Recall VA Hospital Monitors

- Each hospital, one year: n patients, y "successes" really failures
- e.g., Hospital 21/1992: y = 306, n = 6511993: y = 300, n = 705Hospital 34/1992: y = 9, n = 251993: y = 14, n = 34
- Issues: changes in "success rates" year-to-year? Comparisons across hospitals?
- Assumptions for binomial model?

BINOMIAL MODEL

Review:

- Independent Bernoulli trials $x_i, (i = 1, ..., n)$
- "Success" probability $\theta : p(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$
- y = number of successes $= \sum_{i=1}^{n} x_i$
- $y \sim Bin(n, \theta)$

$$p(y|n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

on y = 0, 1, ..., n

- Usually (not always) drop conditioning on n in notation
- $E(y|\theta) = n\theta, V(y|\theta) = n\theta(1-\theta)$
- R and S-Plus: dbinom, pbinom, qbinom, rbinom

Assumptions \rightarrow sampling model $y \sim Bin(n, \theta)$ Better notation: $(y|\theta) \sim Bin(n, \theta)$ INFERENCE for θ : a probability to be estimated based on observed proportion t = y/n (and n of course)

Common point estimate: proportion t = y/n

Sampling distribution:

- $E(t|\theta) = \theta$
- $V(t|\theta) = \theta(1-\theta)/n$

more precise for large n and small/high θ

Likelihood and Log Likelihood Function

- $p(y|\theta)$ for FIXED y and as θ varies over parameter space
- Most likely value of θ for this data? Maximum likelihood estimate of θ : $\hat{\theta} = t = y/n$
- Sample proportion "estimates" population probability
- Posterior mode
- Calculations easier with log likelihood function

FUNCTIONS OF PARAMETERS: Odds

- e.g., $o \equiv o(\theta) = \theta/(1-\theta)$ or $\theta \equiv \theta(o) = o/(1+o)$
- likelihood is same under 1-1 transformation: $p(y|o) = p(y|\theta(o))$

More on likelihood

- Likelihood ratios: compare two values of θ
- Likelihood defined up to multiplicative (positive) constant
- Standardized (or relative) likelihood: relative to value at MLE

$$r(\theta) = \frac{p(y|\theta)}{p(y|\hat{\theta})}$$

- Same "answers" (from likelihood viewpoint) from
 - binomial data (y successes out of n)
 - observed Bernoulli data (list of successes/failures in order)

LIKELIHOOD INTERVALS

```
Interval of \theta values such that r(\theta) > p
```

e.g., $p = 0.1, 0.2 - \theta$ values for that are not "too unlikely"

```
# range for \theta
theta<-seq(0,1,length=5000)
y<-306; n<-651
                                       # data
length(theta)
lik<-dbinom(y,n,theta)</pre>
                                       # likelihood
rlik<-lik/max(lik)</pre>
                                       # relative likelihood
plot(theta,rlik,type='l')
i < -r lik > 0.1
                                       # selects interval
range(theta[i])
                                       # find interval endpoints
mean(range(theta[i])); y/n
                                       # MLE = rough midpoint
```

Rule-of-thumb estimates of intervals for large samples

For large n, t is approximately $Normal(\theta, \theta(1-\theta)/n)$

Quadratic approximation to the log relative likelihood leads to

$$r(\theta) \approx \exp(-0.5(\theta - t)^2/(t(1 - t)/n))$$

Asymptotic approximation of likelihood and distribution theory leads to

$$t \pm a$$
 $a = \sqrt{(-2\log(p))\frac{t(1-t)}{n}}$

For p between 0.1 an 0.2 this is approximately \pm 2 Standard Errors.

A FIRST BAYESIAN CALCULATION

Likelihood looks like a density function:

Integrate over (0,1) to normalize and produce a density

$$c \theta^y (1-\theta)^{n-y} \quad \text{for} \quad 0 < \theta < 1$$

with

$$c = \frac{1}{\int_0^1 \theta^y (1-\theta)^{n-y} d\theta}$$

- Integrated likelihood function: Shape unchanged, specific constant
- Same density obtained from Bayes' theorem with a uniform prior density ...

BAYES' THEOREM

Bayesian statistics describes and measures uncertainty via probability Parameter θ : Initial (marginal or prior) uncertainty described by uniform density

$$p(\theta) = 1, \qquad 0 < \theta < 1$$

- "flat" density, each point "equally weighted"
- "uninformative" about true value

Bayes's theorem (continued):

Conditional on observed outcome y (and n)

 $p(\theta|y) = \frac{p(\theta)p(y|\theta)}{p(y)}$

over $0 < \theta < 1$

OR

 $p(\theta|y) \propto p(\theta)p(y|\theta)$

subject to normalization to unit integral

Bayes' theorem in proportional form

Special Case: Uniform prior $p(\theta) = 1$ implies normalized likelihood

INTERPRETATIONS of distributions for **PARAMETER** θ

- Measures of belief about values of θ
- Prior uniform: any value equally likely (in example)
- Posterior: Data weighted prior mapping from $\begin{array}{c} \mathbf{Prior}{\rightarrow} \ \mathbf{Posterior} \end{array}$
- θ is not random probability distribution for θ describes uncertainty about its actual value
- Random variables vs. Uncertain quantities

THE BETA DISTRIBUTION

$$p(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$$
, on $0 < \theta < 1$

- for specific values of the constants a, b > 0
- $\theta \sim Beta(a, b)$
- Graphs: symmetric cases a = b, skewed cases, ...
- $E(\theta) = a/(a+b)$
- More concentrated, or "precise", for larger a + b
- $\theta \sim Beta(Mm, M(1-m))$ where m = a/M, M = a + b
- $V(\theta) = m(1-m)/(M+1)$
- Modality:
 - unique mode at (a-1)/(a+b-2) if a, b > 1
 - mode at 0 if a < 1, and/or one at 1 if b < 1

UNIFORM PRIOR ANALYSIS OF BINOMIAL DATA

Posterior

$$p(\theta|y) \propto \theta^y (1-\theta)^{n-y}$$

- Form is Beta(y+1, n-y+1)general form of posterior is Beta(y+a, n-y+b)
- Posterior mean (y+1)/(n+2) and mode (usually) y/n
- More concentrated around mean/mode as n increases ("large sample")
- Easy to summarize e.g., S-Plus/R
 - dbeta, pbeta, qbeta, rbeta
 - quantiles (percentiles, percentage points), e.g., qbeta(c(0.025,0.5,0.975),y+1,n-y+1)

Posterior Intervals as summary "estimates" of θ

• Names:

Credible intervals, (Bayesian) Confidence, Posterior intervals

- Central intervals (equal tails): e.g., 95% interval qbeta(c(0.025,0.975),a,b)
- Alternatives: Highest posterior density (HPD) intervals
- One-sided intervals, etc.

Shape and Spread of Beta Posteriors under Binomial Sampling:

Effects of binomial sample size n

- Plot densities for fixed $\hat{\theta} = y/n$ and n = 10, 50, 100, 500, ...
- More precise for larger n Asymptotic Theory: concentrates around mode $\hat{\theta}$
- Closer to symmetric around mode as n increases

Variation in shape with "location" $\hat{\theta} = y/n$

- Plot densities for fixed n and $\hat{\theta} = 0.1, 0.25, 0.5, ...$
- More spread, uncertainty in central region
- Closer to symmetric in central region

SIMULATION FROM DISTRIBUTIONS (GCSR section 1.8)

Repeat random draws from distribution "Represent distribution"

- Repeat: $\theta_1, \ldots, \theta_K$ for some large k
- Large random sample: HISTOGRAM approximates $p(\theta)$
- Cumulative ordered values approximate $F(\theta)$
- Sample moments/quantiles approximate true moments/quantiles, e.g., mean, ..
- Probability $g(\theta) > c$ approximated by proportion of samples where event $g(\theta_i) > c$ occurs

EXAMPLE: Beta distribution: rbeta, hist, summary, ...

COMPARISONS: A 2-SAMPLE PROBLEM

Comparisons of distributions – common & basic statistical problem

EXAMPLE: VA Hospital 21:

has true probability of success/failure changed between 1992 and 93?

DATA: $Y = \{y_1, n_1; y_2, n_2\}$

- In 1992, $y_1 = 306, n_1 = 651$
- In 1993, $y_2 = 300, n_2 = 705$

A BASIC MODEL:

- Independent binomial outcomes in each year: probabilities θ_1 and θ_2
- Independent continuous uniform priors \rightarrow independent posteriors:

 $Beta(\theta_1|307, 346)$ and $Beta(\theta_2|301, 406)$

Graph posteriors: Densities and/or histograms of large samples "Overlap?"

New parameter $\delta = \theta_2 - \theta_1$ measures difference: Inference on δ We need $p(\delta|Y)$

- Immediately: $E(\delta|Y) = E(\theta_2|Y) E(\theta_1|Y) = 0.426 0.470 = -0.044.$
- Is this significantly different from 0? Is it *really* negative?
- Immediately: $V(\delta|Y) = V(\theta_2|Y) + V(\theta_1|Y) = 0.0275^2$, S.D.= 0.0275

Can compute $p(\delta|Y)$ by transformation – but messy. Use Simulation . . .

Posterior simulation:

Large sample of k values for θ_1 , similar for θ_2 and then compute δ

- k<-5000; d<-rbeta(k,y2+1,n2-y2+1)-rbeta(k,y1+1,n1-y1+1)
- hist(d,nclass=30,prob=T); sum(d>0)/k; summary(d); mean(d)

i.e., About a 95% probability that $\delta < 0$ the difference (of δ from 0) is "statistically significant at the 5% level"

For the VA, $\delta < 0$ represents an *improvement* in quality of care, so the data indicates a (very) likely improvement between 92 and 93

A 90% central posterior interval for δ is

quantile(d,prob=c(0.05,0.95))