What do we expect to find at all, if

the sequence is long but finite?

If we do not find an exact match of
the word s, do we find at least a

similar string?

Do we find a high scoring local

alignment of s and the database?

How high scoring do we expect it to

be?
This obviously depends on the word s.

It also depends on the length of the

random sequence.

The longer we can search, the more

chances we have for finding something.



Some more notations

To ensure local alignments, we now
assume:
ZMz‘MjSij <0
2%
and let
Sequencel X, Xo,...
Sequence2 Yi,Yo,...

be both 1.i.d. sequences.

We align the sequences (trivially and
non optimally) by matching X; with
Y:, X9 with Y5, and so on ...

Let Z; = (X;,Y;) . We get a new i.i.d.
sequence of real numbers
S(Z1),5(Z3),..., where S(Z;) is the
score of matching X, and Y7.

Let 1 be the distribution of Z;, we

have

EM[S(ZZ)] =mg <0



Large Deviations

By the Law of large numbers we have:

1 mn
= S(Zk) — mo
k=1

For m > mg let

1 n
Ap( = {— S(Zy) > m} :
n
k=1
Again by the law of large numbers we have
lim P [An(m)} ~0.

Events of this type are called large

deviations.



High scoring alignments

e Let us assume that the first n
positions of the two random sequences
are very similar...

more precisely let us assume they

have a positive score.

e This event is a large deviation and
hence, it becomes more and more

unlikely the longer the sequences are.

e With which rate does the probability

of this event converge to zero 7



Cramer’s theorem

e Theorem: (Cramér 37)

lim l-kxg(f’{An(Ww})::-—]Oﬂ,SZu) a.s. .

n—oo N

e Probabilities of large deviations

decrease exponentially:

P [An<m)] ~ exp (_nl<m7 Sa :u))

e There is an explicit formula for

I(m,S, 1) ... see notes on the web.



Local Scores

e The above alignments start at the

first position of the sequences.

e However, local alignments can start

every where inside the sequences.

e For our problem, we are not interested
in the probability that the start
segment of the alignment is high
scoring, but in the probability that
there i1s at least one high scoring

segment inside the alignment.

e We search the optimal scoring segment

in the fixed alignment.

e The corresponding score is called the

maximal local score of the sequence

S(Z1),8(Zs), . ...



XiXyXg - - X

Large Deviation

The first n random variables
deviate from mean behaviour

X1X2X3 Xk Xl

Rare Block
There isasegment in which
the random variables scorein
average higher than the mean




The Problem:

e For an i.i.d. sequence of real valued
random variables we have the following
problem:

What is the probability that the
sequence contains a segment with an

average well above the expectation?



Rare Blocks

e Consider a long segment of the
sequence /i,/2,... given by a start
point k£ and an end point [ > k.

e If k£ and /[ are selected randomly and
if the length of the segment [ — k is
long enough we expect by the law of

large numbers:
1 l
TkZSZ
i=k
e Suppose the average score inside the

segment is m > mg. This can be
described by the event

By (m) {l_kZS }

Such events are called rare blocks.
For fixed (k,l) Cramér’s theorem yields

P [Bk,z(m)] ~ e~ Il=klI(m,S,p)



Long rare blocks

We will often observe short segments
in the fixed alignment with a positive
score. However, long stretches of

similarity are rare.

We are interested in the length R, of
the longest rare block inside a

sequences of length n.

Long sequences provide more possible
starting points for a rare block than

short ones.

Therefore, R, grows with the length
of the i.i1.d. sequence under

consideration.

What is the relationship between R,
and the length of S5(Z41),5(%22),...7

10



Erdoes-Renyi Law

e The answer is given by

Theorem: (Erdoés Rényi 1970) Let
S(Z1),5(Z32),... be i.i.d. with common
mean mg. For m > m, let R, denote
the length of the longest m-block in
(S(Z1),...,58(Z,)). We have

I R, 1
1111 = a. S.
n—oo log(n)  I(m,S, p)

e The key observation is that the
maximal local score is significantly
higher than the score of the sequence
beginning at position 1.

Consequently, it can be interpreted as
a large deviation in the context of

Cramer’s theorem.

e See the notes for more details. The
notes also come back to the problem of

waiting times for rare blocks.

11



e Rare blocks grow on a logarithmic rate
with the length of the underlying

sequence.

12



Head Runs
We toss a fair coin n times.

The possible outcomes are Head (H) and
Tail (T).
HTHHTHTHTTHTHHHHHTTTTTTHTHTHT THTHTTHTHHHHHHH

How long is the longest head run?

Erdoes Renyi: It depends on the
length n of the sequence.

The length of the longest head run is
proportional to log(n).

13



Exact matches

e We have a fixed alignment of two

random sequences.:

e Match 1s head, mismatch is tail:
TATAGCATCATTACT
CATGGATCCATTCGA
THHTHTTTHHHHTTT

e The length of the longest match is
proportional to the log of the length
of the alignment.

14



Climbs of a random walk

with negative drift

e Consider the partial sums
n
i=1

e Since the expectation of the () is
negative, the sequence of partial sums
Wi, Ws,..., yields a random walk with

a negative drift.

15
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With probability one we have

lim W, = —oo,
n—oo

and therefore for [ > k we have
W, — Wi, <0 with high probability.

Now suppose we have a segment with
H=W,— W, =hyg>0. Note that this
segment corresponds to a gap-free

local alignment with score hg.

The setup is very similar as in the
Erdés-Rényi law: ‘‘typical’’ behavior
is a decreasing path, but since the
walk is random there are also some
short excursions of the walk, in which

it is climbing against its drift.

The main difference in the concept is,
that the deviation is not determined
by the length of the climb, but by its
height.

17



Large deviations for local scores

The two large deviation problems of high
alignment scores and rare blocks are
closely related, and it 1is not surprising

that they have similar answers.

Theorem: (Dembo and Karlin 1991) Let

Wi, Ws,... be a random walk with discrete
i.i.d. increments S(Z;) that have a
negative expectation. If H, denotes the
height of the highest climb in Why,...,W,,
i.e.

Eﬂlzzr?%xDVj——VVk,

we have

H,
lim

=0 a. C
n—oo log(n) a B

where 6 is the unique positive solution

of the equation

E [exp(S(21)/6)] = 1.

18



Optimal alignment

Up to know, we have fixed the
alignment

X1 X2 X3 X4 ...

Y1 Y2 Y3 Y4 ...

That is not how real alignments are

made.

Let us now proceed to local alignments

without gaps.

We choose among all possible pairs of
segments the one that optimizes the

Score.

19



Calculate a table ( with

S C AP C A L ...

O O T O O mK

-4

S O = O O O

20

-1
-3
-4 <=<—S(D, L)

N
-6
-
N
N
N

N
N .
N -3 N N Dlagonal segment
N N
N

> corresponding to a
\6\ I randomly selected
- local alignment

-4



e There is a one to one correspondence
of gap-free local alignments and

segments of diagonals in this table.

e To each pair of equally long segments
in the sequences there exists a
corresponding segment of a diagonal,
such that the sum over all entries in
this diagonal segment yields the

corresponding local alignment score.

e If the local alignment starts at
positions X; and Y, and has length L
its score is given by the sum over the

diagonal segment

(Cijy Cixi41 5 -+ 5 Citr—1,j4+1-1)

21



Now, we are talking optimal local

alignments without gaps.

Rare blocks correspond to long
alignments with a score above the
average and climbs of a random walk

correspond to high scoring alignments

The main difference is that there are
nm possible starting points for a
rare block or a climb of a random
walk.

The diagonals are dependent ... a
technical problem that can be

overcome.
Dembo Karlin (1994)

22



e Erdoes Renyi: The length of the
longest common word of two sequences
of length n and m grows proportional

to log(nm)

e Dembo Karlin: The optimal local
ungapped alignment score grows

proportional to log(nm).

e The rates are different.

23



Some more Head Runs

Match is head, mismatch is tail:
TATAGCATCATTACT
CATGGATCCATTCGA
THHTHTTTHHHHTTT

Let us fix a head run length ¢ such
that head runs of this length are

rare.

Let W(t) be the number of head runs

that are longer or equal to ¢.
W(t) is a count of rare events

does it follow a Poisson

distribution?

24



Cl umi ng Head runs

t

]
ol

.. THTTHTHT THHHHHT TTTHTHT THHHHHHHHHHHHHT TTTHTHTHHHT. . .

Cl unp of head runs
t hat have length 5

25



Decl umpi ng Head runs

t =5

... TTHHHHHHHTTTTHT THHHHHHHHHHHHHT TTTHTTTTHHHT. . .

head runs 001110000000000011111111100000000000000000

cl unps 001000000000000010000000000000000000000000

# head runs =12
# A unps = 2

Aclunmp is a 1 which is preceeded by a 0

26



Poisson approximation

The number of long head runs is not

Poisson ... ©because of clumps
We declump

The number of clumps is Poisson
distributed

Not trivial because clumps are not

independent

Chen-Stein Theorem ... see Waterman’s

book for more details.

27



Probability of a head is p and of a
tail (1 —p).

The length of the sequence is L

Fix a minimal length ¢ for a head run

and a position m in the sequence.
What is the probability P that a
clump starts at n?

1. n=1: P=yp

2. 1<n<L—-t: P=(1-p)p

3. n>L—-t P=0

28



The expected number of clumps in the

sequence

At) = EW ()] =p{(n—t)(1 —p) + 1}.
Let Z(A) be a Poisson variable with
intensity A

6—>\ k
Pz = H =

E[Z(\)] = A

Approximate W (t) by Z(A(t)).

29



Extreme value distribution

e If the longest head run is shorter
than ¢, the count of head runs longer

or equal to ¢ is zero.
{Rn < tp ={W(t) =0}
and therefore

P[R, >t~ 1—e Y,

e ... and therefore

PR, >t~ 1—e M),

e For § = —1/log(p), large t, and
(n—1t)/n~1 we have

PR, >t ~ l—exp(—p{(n—1t)(1-p)+1})

~ 1—exp (—vne_%), (1)

30



e Let H,,, be the optimal ungapped local
alignment score of two i.i.d.

sequences with length n and m.

e Along the same lines as above, we can

get
PlHpm >t ~ 1 — exp(—ymmne™#)

e Of course the parameters v and f are
different.

31



e A standard extreme value distributed

random variable (G is defined by
PG < t] = exp(—e™").

e Shifting and rescaling yields the two

parameter family of variables
H=0G+¢

We call & the location and # the scale
of H.

e With this notation we have the

regression equation

Hym ~a+0log(nm)+0G.

32



Density Function

P[ Score>t ]
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score

10
1

0.1

0.08

rel. frequency
o
o
o

0.04

5
log(length)
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Note, that the location of the score
distribution, depends on the length of

sequences

In the comparisons of a database
search, the length of the query is
fixed but the lengths of the database

entries vary.

Long sequences are more likely to

produce a high score, than short ones

Long sequences tend to show up as

false positives in the twilight zone.

We should compensate for this effect.
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Length corrections

1. Rank sequences according to the

p-values
PlHpm >t~ 1 —exp(—ymmne7)

2. ... or rank them according to length

adjusted scores

A = H,p — log(nm)6.
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