Pairwise comparison table

Calculate all pairwise alignment scores
and arrange them in a table

S1 S2 S3 S4 S5

S1 ® -10 -5 4 -2
S2 -10 e 25 -8 O

S3 -5 25 e -11 9
S4 4 -8-11 ¢ -1
S5 2 0 9 -1 e

Convert all score i1Into distances ...
1. Feng-Doolitle: D=-log(S-Srand)/(Smax-Srand)
2. Model based distances

log det formular
maximum likelihood
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Put together some good ideas:

Di stances of pairs of sequences are based on
a full stochastic nodel of sequence evol ution
(... to be discussed soon)

The guide tree is conputed by a valid nethod
of phyl ogenetic tree reconstruction
Sai tou and Nei 1987

The nmultiple alignnent is put together
by progressive profile alignment

Sequence wei ghting is applied
Gaussi an branchi ng processes
Al tschul Carroll Lipnman 1989



Contributions from bi ol ogy:

Score matrices influence the alignnent results.

The score matrix used to score pairw se alignnents
is chosen on the basis of the evolutionary distance

of the sequences.

Different matrices for closely rel ated sequences
and renote pairs of sequences.



The hydrophobic core of a protein is more conserved
than i1ts surface.

Position specific gap-open profile penalties are
multiplied by a modifier that is a function of
the residues observed at the position.

Hydrophobic residues (which are more likely to

be in the well conserved core of the protein)

give higher gap penalties than hydrophilc residues
(which are more likely to be on the water accesible
and less conserved surface of the protein)



Loops on the surface of a protein are often
m ssing in other nenbers of a protein famly.

Gap open penalties are also decreased if the position
i s spanned by a consecutive strech of five or nore
hydr ophi | i ¢ resi dues.



Insertions and deletions are rare events, but
once they occur, they are propagated and show
up In many family members at the same position.

Both gap-open and gap-extend penalties are
increased if there are no gaps in a column

but gaps occur nearby in the partial alignments.
This tries to enforce that gaps show up at the

same position.



A pairw se alignnent whispers, a full
mul ti ple alignnent shouts out | oud.

In the progressive alignnent stage, if the
score of a profile alignnment is low, the
guide tree may be adjusted on the fly to defer
the low scoring alignnent until |ater when
nore profile informati on has been accunul at ed.



...along the sane |lines:

Early deci ssions m ght be wong since there was
little profile information available at this tine.

Renove the first sequence fromthe alignnent and
realign it to the alnost full alignnent using
sequence to profile alignnent.

Continue with the second, third ,... sequence
Iterate for some tine.

(not inplenented in ClustalW
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MARKOV CHAINS

e For a basic introduction, see:
Ross, S (1997) A first course in
probability ( Prentice Hall )

e For details on the resolvent and
related topics, see

ISDS Discussion paper 00-25
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AAAAAAAAAAAAATTTTTTTTTTTTITTIT
CCCCCCCTTTTTTTTTTCCCCCCCCCCCCC
CCCCCCCCCCCLccceeeeeeeeceeeececee
CCCCCCCTTTTTTTTTTTTTTTITTTITTTCC
CCCCCCCCCCCCCCCCCCCCCCCCCGGAAA
AGGGGGGGAAAAAAAAAAAAAAAAAAGGGG
GGGGGGGGGGGGGGTTTTCCCCCCGGGGGG
GGGAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAGGCCCAGGGGGGCC
CCCCCCCAGGGGGGGGGGGGGGGGGAAAGG
TTTTTTTTTTTTTTCCCGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGCCCCCCCCCCC
CCCCCCCCCCCTTTTTTTTTTTTTTITTTAA
AAAAAAAAAAAAAAAAAAGGGGGGGGGGGG
GAAAAAAAAAAAAGGGGGGGAAAAAAAAAA
AAAGGTTTTTTTTTAAAAAAAAAAAAAAAA
AAAAAAAAAACCCCCCCCCC
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This experiment defines a stochastic
process. Let us denote the first letter
that is generated X, the second X;, and
so on. The stochastic process is then
given by the sequences of random

variables:

Xo, X1, Xo, . ..

A realization might be
Xo=A, X, =A, Xy,=0G,

We assume that we continue doing the
experiment forever. Hence there is no

last variable X,,.
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Some (uestions:

e If we know that X,, = A, what do we
expect X,4+1 to be?

e If we know that X,,_3 =T, what do we
expect X, 41 to be?

e If we know that X,,_3 =T and
thatX,, = A , what do we expect X, i1

to be?
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e In general, past outcomes contain

information on future outcomes.

e The older an outcome is the less it

affects the future.

e But, if we know the present state
(character) X,, then all past states
(X,—3) have absolutely no influence on
future outcomes (X,11).

(That is the way the experiment is

designed)

e Or in other words:
The future is independent of the past

given the present.

e Stochastic processes with this

property are called Markov Processes.
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e The experiment is driven by the
conditional probabilities
P[Xp+1 = s|X, =x|. These
probabilities are called transition

probabilities.

e In the experiment the process could be
in four different states: A,T,G or C.
In general the set of possible states
of a Markov Process is called its

state sSpace.

e If the state space consists of a
finite or countable number of states

the process is called Markov Chain.
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e We assume that for all n and m

holds. ‘‘We do not dream up a
different experiment for each step,
but use the same conditional

probabilities for all of them.’’

o If the state space is finite, we can
enumerate the states by numbers
1,2,...n and summarize all transition
probabilities in a n X n matrix
P = (pij). Where

Pij = P[Xn—i—l — ]|xn — Z]

This matrix is called transition

matrix

e Since the entries are probabilities
pi; > 0 and Zj pi; = 1 hold.
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e In our example we have

0.9000
0.0200
0.0600
0.0200

0.0200
0.9000
0.0200
0.0600
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0.0600
0.0200
0.9000
0.0200

0.0200
0.0600
0.0200
0.9000



We need to specify with which state we

want to start the chain:

This can be done in a deterministic

way by naming the state explicitly.

Or it can be done in a stochastic way
by choosing the initial state

randomly.

Let u? denote the probability that the

chain starts in state 2

The vector (uY,...,u2) is called the

start distribution.
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e By definition P[Xy=1] = Y holds. We
write Xo~ u’. But

e ...what are the distributions of
Xl,XQ or Xn?
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o X, first:
Assume we start in state 1 (’A’): The
probability of this event is
P[Xo= Al =11}
Now assume we go to state 2 (’C’): The
probability is
P Xy = A|P[X; =C| Xy = A]
In total the probability of having a

’C’ 1n the second step 1is

Y P[Xo=[P[X; =C|Xo =]
le{A,T,C,G}

= D Hipn =

e Ur more general, using matrix and

vector notation:
pt=p'P and X ~pt

e What about the distribution of Xs7?
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PXo=1 = ) P[X1=kP[Xy=1X; =k
k

= (u'P)P=p’P?

Or more general for X, :

XnN,LLn:,LLOPn

P(n) = P" is called n-step transition

matrix.

Chapman-Kolmogorov equation:

pij(m +n)

P(n+m)
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Z pik(m)
k

P(n)P(m)

pr;(n)



