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e We want to model the evolution of
sequences by a set of independent but
identical continuous time Markov
chains for each position in the

sequence
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e We can estimate the most likely time
parameter ¢t from the observed

differences between the two sequences.
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e {A=1,0=2,G=3,T=4)}

e Assume we start the chain in state 1

( in an ’A’ )

e After a short period of time h, the
probability that the chain is still in

its initial state is
p11(h) =1 — 3ah,

while for any of the other states, the
probability that chain is in it 1is

pij(h) =ah j#1.
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e Let us shift to some arbitrary time

point ¢:

e We are interested in the probability
that the chain is in state 1 at t+ h.

e What can happen in the short time
period [t,t+ h|?

— Nothing, the chain was in state 1

at time ‘‘t’’ and stayed there.

— The chain was in a different state
at time ¢ and changed to state 1

during the interval.

We have

p11(t + h) = p11(t)(1 — 304}1) + (1 — pll(t))@h
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e We have

p11(t +h) —pi1(t)

- = —p11(t) 3a+(1 —p11(t)) o

e Since the right hand side does not
depend on h any more, taking the limit
h — 0 is trivial and we have the first

order linear differential equation:

dpi1(t)

= —4ap11(t) + «.

The solution is:

p11(t) = i + (pn(O) — i) e—dat.
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e Since p11(0) =1 and more generally
pii(0) =1 we get

1 3
pii(t) = 1 + 1 e tat

e And since the computation actually
does not depend on the initial state

at all, we also have for 7 # )

1 1\ .
pij(t) = Z+(pij(0)—1)64t
. 1 1 —4a t
1 4°

e Note, that we get an explicit formula
for long range transition
probabilities, that can be computed
for each (¢,j)-pair separately. In the
Chapman-Kolmogorov equation, we have
matrix products instead. Hence all

the p;;j(1) are needed to calculate
p11(t)
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e The stationary distribution of the
Jukes Cantor model is the uniform

distribution.

® The model satisfies detailed balance.

hence the model is time reversible.
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e It is completely unclear what the unit

of time t =1 is?

e There are two strategies to overcome

this problem:

— Calibrate the time, such that
P[X: # X¢+1] = 0.01. One percent
change in one unit of time. This

always works.

— Get rid of the time parameter and
replace it by the expected number
of substitution events. This 1is

appropriate for simple models.
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e We fix a single position in the
sequences. Let us assume the ancestor
state is 1 (’A’).

e The probability that the two sequences
are identical after a time period ¢ of

evolution in both branches is:
I4(t) = P(t)1, + P(t)1, + P(t)is + P(t)14

which can be calculated as

1 3 g,
IA(t):Z—i_Ze Sat

e Since all states are equal likely in
the ancestor and the above calculation
can be done in the same way for any
ancestral state, we have for the
probability of identical positions

unconditional on the ancestor:
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e The probability of identity after ¢ is

1 3
I(t) = Z + ZG_SOM

e The probability of difference after ¢
is hence

D(t)y=1-1() = Z (1 _ e—8at>

e This gives us the equation

Sat = —log (1 _ gD(t)> |
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e We have
4
8at = —log (1 — §D(t)> .

e We can observe D = D(t). It is just
the relative frequency of non matching

positions in the alignment.

e We do not know anything about the unit

of time and the rate «.
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What ever the unit of time is, let
K(t) be the expected number of

mutations during a time period of ¢.

For t =1, these are 3a mutations per

branch (linear approximation).

Hence we have for an observed relative

mismatch frequency D

3 4
K=-"log(1--D).
e (1-52)

K ist the Jukes-Cantor distance of the

sequences.
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Note, that the Jukes-Cantor model does
not specify the rate of mutations
explicitly. It only specifies that
the rate a is the same for all

mutations.
No attempt is made to estimate «.

One can obtain more general models if
one assumes different rates for

different types of mutations.

The expected number of mutations 1is
then estimated from separate counts of

different types of mismatches.
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The Ki nmura nodel
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The Jukes-Cantor model is for DNA.

What is different when dealing with

proteins?
more 1s needed, more 1is possible.

Now, we aim for estimating rates

explicitly.

The models reflect the similarities of

amino acids.

They are important for estimating the

degree of divergence

and they are the basis of

alignment scores for proteins.
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The 20 amino acids are quite
different.

Some are big some are small.
Some are polar others are not.

Some are hydrophilic others are

hydrophobic.

etc.

26



These properties are highly
influential on the fold and the

function of a protein.

It makes a much bigger difference to
replace a small hydrophobic amino acid
by a large hydrophilic one, than
replacing it by another small

hydrophobic amino acid.

The chances that the first mutation is
accepted by natural selection 1is less

than for the second one.

How can this be incorporated into the

model?

How can we asses amino acid

similarities?
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Similar amino acids are more often
replaced by each other then dissimilar

amino acids.

Dayhoff et al. 1978: Reverse this

relation:

We measure the similarity of amino
acids by observing how often they are

replaced by each other.

Available data: sequence alignments.

28



Counting pairs of aligned amino acids

e Given a set of reliable pairwise

alignments.

e For each pair of amino acids (i,7) we
can count how often we observe amino
acid 7 in the first sequence and
aligned to it amino acid j in the

second sequence.

e How can these observations be

interpreted from a models perspective?
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How can the differences between to
present tinme sequences be nodel |l ed
by a Markov chai n?

Acest or

Seql Seq?2

Evol uti on operates from ancestors to
descendants ... anf that is what should
be nodel | ed.
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However, we can observe the process only
I ndirectly by conpairing descendants.

For atinme reversible nodel this is no
pr obl em

Acest or

Seq] = » Seq2

The differences between Seql and Seg2 can
be nodelled by a single tinme reversible
nodel .
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e We like a good model of protein

evolution to meet the following

requirements:

e We

The transition matrix has strictly
positive entries. (Every mutation
is possible without intermediate

steps.)

The model is in equilibrium. (The
overall distribution of nucleotides
(amino acids) does not change with

time.)

The model is time reversible.

want these properties for

mathematical reasons (simplicity).

e From a biological point of view, they

are more or less ok.
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Symmetry of the observations

e Deciding which of the sequences is the
first and which is the second sequence
in an alignment is completely
arbitrary. Hence, we should not
distinguish between observing ¢ in the
first and 5 in the second or j in the
first and 7 in the second sequence.

e For example in
MLKEVAKSHH

MKHEVKHSKH
we count the (H,K) pair 3 times.

e We can summarize the relative pair

frequencies

_ 7fpositions where ¢ is aligned to j

M;; =
Y > Length of alignment

in a 20 by 20 matrix Memp-

e Due to the symmetry of the
observations, A4émp is symmetrical

too.
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Dayhoff’s calculations

e Derive transition probabilities from
Memp o

e Following the original paper we treat
mismatch and match observations

separately.

Mismatches first: assume 7 +# j:
P;; = P|i mutates|P|i — j | ¢ mutates].

e We want to estimate the term on the
left, we have data for both terms on
the right.
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Mutability

First calculate P[i mutates]| the

mutability of the amino acid :.

This term can be estimated by

2 My
;= :
2yt M
Pli — j | ¢ mutates| can be estimated by
M;,
Zk;éi My,

The diagonal entries of P are

consequently

Py =1-—m,
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Questions
Which alignments should be used?

To which time point ¢ do our

observations belong?
What 1s the unit of time?

What is a good time point for deriving
a model based score function for

protein alignment?
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Calibration and PAM Distance

e The time point ¢ =1 corresponds to 1%
expected mismatch positions in the

observed alignments.

P[Xt # Xt—l—l] — 001

¢ This unit of time is called 1 PAM
“Point Accepted Mutations”

e 2 PAM correspond to the effect the
Markov chain has, if it runs twice as
long. In general this results in less
than 2% expected mismatch positions,
since with some small but positive
probability one of the already changed

positions mutates a second time.
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Dayhoff’s data

Dayhoff et al. only used closely
related alignments in the range of O
to 17 PAM.

They treated all this data in the same
way. Hence they ignored the small
differences in the degree of

divergence.

Having Memp, they calculated
transition matrices P(t) as described
above ... this also gives a rate
matrix () and a stationmary

distribution 7.

The stationary distribution 7 reflects
the relative frequency of amino acids
in the data.
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Symmetry and time reversibility

e Since, A4émp is symmetrical, the
resulting Markov chain is always time

reversible

e This is another argument in favor of

time reversible models.

e Even if evolution is not a reversible
process, we do not have observations
that would allow us to distinguish

between directions.
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Calibration continued

The expected number of mismatch
positions for t =0 is 0. It is then

continuously growing with ¢.

Hence, there must be a { that

corresponds to 1 PAM.

This time point can be calculated
efficiently by diagonalisation of the

transition matrices P(t).

Dayhoff et al. made use of the linear

approximation
P(t)=1+1tQ

for small ¢ and calibrated by

transforming the mutabilities:
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