Database Searching

1 Introduction

The set-up for a typical molecular Database search is as follows: Given are a
query sequence and a database of sequences of the same type (Protein or DNA).
For each entry of the database a local alignment to the query is calculated and
the corresponding score is stored. The database entries are listed in decreasing
order of their scores. Significantly high scores indicate evolutionary relationships
(Homology).

In typical applications the query is a sequence where nothing is known about. The
database search hopefully yields a set of homologous sequences. If there function
is known and annotated in the database, we have a clue to the function of the
query as well. To test the performance of database searches and the reliability of
its results one can use members of well studied sequence families as queries. A
typical result looks like this:

1. On top of the list are clear hits. These sequences are almost identical and
their scores are far above average. Typical for such strong similarities are
corresponding sequences in closely related species. (e.g. cytochrome-c of
man and chimp).

2. Further down in the list we observe a twilight zone, consisting of both
sequences that are distantly related to the query and sequences that are
unrelated to it. However they all share about the same amount of similarity
to the query (if measured in alignment score points).

3. Finally all the other unrelated sequences of the database are listed with
small scores.

Let’s come back to the application of analyzing sequences of unknown function.
If we find a database entry that is “mostly identical” to the query (as those
described in 1), we are done. These similarities do not occur just by chance and the
only reasonable explanation left is common ancestry. The function of homologous
sequences may still be different, hence further (wet) experiments are needed to
determine their function reliably. Database searches are only supposed to yield
homologous sequences to the query that guideline the further investigation of



its function. If we only get scores in the range described in 3 the search failed.
Finally if we find similarities with score levels in the twilight we don’t know.
Homology can not be reliably inferred, however there is some reasonable chance
that we found something interesting. The twilight zone is a superposition of
distantly related sequences and not related sequences that score high just by
chance. Natural questions are:

e Which score levels reveal clear hits?
e Which are ambiguous?

e Which are meaningless?

In statistical terms: We are interested in the significance of score levels. Signif-
icance calculations need a model for unrelated sequences (null hypothesis). We
use independent pairs of i.i.d. sequences. The distribution of each position in the
sequences is as an average distribution of nucleotides in DNA or amino acids
in Proteins. Studies for Markov dependent sequences are also described in the
literature Waterman and Vingron (1994). There is no model for related pairs of
sequences in this theory, however statistical studies modeling both related and
unrelated sequences are also described in the literature Hwa and Léssig (1998).

Database searching is challenging in the case of remote relationship. In this case
similarity is normally restricted to conserved segments of both sequences. Even if
both sequences are homologous in their entire length, it may occur that significant
similarity only remains in segments that were subject to considerably strong
evolutionary pressure. Hence database searching requires local comparison. The
golden standard is to perform database searches by calculating local alignments
using the Smith-Waterman algorithm. The more popular programs FASTA and
BLAST are heuristic approximations of the Smith-Waterman algorithm that are
sufficiently quick to search entire databases in minutes. BLAST does not use
gaps, however it still performs good in database searches. Local comparison bears
a characteristic statistical problem: Long sequences in the database provide more
different pattern than short ones, hence they are more likely to score high just by
chance. Hence we need to study the significance of score levels given the length
of the sequences that where compared.

2 Notations

Let A be a finite alphabet, the 4 letter alphabet of DNA or the 20 letter alphabet
of amino acids. Let u = (p1, ..., i) be a distribution vector on the alphabet. p;
denoting the relative frequency of letter 7. Let X, X5,... and Y;,Y5,... be i.i.d



sequences. Both X; and Y} are distributed according to u and the two sequences
are independent from each other. Further we are given a score function S assigning
a real number to each pair of letters. These score functions are usually denoted
as matrices (e.g. PAM 250 for amino acids). The expectation of S under the null
hypothesis should be negative, i.e.

E[S] = Z,ua,ubSab =m < 0.
a,b

The optimal alignment score without gaps of the first n respectively m variables
is given by

H,n = Score(Xy,...X;;Y1,...,Y,) (1)
A-1

= max > S(Xisk, Yjir)- (2)
WA (20

The negative expectation value of S yields local alignments. Suppose it was pos-
itive, unrelated segments would obtain positive scores and the sum in (1) would
tend to run over the entire sequence length. We restrict the analytical analysis
to the gap free case (i.e the BLAST setup).

3 The Karlin—Altschul-
(Dembo—Arratia—Waterman)— formula

The main result on the significance of alignment scores given the length of se-
quences is )
PlHpm >t~ 1—exp(—ymne ¢), (3)

where v and 6 are parameters, that can be calculated analytically. 6 is the positive
solution of Elexp (5/6)] = 1 and ~ is hard to to write in TEX. If you want to
know it anyway see the appendix in Karlin and Altschul (1990). This and similar
results are discussed in the literature at several places. See Dembo and Karlin
(1991b,a); Dembo et al. (1994); Karlin and Altschul (1990); Arratia et al. (1986,
1988) or for a comprehensive review Waterman (1995). This distributional result
was preceded by the following strong law on the growth of alignment scores

Hnn _
e log(n?)

a.s.. (4)

It is useful to reformulate equation (3) in terms of a regression formula:

Hypm ~a+0log(nm)+60G. (5)



Hence there is a linear dependence between the score and the log of the search
space. The residuals obey a rescaled extreme value distribution i.e. P[G < t] =
exp(—e~"). The slope of the regression line and the scale parameter of the residuals
are identical. In a database search the length of the query remains the same in
all comparisons, whereas the length of database entries varies. For the score H;
of a database entry of length n; we get

H; ~a+0log(n;) +6G. (6)

To compensate for the bias resulting from different sequence length one can re-
place raw alignment scores by the p-values obtained from (3). These describe
significance given sequence length. Alternatively one can measure similarity in

terms of the residuals

Sorting for decreasing residuals and sorting for increasing p-values ends up in the
same ranking.

The development of these results started in the mid 80’s. Major contributions
came from large deviation theory and from Poisson approximation. In the follow-
ing we sketch some of them.

1. Probabilities for high scoring fixed alignments: Cramér’s Theorem.
A randomly picked alignment that scores high, can be interpreted as a large
deviation from the law of large numbers. The classical theorem of Cramér
(1938) provides a general theory for this kind of problems, and it is crucial
for:

2. Probabilities for rare blocks: Erdos—Rényi laws.

In alignment statistics we are not interested in the probability that a fixed
alignment is high scoring, but in the probability that among all possible
alignments between the two sequences at least one is high scoring. The
results in Erdés and Rényi (1970) are a guideline for proving the strong law
stated in (4). Applications of Erdés-Rényi Laws to sequence alignment are
described in Arratia and Waterman (1989) a proof for the result stated in
(4) is given in Dembo and Karlin (1991b).

3. The distribution of scores: The Chen—Stein method or the Aldous
clumping heuristic.
While Erdos-Rényi laws reveal the linear dependence of scores and the log
of the search space, they do not yield the distribution of the residuals. The
Chen-Stein method Chen (1975) yields a rigorous proof of (3), see Arratia
et al. (1990b); Dembo and Karlin (1991a). A nice introduction to Pois-
son approximation via the Chen—Stein method including applications to



sequence comparison is given in Arratia et al. (1990a). Heuristic explana-
tions of (3) can be obtained by using the Aldous clumping heuristic. This
is done in Waterman and Vingron (1994) and in an even more elegant way
in Ed’s comments at the end of these notes.

4 Cramér’s Theorem

Consider any randomly picked gap free alignment of two random sequences. What
is the Probability that it scores high? This problem fits well into the context of
Cramér’s theorem. Cramér’s theorem is discussed in many textbooks on prob-
ability. A modern and comprehensive introduction can be found in Dembo and
Zeitouni (1992).

The setup: Consider a sequence of independent random variables X;, Xo, ... with
common distribution x on a finite set M and let S be a real valued function on
M (In our case imagine the X; to denote pairs of randomly aligned letters, M
all pairs of letters and S the score function.)

By the Law of large numbers we have:

1 n

—Z ch —>E[S] = My
n ,—

For m > my let

Ay (m) = {% S S(X) > m}.

k=1
By the law of large numbers we clearly have

lim P [An(m)] = 0.

Events of that type are called large deviations. Cramér’s theorem provides prob-
abilities for A,(m). We need some more notations in order to formulate the
theorem.

For the reference distribution p and the statistic S we define the exponential
family of probability distributions given by

0 = 5 g
=
There is a one to one correspondence m ¢+ u*™ of m € (min S, max S) and the

probability distributions in {z*}, such that

Z Mg\(m) S; =m.



Note that A, (m) describes large deviation behavior with respect to 1 whereas it
is a normal event with respect to u*™). Let I(m) be the relative entropy of p*(™
with respect to u i.e.

Im) = HGA™ | 1) = 3™ log <W> .

2

We get:

Theorem: (Cramér 37)

lim = log (P [An(m)]) =—1I(m) a.s..

n—oo n

Probabilities of large deviations decrease exponentially: P [A, (m)] = exp (—n I(m)).
The exponential rate is determined by the entropy distance of the original model

1 and a second model pM™ for which A,(m) describes normal (ergodic) behavior.

A proof can be found in Dembo and Zeitouni (1992).

5 Rare blocks

In sequence comparison we chose among all possible alignments the one, that
optimizes the score. Hence we are not interested in the probability that any
fixed alignment is high scoring, but in the probability that among all possible
alignments there is at least one that is high scoring. A one dimensional equivalent
of this problem, is as follows: Consider an i.i.d. sequence of real valued random
variables, what is the probability that there is a segment in this sequence with
an average clearly above the expectation value of each variable. A mathematical
framework for this problem is described in Erdés and Rényi (1970).

With the notations of the previous section, consider a long segment of the se-
quence Xi, Xs,... given by a starting—point £ and an end-point [ > k. By the
law of large numbers we expect

1 l
=k =

For m > mg consider the events

Cra(m) = {ﬁ > 5(x) > m}.

l
i=k

6



The Cj, are called rare blocks. For fixed (I, k) Cramér’s theorem yields
P [C’kl(m)] ~ €_|l_k|1(m) . (7)

Obviously long i.i.d. sequences contain some blocks of this kind, however their
length is usually restricted. Erdoés and Rényi (1970) describe the growth of rare
blocks with the length of sequences:

Theorem: (Erddés Rényi 70)

Consider the simple score function given by S(a,a) = 1 and S(a,b) = —ocoifa # b
and suppose that gaps are not allowed. The optimal local alignment with respect
to this score function is the longest common sub-word of both sequences. In this
case (8) is identical to the strong law in (4). It also covers generalizations allowing
for a given proportion of mismatches. For general scoring schemes random walk
theory needs to be applied, see Dembo and Karlin (1991b). Their proof goes
along the lines of the earlier results in Erdés and Rényi (1970), however their
generalizations result in a technically much more difficult proof. The proof of
Erdos and Rényi mainly involves Cramér’s theorem and the Borel-Cantelli lemma.
Before we start with the proof note the following duality. Let 7, be the waiting
time for the first m-block of length r i.e.

1
Trzmin{l D D10.6) >m}.
Ly S
Clearly {R, > r} = {T, < n}. Instead of examining the length of rare blocks, we
can as well study waiting times for rare blocks of a given length:

Lemma:
lim —2— = lim _r
n—00 log(n) r—00 log(TT) )

Hence (8) translates to log(7})/r — I(m).
Proof of the lemma:

R, _ R
log(n) ~ log(Tk,)’
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because Tk, < n. Hence

. R,
hmnsup M

On the other hand 7%, 11 > n and hence

< lim sup
T

_r
log(T;)

R, S R, R, R,+1
log(n) = log(Tg,+1)  Rn+1 log(Tk,+1)
1
Hence
lim inf " _ > liminf

-
n - log(n) v log(Ty)

Now for the proof of the Erdés Renyi law:

T<ny = U U Cum)

k=0 l=k+r
n—1 00

C U U C’kl(m)
k=0 l=k+r

With pa = P[Cjx(m)], where A = |l — k| we get

P[T, <n] < n Z DA.
A>r

Cramér’s theorem yields a constant ¢ such that
pa < cexp(=A(I(m) —¢€/2)), (9)

for all A > 0. Hence the sum in (9) is a geometric series and by including the
limit into the constant we have

P[T, < er(I(m)—e)] zert(m)—e) g—r (I(m)—¢/2)

IA

— fcve—re/Z

Since Y-, P[T, < exp (r (I(m) — €))] is again a geometric series and hence finite,
the Borel-Cantelli lemma yields that for large r we have T, > exp (r (I(m) — ¢€))
and hence

1;
lim inf 7 > I(m) a.s.

So far we did not use the independence of the X;. However for proving an upper
bound we need independence. For « € N and n = ar we dissect X1, Xo,... X,
into successive non overlapping blocks of length r. Let B; = C;_1),;, be the event
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that the [’th such block is a m-block. The B, are independent events and their
union is clearly included in {7, < n}. Cramér’s theorem yields

P[Bl] > C€7T(I(m>+6/2),
for all r. Further 1 — 2 < exp (—x) yields
PT, > n] < (1- P[By])" < e™F1P),

as above we get

P[TT > e’ (I(m)—|—e)] < exp (_1 e’ (I(m)+e) ce—r([(m)+e/2))
a r
1
= exp (—c — e”/2>
r
< exp(—cr) for large r

The sum over the left hand probabilities is finite and the Borel-Cantelli lemma
yields for large r
T, < e"Um+ea g .

and finally

log(T,
lim sup og( T)
r T

< I(m).

6 Distributional results

In order to prove that the residuals H,,, — log(nm) 6 obey an extreme value dis-
tribution, the Chen-Stein theorem is applied, see Arratia et al. (1990b); Dembo
and Karlin (1991a). A very comprehensive discussion of these techniques in the
context of sequence comparison is given in Waterman (1995). While this is again
technically difficult, applying the Aldous clumping heuristic yields simple heuris-
tic explanations for these results. Waterman and Vingron (1994) used this heuris-
tic approach in order to extend the results to local alignment with gaps. And Ed
sketched a very nice heuristic proof for the non gap case, that you can find in the
appendix to these notes.

7 Gaps

Up to now we have discussed statistical results for non gapped alignments. How-
ever it has proved much more successful to do database searches using a real



Smith-Waterman algorithm. That means allowing for gaps. The statistics qual-
itatively depends on the gap penalties. Similar to the global vs local behavior
for E[S] > 0 respectively E[S] < 0 there is also a phase transition between low
and high gap costs. To illustrate this, suppose the cost for any mismatch were
infinite. If we do not allow for gaps, the local alignment is the longest common
sub-word of both sequences. We have shown, that it’s length growth with the
log of the search space. On the other hand, if we have free gaps the alignment is
the longest common subsequence which is known to grow linearly. Very high gap
costs yield similar behavior as infinite gap costs and on the other hand low gap
cost alignments resemble the free gaps case. In fact, there is a phase transition
line in the parameter space separating parameters (score matrix and gap penalty)
that result in a logarithmic growth of the score from those that give rise to linear
growth. A discussion of this result in the case of constant mismatch costs and lin-
ear gap penalties is given in Waterman (1995). Notice that these results all refer
to the null hypothesis of uncorrelated i.i.d. sequences. Linear growth of alignment
scores with the size of the search-space means in the context of database searches
an explosion of noise. And database searches with gap costs in the linear regime
do not work at all. Best results are obtained for relatively high gap costs in some
distance to the phase transition line. The Karlin-Altschul formula is not proved
for that case, however there is empirical evidence that it still yields reasonable re-
sults, at least after adjusting the parameters v and 6, see Waterman and Vingron
(1994).
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