The 20 amino acids are quite
different.

Some are big some are small.
Some are polar others are not.

Some are hydrophilic others are

hydrophobic.

etc.



Similar amino acids are more often
replaced by each other then dissimilar

amino acids.

Dayhoff et al. 1978: Reverse this

relation:

We measure the similarity of amino
acids by observing how often they are

replaced by each other.

Available data: sequence alignments.



Counting pairs of aligned amino acids

e Given a set of reliable pairwise

alignments.

e For each pair of amino acids (i,j) we
can count how often we observe amino
acid 7 in the first sequence and
aligned to it amino acid j in the

second sequence.



Comparison of:

(A) mariner.seq >A26491 probable transposition protein - 345 aa
(B) tcl.seq >TC1 P03934 273AA - 273 aa
using matrix file: BLOSUM50, gap penalties: -14/-4

24.7\% identity in 97 aa overlap; score: 109

A26491 IFLHDNAPSHTARAVRDTLETLNWEVLPHAAYSPDLAPSDYHLFASMGHALAEQRFDSYESVKKWLDEWFAAKDDEFYWRGIHKLPER

TC1 VFQQDNDPKHTSLHVRSWFDRRFVDLLDWPSQSPDLNPIE-HLWEELERRLGGIRASNADAKFNQLPNAWKATIPMSVIHKLIDSMPRR



However, we can observe the process only
I ndirectly by conpairing descendants.

For atinme reversible nodel this is no
pr obl em

Acest or

Seq] = » Seq2

The differences between Seql and Seg2 can
be nodelled by a single tinme reversible
nodel .



Symmetry of the observations

e Deciding which of the sequences is the
first and which is the second sequence
in an alignment is completely
arbitrary. Hence, we should not
distinguish between observing ¢ in the
first and 5 in the second or j in the
first and 7 in the second sequence.

e For example in
MLKEVAKSHH

MKHEVKHSKH
we count the (H,K) pair 3 times.

e We can summarize the relative pair

frequencies

_ #tpositions where ¢ is aligned to j

M =
7 > Length of alignment

in a 20 by 20 matrix Memp-
e Due to the symmetry of the

observations, A4émp is symmetrical

too.



Dayhoff’s calculations

e Derive transition probabilities from
Memp o

e Following the original paper we treat
mismatch and match observations

separately.

Mismatches first: assume 7 # j:
P;; = P|i mutates|P|i — j | ¢ mutates].

e We want to estimate the term on the
left, we have data for both terms on
the right.



Mutability

First calculate P[i mutates]| the

mutability of the amino acid z.

This term can be estimated by

2 My
;= :
2kt M
Plt — j | i mutates| can be estimated by
M;,
Zk;éi My,

The diagonal entries of P are

consequently

Py =1-—m,



Questions
Which alignments should be used?

To which time point ¢ do our

observations belong?
What is the unit of time?

What is a good time point for deriving
a model based score function for

protein alignment?



Calibration and PAM Distance

e The time point ¢ =1 corresponds to 1%
expected mismatch positions in the

observed alignments.

P[Xt # Xt—l—l] — 001

e This unit of time is called 1 PAM
“Point Accepted Mutations”

e 2 PAM correspond to the effect the
Markov chain has, i1f it runs twice as
long. In general this results in less
than 2% expected mismatch positions,
since with some small but positive
probability one of the already changed

positions mutates a second time.

10



Dayhoff’s data

Dayhoff et al. only used closely
related alignments in the range of O
to 17 PAM.

They treated all this data in the same
way. Hence they ignored the small
differences in the degree of

divergence.

Having Memp, they calculated
transition matrices P(¢) as described
above ... this also gives a rate
matrix () and a stationary

distribution 7.

The stationary distribution 7 reflects
the relative frequency of amino acids
in the data.

11



Symmetry and time reversibility

e Since, A4émp is symmetrical, the
resulting Markov chain is always time

reversible

e This 1is another argument in favor of

time reversible models.

e Even if evolution is not a reversible
process, we do not have observations
that would allow us to distinguish

between directions.

12



Calibration continued

The expected number of mismatch
positions for t =0 is 0. It is then

continuously growing with ¢.

Hence, there must be a { that

corresponds to 1 PAM.

This time point can be calculated
efficiently by diagonalisation of the

transition matrices P(t).

Dayhoff et al. made use of the linear

approximation
P(t)=1+1tQ

for small ¢ and calibrated by

transforming the mutabilities:

13



A problem:

e Sequences that are 1 PAM apart are
very similar, alignment 1s usually
unambiguous and can essentially be

done by hand.

e In real alignment problems, we are
dealing with sequences that are fare

more remote.

e For the challenging alignment problems
the models used to build score
matrices, should reflect pair
frequencies in distantly related

sequences.

14



Extrapolation

Dayhoff et al., having a lot of faith in

their model, suggest:

e Use the 1 PAM transition matrix P.
(A little bit of evolution)

e Calculate the corresponding 250-step
transition matrix P?°Y. (A lot of

evolution)

e Calculate the corresponding joint
distribution of sequences that are 250

time units (PAMs) apart.

m(250)w = ngo Uy

15



The PAM family of score matrices

e We can calculate the famous PAM250

Score matrix just by

250);
PAM(250);; = 101logy, (m< 50) 3)

7T7;7Tj

e Actually, we can extrapolate a score

matrix for any PAM distance by

PAM(t);; = 10logy, (m(t)”’)

7Tz'7Tj

e Dayhoff et al. have suggested
PAM(250), today PAM(160) is assumed to

be a better choice.

16



Improvements

e The PAM matrices were derived in 1978
from a relatively small number of
alignments. Today we have much much

more data.

e The PAM matrices are estimated from
observations of only very closely
related sequences. A position that
mutates that early is a fast evolving
position. When aligning remote
sequence pairs we are especilally
interested in aligning conserved
regions correctly. These might follow

different models.

e It is desirable to fit models using
more data including more distantly

related sequences

17



We discuss two approaches
e The BLOSUM matrices

e The variable time matrices VT

18



BLOSUM

Derived by Steven Henikoff and Jorja
Henikoff 1992

Idea:
Forget about the Markov model, but

select your data carefully.

Blocks database: contains conserved
ungapped segments from protein

families.

A block is a short ungapped interval

in a multiple alignment of proteins.

The BLOSUM score matrix is derived

from these multiple alignments.

19



From Blocks to BLOSUM
e Given a set of blocks:

e Consider all pairs of positions in
this set of multiple alignments.
(Compare sum of pairs score)

YVHKL

YVYKL

MVKKL

The first column results in the pairs
(Y,Y) and (Y, M) counted twice.

e For each pair of amino acids (i,7)

count its occurrences.

e Normalize by the frequencies of 7 and
J in the blocks. (Quick and dirty
approach)

e How can we focus on a certain degree

of divergence?

20



Fix a percentage identity x between
50% and 80%.

Remove rows from the blocks such that
the remaining rows all have less then

x/, pairwise identity.

Count pair frequencies m(x);; in these

blocks and normalize them.

(f1,...f20) are the relative frequencies
of the amino acids in the reduced
blocks.

We get the Score matrices:

BLOSUM(iL‘)ij = 210g2 (Tr.bf(ilff)w> .

21



The BLOSUM matrices are based on

observations from remote sequences.

They are derived from multiple
alignments instead of pairwise
alignments. Multiple alignments are

in general more reliable.

In most applications, especially
database searches, the BLOSUM matrices
proved to be better than the PAM

matrices.

BLOSUM62 is the most widely used

scoring matrix today.

But, they are not based on a model of

evolution.

22



e Is there a possibility to have both?
A good score matrix based on a large
set of observations including
divergent sequences and a

corresponding model of evolution.

e What would be the problem if we just
applied Dayhoff’s method to this kind

of data®

23



10 20 30 40 50 60

VCKITPHSSNKSYPDGVYGTSGSANDDKQDAPHYIGTLDMTAFGSLFHEDDFELNFGTAK ...

VCKITPHAPHKSHPDGVYGTPGSANADRQDAPNYIGTLDMTAFGSLFHEDEFELTFGTTK ...

10 20 30 40 50 60

4(D,B) =1
#(N,F)=0

10 20 30 40 50 60
KLNELIPTRLDRKGLQSGGKVDRYQDEKYRKVGSPYFKKSHARKLAGSLTSDAITTLVRA ...

RVSDLYGIRLERAGLQSGGKLARYVEASLTTHGLAYNMASRTRLLQGAHTGDASDGLVKT ...

10 20 30 40 50 60
#(D,E)=3
#(N,F) =1

10 20 30 40 50 60

PKNDSHTQVKEGTEQTFVLPKAHAASKLVEDLLGAGVDSKPNGAYTQESDPSSVPEGVTD ...
PQFEGFTTGKDGAPLAAVQKQYHATVMF IVMMGGFAVEQKGFGFRGSDKDPCHTSHGLLE . ..
220 230 240 250 260 270

#(D, E)
#(N, F)

Il
N O
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The problem is:

Observations from closely related
sequences correspond to a different
model, than observations from

distantly related sequences.

On the other hand, a model for closely
related sequences implies a model for
distantly related sequences and vice

versa.

If we fit separate models for both
types of alignments, we run into

inconsistencies.

How can we estimate a single model

consistently?

25



Homologous Sequences

Evolutionary Distance

QL L
= ()= ;
@01 4020
Input Data Rates

26



probability

o
o
&

probability
g

=4
=
=

=4
°
g

time t=20 expected identity = 82%

o o
° o o
=3 & [

probability
o
I

v WCRITPHASHKSYPIGYYGTAGSANDORAD .. .
+++ ACKRYTPHAPHKAYPIGVYGSAGSANIIORED ..,
HEORERE KR RRRRERE RRRRRRRE %

time t =250 expected identity = 20 %

o o
o = o
S & [

probability
o
g

+++ BGETASWYSHLIKEYPGPOHYFITKMIKKGL ...
+++ GAREAIPARLHARCFAGLEYDEHENKKKGL .. .
* * #* O

timet=80 expected identity = 50 %

+++ LWSKSKGEGLPETLGFLHFKSWLTINGOTE .
+++ LRTOEKGEAYPESLGFLHFKDKLTINLRTA ...
* R kR RRRRRRE RRER R

timet=c expected identity = 6 %

+++ PHFTOOTCSYCCAARDTOIVHGEGGKRAHT ..
+os TONTCRYMTAMSHTPFGNMDGTISIHHGHA ..
*
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e We will base the estimation on
pairwise alignment data, as 1in the

original Dayhoff model.

e A priori, we have no clue what the
correct model of evolution is, nor do
we have any idea what the degree of
divergence of the individual sequence

pair 1is.

e It 1s clear, that we need to have
information on the degree of
divergence (the time interval in which
the Markov chain is operating), if we
want to estimate a model. (Model

estimation)

e On the other hand, a model is
perfectly suited for estimating these

numbers. (Time estimation)

28



e Solution:
We start with a known model (e.g.
Dayhoff’s model) and then iterate
through several rounds of time

estimations and model estimations.

29



Time estimation Rate estimation Markoff .
SYSTERS given the rates 5 given the times process

Iteration
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e Assume we have all the necessary
information on the time of divergence
(T) for all the alignment data (A).

e How can we estimate a model of protein
evolution from time inhomogenous

alignment data?

e We will discuss:
— Maximum Likelihood via rate matrix.

— Integral estimation via resolvent.

31



Maximum Likelihood

e The pair (Q),m) specifies the model
completely.

e Choose (@, w) such that the likelihood
of the given information (A,T) is

optimal.

(7,Q) = argrgaxcw,@m A) (1)

— argmaXZN( )log (k)Q)ij),

where N;;(k) counts aligned amino acid
pairs in alignments of divergence t(k)
I is a diagonal matrix with entries m;

and () is a rate matrix.

e The parameterization of ((),7) must
ensure that we end up with a time

reversible and calibrated model.

32



Problem

The maximum likelihood method can deal

with time divergent observatiomns.

However, calculating the maximum is
computationally demanding. Only
relative small amounts of input data
can be handled.

Much more data is available.

Hence, we need a more efficient

procedure.

33



Problem
e Why is Maximum Likelihood slow 7

e Whenever we are evaluating the
likelihood of a candidate rate matrix
@, we need to calculate exp(t¥)Q).

e This requires a diagonalisation of ().

34



The resolvent

e For a >0, we define a weighted time

average of P(t):

R, = / e “*P(t) dt.
0

e R, is called a resolvent of P(t).

e The resolvent is related to the rate

matrix by

ol —R(a)™' =@Q for all o > 0.

35



e Jdea: Estimate the integral

Rla) = /O T eatp) dt

o R;j(a) can be estimated from P;;(t)
independently from the other entries
in R and P.

e Since P;;(t) is a continuous function
in ¢, we only need estimators of P;;(t)
on some sufficiently dense set of time

points {1,...1,.

36



e Due to the weights e ', high values
of { have little influence on the

integral.

e In fact we can choose « such that our
observations coincide with the most

important region for the integral.

e We calculate the integral by linear
interpolation of the time specific

estimates.

37
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e We have discussed the problem of
fitting a model to alignment data, if
the degree of divergence (time,
distance) of all pairs of sequences is

known.

e What remains 1s the complementary
problem of estimating the degree of
divergence, if a complete model is
given.

e We discuss:

— Maximum Likelihood

— The log-det-formula

39



Maximum Likelihood

By definition, the maximum likelihood

estimator ¢t is the time ¢ that

maximizes the likelihood

L(tA,Q, ).

We have
0 = iﬁ(tm@ )
- dt Y 77T

Using the forward-backward equation,
the estimated time of divergence is
the solution of

(Pt)Q)i;
%:Nij P(t)i; -0

The equation can be solved

numerically.

40



The log-det formula

e Let (Aq,...\g) be the eigen values of
the rate matrix (), and let D(t) be a

diagonal matrix with entries

(et ... ethao).

e Diagonalisation of P(t) yields

log(det(P(t))) = log(det(SD(t)S™1))
= log(det(S) det(S™1) det(D(t)))
= log (HZ- e”‘i)
= t> A\
e Hence,
log(det(P(t))) _,
log(det(P(1)))

41



The log-det formula continued

e We have,

log(det(P(t)))

log(det(P(1)))

e Since P is given, we can calculate

the normalizing constant log(det(P(1))).

e { is unknown, but we can estimate
P(t)i; by

Pemp = (Memp)ij / fi;

where (Memp):; is the relative
frequency of the the pair (i,j) and f;
is the relative frequency of amino

acid .
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The log-det formula continued

e In total, this gives us an estimator

for ¢:
f— lOg(det(Pemp))
~ log(det(P(1)))
e Note, that
lOg(det(Pemp)

is proportional to ¢ and does not

depend on the real model at all.
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The variable time matrix VT160
Mueller and Vingron 2000

The VT-matrices are based on large set
of input alignments from the SYSTERS

database.

It is calculated by iterative updates

of model and time estimates.

Time estimation is done by Maximum
Likelihood.

Models are derived using the

resolvent.
The number 160 refers to 160 PAM

The matrix 1is quite similar to
BLOSUM62.

Different to BLOSUM it is based on a

complete stochastic model.
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