
Recall VA Hospital Monitors

• Each hospital, one year: n patients, y “successes” really failures

• e.g., Hospital 21/1992: y = 306, n = 651

1993: y = 300, n = 705

Hospital 34/1992: y = 9, n = 25

1993: y = 14, n = 34

• Issues: changes in “success rates” year-to-year?

Comparisons across hospitals?

• Assumptions for binomial model?



BINOMIAL MODEL

Review:

• Independent Bernoulli trials xi, (i = 1, . . . , n)

• “Success” probability θ : p(xi|θ) = θxi(1 − θ)1−xi

• y = number of successes =
∑n

i=1 xi

• y ∼ Bin(n, θ)

p(y|n, θ) =

(

n

y

)

θy(1 − θ)n−y

on y = 0, 1, . . . , n

• Usually (not always) drop conditioning on n in notation

• E(y|θ) = nθ, V (y|θ) = nθ(1 − θ)

• R and S-Plus: dbinom, pbinom, qbinom, rbinom



Assumptions → sampling model y ∼ Bin(n, θ)

Better notation: (y|θ) ∼ Bin(n, θ)

INFERENCE for θ : a probability to be estimated based on observed

proportion t = y/n (and n of course)

Common point estimate: proportion t = y/n

Sampling distribution:

• E(t|θ) = θ

• V (t|θ) = θ(1 − θ)/n

more precise for large n and small/high θ



Likelihood and Log Likelihood Function

• p(y|θ) for FIXED y and as θ varies over parameter space

• Most likely value of θ for this data?

Maximum likelihood estimate of θ : θ̂ = t = y/n

• Sample proportion “estimates” population probability

• Posterior mode

• Calculations easier with log likelihood function

FUNCTIONS OF PARAMETERS: Odds

• e.g., o ≡ o(θ) = θ/(1 − θ) or θ ≡ θ(o) = o/(1 + o)

• likelihood is same under 1-1 transformation: p(y|o) = p(y|θ(o))



More on likelihood

• Likelihood ratios: compare two values of θ

• Likelihood defined up to multiplicative (positive) constant

• Standardized (or relative) likelihood: relative to value at MLE

r(θ) =
p(y|θ)

p(y|θ̂)

• Same “answers” (from likelihood viewpoint) from

– binomial data (y successes out of n)

– observed Bernoulli data (list of successes/failures in order)



LIKELIHOOD INTERVALS

Interval of θ values such that r(θ) > p

e.g., p = 0.1, 0.2 – θ values for that are not “too unlikely”

theta<-seq(0,1,length=5000) # range for θ

y<-306; n<-651 # data

length(theta)

lik<-dbinom(y,n,theta) # likelihood

rlik<-lik/max(lik) # relative likelihood

plot(theta,rlik,type=’l’)

i<-rlik>0.1 # selects interval

range(theta[i]) # find interval endpoints

mean(range(theta[i])); y/n # MLE = rough midpoint



Rule-of-thumb estimates of intervals for large samples

For large n, t is approximately Normal(θ, θ(1 − θ)/n)

Quadratic approximation to the log relative likelihood leads to

r(θ) ≈ exp(−0.5(θ − t)2/(t(1 − t)/n))

Asymptotic approximation of likelihood and distribution theory leads to

t ± a a =

√

(−2 log(p))
t(1 − t)

n

For p between 0.1 an 0.2 this is approximately ± 2 Standard Errors.



A FIRST BAYESIAN CALCULATION

Likelihood looks like a density function:

Integrate over (0,1) to normalize and produce a density

c θy(1 − θ)n−y for 0 < θ < 1

with

c =
1

∫ 1
0 θy(1 − θ)n−ydθ

• Integrated likelihood function: Shape unchanged, specific constant

• Same density obtained from Bayes’ theorem with a uniform prior density

...



BAYES’ THEOREM

Bayesian statistics describes and measures uncertainty via probability

Parameter θ : Initial (marginal or prior) uncertainty described by uniform

density

p(θ) = 1, 0 < θ < 1

• “flat” density, each point “equally weighted”

• “uninformative” about true value



Bayes’s theorem (continued):

Conditional on observed outcome y (and n)

p(θ|y) =
p(θ)p(y|θ)

p(y)

over 0 < θ < 1

OR

p(θ|y) ∝ p(θ)p(y|θ)

subject to normalization to unit integral

Bayes’ theorem in proportional form

Special Case: Uniform prior p(θ) = 1 implies normalized likelihood



INTERPRETATIONS of distributions for PARAMETER θ

• Measures of belief about values of θ

• Prior uniform: any value equally likely (in example)

• Posterior: Data weighted prior - mapping from

Prior→ Posterior

• θ is not random – probability distribution for θ describes uncertainty

about its actual value

• Random variables vs. Uncertain quantities



THE BETA DISTRIBUTION

p(θ) = Γ(a+b)
Γ(a)Γ(b)θ

a−1(1 − θ)b−1, on 0 < θ < 1

• for specific values of the constants a, b > 0

• θ ∼ Beta(a, b)

• Graphs: symmetric cases a = b, skewed cases, ..

• E(θ) = a/(a + b)

• More concentrated, or “precise”, for larger a + b

• θ ∼ Beta(Mm,M(1 − m)) where m = a/M,M = a + b

• V (θ) = m(1 − m)/(M + 1)

• Modality:

– unique mode at (a − 1)/(a + b − 2) if a, b > 1

– mode at 0 if a < 1, and/or one at 1 if b < 1



UNIFORM PRIOR ANALYSIS OF BINOMIAL DATA

Posterior

p(θ|y) ∝ θy(1 − θ)n−y

• Form is Beta(y + 1, n − y + 1)

general form of posterior is Beta(y + a, n − y + b)

• Posterior mean (y + 1)/(n + 2) and mode (usually) y/n

• More concentrated around mean/mode as n increases (“large sample”)

• Easy to summarize – e.g., S-Plus/R

– dbeta, pbeta, qbeta, rbeta

– quantiles (percentiles, percentage points), e.g.,

qbeta(c(0.025,0.5,0.975),y+1,n-y+1)



Posterior Intervals as summary “estimates” of θ

• Names:

Credible intervals, (Bayesian) Confidence, Posterior intervals

• Central intervals (equal tails): e.g., 95% interval

qbeta(c(0.025,0.975),a,b)

• Alternatives: Highest posterior density (HPD) intervals

• One-sided intervals, etc.



Shape and Spread of Beta Posteriors under Binomial Sampling:

Effects of binomial sample size n

• Plot densities for fixed θ̂ = y/n and n = 10, 50, 100, 500, ..

• More precise for larger n – Asymptotic Theory: concentrates around

mode θ̂

• Closer to symmetric around mode as n increases

Variation in shape with “location” θ̂ = y/n

• Plot densities for fixed n and θ̂ = 0.1, 0.25, 0.5, ...

• More spread, uncertainty in central region

• Closer to symmetric in central region



SIMULATION FROM DISTRIBUTIONS (GCSR section 1.8)

Repeat random draws from distribution “Represent distribution”

• Repeat: θ1, . . . , θK for some large k

• Large random sample: HISTOGRAM approximates p(θ)

• Cumulative ordered values approximate F (θ)

• Sample moments/quantiles approximate true moments/quantiles, e.g.,

mean, ..

• Probability g(θ) > c approximated by proportion of samples where event

g(θi) > c occurs

EXAMPLE: Beta distribution: rbeta, hist, summary, ..



COMPARISONS: A 2-SAMPLE PROBLEM

Comparisons of distributions – common & basic statistical problem

EXAMPLE: VA Hospital 21:

has true probability of success/failure changed between 1992 and 93?

DATA: Y = {y1, n1; y2, n2}

• In 1992, y1 = 306, n1 = 651

• In 1993, y2 = 300, n2 = 705



A BASIC MODEL:

• Independent binomial outcomes in each year: probabilities θ1 and θ2

• Independent continuous uniform priors → independent posteriors:

Beta(θ1|307, 346) and Beta(θ2|301, 406)

Graph posteriors: Densities and/or histograms of large samples

“Overlap?”



New parameter δ = θ2 − θ1 measures difference: Inference on δ

We need p(δ|Y )

• Immediately: E(δ|Y ) = E(θ2|Y ) − E(θ1|Y ) = 0.426 − 0.470 = −0.044.

• Is this significantly different from 0? Is it really negative?

• Immediately: V (δ|Y ) = V (θ2|Y ) + V (θ1|Y ) = 0.02752, S.D.= 0.0275

Can compute p(δ|Y ) by transformation – but messy. Use Simulation . . .



Posterior simulation:

Large sample of k values for θ1, similar for θ2 and then compute δ

• k<-5000; d<-rbeta(k,y2+1,n2-y2+1)-rbeta(k,y1+1,n1-y1+1)

• hist(d,nclass=30,prob=T); sum(d>0)/k; summary(d); mean(d)

i.e., About a 95% probability that δ < 0

the difference (of δ from 0) is “statistically significant at the 5% level”

For the VA, δ < 0 represents an improvement in quality of care, so the data

indicates a (very) likely improvement between 92 and 93

A 90% central posterior interval for δ is

quantile(d,prob=c(0.05,0.95))


