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Some (uestions:

e If we know that X,, = A, what do we
expect X,4+1 to be?

e If we know that X,,_3 =T, what do we
expect X,+1 to be?

e If we know that X,,_3 =T and
thatX,, = A , what do we expect X, i1

to be?



e In general, past outcomes contain

information on future outcomes.

e The older an outcome is the less it
affects the future.

e But, if we know the present state
(character) X,, then all past states
(X,—3) have absolutely no influence on
future outcomes (X, 11).

(That is the way the experiment is

designed)

e Or in other words:
The future is independent of the past

given the present.

e Stochastic processes with this

property are called Markov Processes.



e The experiment is driven by the
conditional probabilities
P[X,411 =s|X, =x]. These
probabilities are called transition

probabilities.

e In the experiment the process could be
in four different states: A,T,G or C.
In general the set of possible states
of a Markov Process is called its

state sSpace.

e If the state space consists of a
finite or countable number of states

the process is called Markov Chain.



e We assume that for all n and m
P[Xn+1 — ]|Xn — Z] — P[Xm+1 :j|Xm — Z]

holds. ‘‘We do not dream up a
different experiment for each step,
but use the same conditional

probabilities for all of them.’’

o If the state space 1is finite, we can
enumerate the states by numbers
1,2,...n and summarize all transition
probabilities in a n X n matrix
P = (pij). Where

pij = P X1 =Jj| X, =1

This matrix is called transition

matrix

e Since the entries are probabilities
pi; > 0 and Zj pi; = 1 hold.



We need to specify with which state we

want to start the chain:
This can be done in a deterministic
way by naming the state explicitly.

Or it can be done in a stochastic way
by choosing the initial state

randomly.

Let u? denote the probability that the

chain starts in state 2

The vector (uY,...,u2) is called the

start distribution.



e By definition P[Xy=1] = Y holds. We
write Xo~ u’. But

e ...what are the distributions of
Xl,XQ or Xn?



o X, first:
Assume we start in state 1 (’A’): The
probability of this event is
P[Xo= Al =11}
Now assume we go to state 2 (’C’): The
probability is
P Xy = A|P[X; =C| Xy = A]
In total the probability of having a

’C’ 1n the second step 1is

Y PXo=[P[X; =C|Xo =]
le{A,T,C,G}

= D Hipn =

e Ur more general, using matrix and

vector notation:
pt=p'P and X ~pt

e What about the distribution of Xs7?



PXo=1 = ) P[Xi=kP[Xy=1X; =k
k

= (u'P)P=p’P?

Or more general for X, :

XnN,LLn:,LLOPn

P(n) = P" is called n-step transition

matrix.

Chapman-Kolmogorov equation:

pij(m +n)

P(n+m)

Z pik(m)
k

P(n)P(m)

pr;(n)



Let us restrict our studies of Markov
chains to chains with only strictly
positive entries in the transition

matrix.

This means: Every transition from any
state to any other state 1s possible

in a single step.

This is a very strong assumption, and
in many typical applications of Markov

chain models it does not hold.

However, for the discussion of

evolution models it is ok.

In the literature, you will find a lot
of theory on Markov chains with zeros
in the transition matrix. We can skip
it.
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Given that the chain starts in ’A’:

{Xo =4}

This has a strong influence on the
distribution of X;. Most likely we
will have an ’A’ there too and a
Purine is more likely then a

Pyrimidine.

The effect on the distribution of X5
is similar but less strong. There
have been 2 random experiments that

might have changed the state.

For growing n the influence of X on

X, becomes less and less.
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What happens in the 1limit?
Is X, independent of X7

Which distribution do we get for X 7

Can we tell?

Which states have we observed in the

meantime? And how often?

How do transition probabilities look

like for long time periods?
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e The transition matrix P has strictly

positive entries:

e 0f course, the actual path of the
Markov chain never converges. We keep
on doing the random experiments and

hence we will keep on changing states.

e The long term transition probabilities

converge:
Pij — T;

This means the columns of P all
converge to a single distribution

vector 7T.

13



e The distribution of the X,, also

converge to T:
n

o If we examine a single path of the
chain
(1ike:AAAAGGTTTTTCCTTCCA. . .):

The proportion of time we spent in

state 7 converges to ;.

This result is one of the central
results of probability theory and 1is

know as The ergodic theorem.

e What is this distribution 77
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Let n be large, and {X, =i} is a

shortcut for X,, is in the n’th state:

PlXns1 =3 = D PlXn=ilP[Xus1 = j|X, = 1]
= Z_P[Xn:i]pij

Taking the limit n — 00 we get:
7Tj = Zﬂ-ipij
0
or
™ =mP

m is a fix-point of the linear

transformation associated with P.

If the Markov chain is in distribution

m 1t will be in 7 forever.

15



m is the unique solution of

= 7P

-
Zﬂ'i = 1.
T

m 1s called stationary distribution.

If all Xy, Xq,... have distribution w
we say that the Markov chain is in

equilibrium.

The Markov chain converges to 7 no
matter what the start distribution
was. Hence, the initial information

gets lost.

16



e In the initial example the stationary

distribution is the uniform
distribution:m = (1/4,1/4,1/4,1/4).

e That i1s not always the case. For

example:

0.7 0.3
0.4 0.6

leads to

7 = (0.5714, 0.4286)
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Time reversal

Start at some time n and trace the
Markov Chain backwards in time:

That is, consider the sequence
Xy Xn—1,Xn—2,...

It turns out, that this sequence is

again a Markov chain.
Is it the same one?

What are its transition probabilities?

18



e Assume the chain is in equilibrium for

the rest of this lecture.

e et us call the transition matrix of

the time reversed Markov chain }%;.

e We have
P; = P[X,=j|Xn41 =1
_ P[Xn:j;Xn—l—lzi]
PlXp 1 =1

_ PIXy = jIP Xy = 0| Xy = ]
P[Xn—I—l — 7’]

_ 7'('ij'

Uy
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e We have }15:: ;; 1if the detailed
balance equation

7T¢Pij = 7Tij'
holds.

o Clearly this implies also

T P(m)i; = m;P(m);;

20



Let Aﬁb denote the joint distribution
of two adjacent variables X, and
Xn+1, and Aﬂ? the joint distribution
of X,, and X, 1.,

and

Mji = miP(m);i

Hence, detailed balance corresponds to

symmetric joint probabilities.

If detailed balance holds we say that

the chain is time reversible.

21



e Up to now, we have assumed that the
Markov chain operates in discrete time
steps. Conditional on the state X,
we perform an experiment and this
experiment determines the distribution
of X,41.

e et us become a little more general
now, and assume that the chain does
not operate in separate steps, but
that states can be changed at any time

point on the half line [0,00).

e Hence the chain is described by a

infinite family of random variables

e The chain is a jump process:
E.g. It starts in A, then remains in
A for some time, at certain random
time point it jumps to ’C’ staying in
’C’ for some interval of time, before

jumping the next time, and so on

22



e The Markov property now reads:
For any sequence of time points
t1 <,...,<t, we have

|=P[X¢, =71X¢

=it n—1""tn_1]

n—1

e The future is independent of the past

given the latest news.

e We now have a time continuous family

of transition probabilities

p(t)ij = PlXs = j[Xs—s = 1]
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Standard Markov chains

We assume that

lim p(t)i =1

and
limp(t);; =0 for @+ 3.
t_>0p< )iz #J
That means, the first change of state

needs at least a little bit of time.

And all following changes are
separated by each other by a maybe

very small but not empty interval.
No two events happen at the same time.

In matrix notation:
P, — 1

where [/ is the identity matrix.
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e For time discrete Markov chains we
have developed the whole theory from

the one-step transition matrix P.

e Problem for time continuous Markov
chains, there is no natural unit of

time.

e Which expression should play the role
of P7?
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e Suppose the chain is in state X; =1

at time ¢.

e What can happen in a short time
interval [t,t+ h]?
1. Nothing, with probability p(h)

2. A single change to state j, with
probability pch)ij

3. More than one changes of state.

e The probability of two ore more

changes of states is o(h)

26



Rates

It turns out that p(h);; is

approximately linear for small h.

Hence there are numbers g¢;; such that

and
p(h)i =~ 1+ q;;ih

Clearly ¢;; >0 and g¢;; <0
(We still assume p(1);; > 0.)

These numbers ¢;; are called rates.

They form the rate matrix

Q = (gij)-

27



e The function ¢+ p(t);; is locally
linear at ¢t =0.

¢ In other words the function 1is
differentiable at ¢t = 0.

_ ... P(h) = P(0)
@ = Jim h

28



e By moving from { =0 to an arbitrary
time point we get
The forward equation and backward

equation

d

P =P)Q=QP({)

e By solving these differential

equations under the initial condition

P(0) =1, we get

Qntn

n!

P(t) = exp(tQ) = Y

n=0

e Hence we get a ‘‘t-step’’ rate matrix

simply by tQ).
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e We have P(1) =exp()) and hence
Q = log(P(1)).

e What i1s are the exponential and the

logarithm of a matrix?

e How do we calculate them?
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e Every normal (AT A = AA?) square

matrix A can be decomposed into

[ M )

\ 2y
where Ai,...\, are the possibly

complex eigenvalues of A and S

consists of the orthonormal basis of

eigenvectors of A.

e both P and () are normal.
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e By reversibility it follows, that the
eigenvalues of P are positive real

numbers.

e There is a joint orthonormal basis of
P and (),and

[ log(M) \

Q=log(P(1))=5 . S

\ log(\y,) )

where (A1...)\,) are the positive

eigenvalues of P(1).
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The resolvent

e For a >0, we define a weighted time

average of P(t):

R, = / e~ “*P(t) dt.
0

e R, is called a resolvent of P(t).

e The resolvent 1s related to the rate

matrix by

ol —R;'=Q for all o > 0.
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