
Stat 290: Lab 2

Introduction to R/S-Plus

Lab Objectives

1. To introduce basic R/S commands

2. Exploratory Data Tools

Assignment

Work through the example on your own and fill in numerical answers and graphs. Nothing need to
be turned in. I will describe all commands using R, but everything will work with S-Plus except
where noted.

Background - VA Performance Monitors

There are 80 VA performance monitors which are used to assess changes in quality care and effi-
ciency, resource allocation, operational cost effectiveness, etc. The outcomes in the monitor areas
represent y annual numbers of individuals who failed to return for an outpatient visit within 30 days
of discharge, out of the total number of annual discharges n. Monitor 21 here is in the Substance
Abuse Psychiatric care. High non-return rates are indicative of poor “quality” in these specific care
areas. This subsample of a much larger data sets provides information on years 1992 and 1993 for
the 159 hospitals in the VA system.

The data also include x, a measure of the VA’s case-mix adjustment factor that, for each
hospital in each year, is supposed to be a predictor of the fraction of returns. This plays the role
of a covariate in models for the outcomes.

Our first step will be exploratory data analysis.

Getting Data

From the course datasets web page
(http://www.stat.duke.edu/courses/Fall02/sta290/datasets.html), download the datasets
on VA hospital quality for 1992 and 1993 (they are under the first bullet) to your sta290 directory.
If you look at these files, you will see that the first several lines contain information about the data
set. The lines with a # at the beginning are comments, which R will ignore. The line with y x n

is a header line which contains variable names.

Starting R

Start up R either within emacs (M-x R) or at the shell (R). If you are running S and want to work

in a subdirectory, make sure that you have run Splus CHAPTER from Unix before starting S. To

run Splus on the command line enter Splus -e or from within emacs M-x S. If you are running
R/S from within emacs you will need to specify a starting directory. The directory where you
start emacs is the default, so edit if needed, then hit return. You should see information about the
program in the *R* buffer, and finally a prompt > .

1

Reading in Data

Read the 1992 data into an object called va92, by entering the following after the prompt >

va92 <- read.table(file="va92.orig.dat", header=T)

The assignment character is <- or equivalently the underscore , so, please remember to never use
these as part of an object name. However, periods are legal in object names (e.g., you can have an
object named y.hat, but not y hat). The header=T option indicates that the first row of the file
contains variable names. By default it is False (F) so include this only when there is a header line.
The command names returns the names of the variables in the dataframe,

names(va92)

Let’s look at the data. Type in va92 and hit enter. R will show you the whole dataset, but
it will likely scroll off the screen. The data are stored in a matrix-like object called a dataframe.
To view the value of the second row, third column, type in va92[2,3]. To see the first ten rows,
use va92[1:10,]. By leaving out the column argument, you tell S to use all columns. The colon
signifies a sequence. dim(va92) will tell you the dimensions of va92, number of rows first, then
number of columns. Columns in a dataframe can also be accessed by their names, va92$x is
equivalent to va92[,2].

Now read in the 1993 data.

va93 _ read.table(file="va93.orig.dat", header=T)

You can check on what objects you have created with ls(), which is just like the unix command,
except that all function calls in R must put the arguments in parentheses after the name of the
function. Since ls() requires no arguments, you must put empty parentheses after its name. Just
as rm removes objects in Unix, rm(obj1, obj2) will remove obj1, obj2 in R.

Graphics

While older versions of R and S required that you open a graphics window by commands such
as X11() (R and S) or motif() (S only), S-Plus 6 and R will open a graphics window au-
tomatically when a plot or graphics command is issued. The plot command is very versatile.
plot(va92$y) (with a single argument) will plot the number of failures by case index number (1
to 159). plot(va92$n,va93$n) plots the number of total cases by hospital in 1992 and 1993. You
can make multiple plots on the same screen with par(mfrow=c(i,j)) (i rows, j columns):

par(mfrow=c(2,2))

plot(va92$y, ylab= "Number of Non-Returns")

plot(va93$y, ylab= "Number of Non-Returns")

plot(va92$y, va93$y, xlab= "Number of Non-Returns (92)",

ylab="Number of Non-Returns (93)")

abline(0,1)

plot(va92$n,va93$n, xlab= "Number of Discharges (92)",

ylab="Number of Discharges (93)")

abline(0,1)

par(mfrow=c(1,1))

2

The abline command adds a line to the plot, in this case, with intercept zero and slope one, so
that you can compare the plotted points to see how much they differ from the line y=x. The last
par command resets the display to show one graph at a time. The xlab and ylab options allow you
to override the default text for the axes labels.

What we are really interested in the fraction of cases that fail to return. R will do simple
arithmetic, element-wise arithmetic on vectors and matrices, and matrix arithmetic. The default
for vectors and matrices is element-wise. We can assign the results to a new object, or add it to
our dataframes. To not clutter up the directory, and since this is not just a temporary calculation,
we will store it in the dataframe:

va92$f <- va92$y/va92$n; va92$f <- va93$y/va93$n

the semi-colon allows us to enter two commands on the same line. When we plot the fractions, we
want the scale to be from zero to one, since that is the possible range of fractions, so we can use
the ylim parameter:

plot(va92$f,ylab="Fraction of Non-Returns (92)", ylim=c(0,1))

The notation c(0,1) means a vector whose elements are zero and one. The function c (think of
as concatenate, combine, or column), takes any number of arguments (separated by commas) and
concatenates them into a vector.

Exploratory Data Analysis

The first stage of any data analysis is EDA (exploratory data analysis). Graphing is a good start
to EDA. Besides scatter plots, Histograms are useful for looking at the data, although the number
of bins can have a big effect on the look of the histogram:

par(mfrow=c(2,2))

hist(va92$f, main="Histogram of Fraction of Non-Returns 1992",

xlab="Fraction"))

hist(va92$f,nclass=15, main="Histogram of Fraction of Non-Returns 1992",

xlab="Fraction"))

hist(va92$f,nclass=30,prob=T,

main="Histogram of Fraction of Non-Returns 1992", xlab="Fraction"))

plot(va92$f,va93$f,xlim=c(0,1),ylim=c(0,1))

abline(0,1)

In the last scatterplot, you may notice two observations in the lower right corner, far away from the
y=x line. These are two hospitals with high failure rates in 1992 that did much better in 1993. To see
which they are, you can use the identify command. Type in identify(va92f, va93f) (you need
to give identify the same x and y arguments that you gave to the plot command) and left click on
these two points (and any other interesting ones). When you are done, middle click anywhere in the
graphics window to terminate the identify mode. (Note that if you had used a par command after
the last plot, identify won’t work.) You should see that the two marked observations are numbers
100 and 102. To see what the data values are, look at va92[c(100,102),]; va92[c(100,102),].
You could assign the output of identify to a variable, say different

different <- identify(va92$f,va93$f)

va92[different,]

va93[differnet,]

3

which can then be used to extract the rows of the dataframes with the cases found by identify.
Side-by-side boxplots are another way to compare to distributions:

boxplot(va92$f, va93$f, names=c("1992", "1993"))

title("Fraction of Non-Returning Cases")

and may be useful for identifying potential outliers. What interpretations can we draw from the
boxplot?

To save plots in a postscript file, we need to first shutdown any other graphics devices using
the dev.off() function. Then issue the postscript command with a filename (and other options)

dev.off()

postscript("vaplots.ps")

par(mfrow=c(1,1))

boxplot(va92$f, va93$f, names=c("1992", "1993"))

title("Fraction of Non-Returning Cases")

dev.off()

followed by any plotting commands. The second dev.off() command says to close down the graphics
device. See help(postscript) for more options.

Numerical Summaries

Numerical summaries of quantitative variables are also useful. range(x) gives the range of the x,
mean(x) and median(x) give the mean and median, respectively summary(x) is a useful command
that combines these, as well as giving the first and third quartiles. To get arbitrary quantiles, you
can use the quantile command, as in quantile(x,prob=c(0.05,.5,0.95)). If summary is given
a dataframe as an argument, summary returns the summary statistics for each variable.

summary(va92)

summary(va93)

Binomial Distribution Functions

R and S have a number of built-in functions for various standard probability distributions. For
the binomial distribution, rbinom(m, n, pr) draws m random samples from a binomial(n, pr),
dbinom(x, n, pr) evaluates the probability mass function at x, pbinom(q, n, pr) gives the cdf
at quantile q, and qbinom(p, n, pr) gives the quantile with probability p (i.e., it is the inverse-cdf
function).

Recall that the proportion of non-returns in the VA92 data is about 0.42. An ad-hoc way of
comparing the distribution of the VA data to a binomial (i.e., to see if it would be plausible that
the VA data are a random sample from a binomial distribution) with a common p is to compare
the quantiles of the VA data to the quantiles of a binomial. Why are we not using the mean of the
fractions? To get the 0.05 and 0.95 quantiles of a binomial(400,0.42):

qbinom(c(0.05,0.95), 400, 0.42)

For the proportions, we need to divide by n: qbinom(c(0.05,0.95), 400, 0.42)/400. But the
VA data have a different n for each hospital, so we need to account for this. Instead of getting
the quantiles directly, we will get a random sample of binomials of appropriate sizes, and compare
those quantiles. This is a Monte Carlo experiement. We can repeat it several times to get an idea
of whether we think it is reasonble that the VA data come from binomial distributions.

4

bin92_rbinom(159,va92$n,rep(0.42,159))/va92$n

quantile(bin92,prob=c(0.05,.5,0.95))

Note that you can feed rbinom a vector of sizes (n92). When you do this, you also have to give
it a vector of probabilities. Since we want all the probabilities to be the same, we can use the
rep command to repeat the value 0.42 for 159 times. Afterwards, we divide by the respective
total counts to transform to proportions. Repeat the generation of random binomials and quantiles
several times to see how much it varies between random samples. Are the 1992 VA data considerably
more dispersed than would normally be observed by random chance from a binomial model. How
about the 1993 data?

We can plot the pmf of a binomial, and compare it to a histogram of many random draws:

par(mfrow=c(1,1))

x <- 0:100

hist(rbinom(10000,100,0.42), prob=T, nclass=50, xlim=range(x))

lines(dbinom(x,100,0.42))

Note that in hist, the argument prob=T tells hist to use a density scale on the y-axis instead of
frequency. xlim=range(x) forces the limits on the x-axis to be the range of x.

These random variable tools are available for a number of different distributions, e.g., rnorm,
rgamma, rt, rbeta, rpoisson, etc.

Finishing Up

When you are done in R/S, the command to quit is q(). Make sure you quit before exiting from
emacs or logging off, or you may spawn a runaway process which hangs around and gobbles up
memory and computer cycles!

5

