motif() normal.1_scan("mcmc.normal.1.out") plot(normal.1,pch=".") normal.1_normal.1[1001:10000] hist(normal.1) qqnorm(normal.1) normal.2_scan("mcmc.normal.2.out") plot(normal.2,pch=".") normal.2_normal.2[1001:10000] hist(normal.2) qqnorm(normal.2) qqplot(normal.1,normal.2) lines(normal.1,normal.1) normal.3_scan("mcmc.normal.3.out") plot(normal.3,pch=".") normal.3_normal.3[1001:10000] hist(normal.3) qqnorm(normal.3) qqplot(normal.2,normal.3) normal.4_read.table("mcmc.normal.4.out") par(mfrow=c(2,1)) plot(normal.4[,1],pch=".",main="mu") plot(normal.4[,2],pch=".",main="psi") normal.4_normal.4[1001:10000,] par(mfrow=c(1,1)) hist(normal.4[,1]) hist(normal.4[,2]) qqnorm(normal.4[,1]) qqplot(normal.1,normal.4[,1]) #for the VA data va.data_read.table("va92.orig.dat") va_read.table("mcmc.va.out") par(mfrow=c(2,1)) plot(va[,1],pch=".",main="alpha") plot(va[,2],pch=".",main="beta") va_va[1001:5000,] par(mfrow=c(3,1)) plot(va[,1],pch=".",main="alpha") plot(va[,2],pch=".",main="beta") plot(va[,1]/(va[,1]+va[,2]),pch=".",main="alpha/beta") #individual hospitals va.mean_apply(va,2,mean) options(object.size=5e8) par(mfrow=c(3,3)) for(i in 3:11) { plot(va[,i],pch=".") abline(h=va.mean[i],col=2) abline(h=va.data[i-2,1]/va.data[i-2,3],col=6) }