
INTRODUCING LINEAR REGRESSION MODELS

• Response or Dependent variable y

• Predictor or Independent variable x

• Model with error: for i = 1, . . . , n,

yi = α + βxi + εi

• εi : independent errors (sampling, measurement, lack of fit)

• Typically ε ∼ N(0, σ2)

• Analysis and inference:

– Estimate parameters (α, β, σ2)

– Assess model fit — adequate? good? if inadequate, how?

– Explore implications: β, βx

– Predict new (“future”) responses at new xn+1, . . .



BIG PICTURE:

• Understanding variability in y as a function of x

• Exploring p(y|x) as a function of x

• One aspect: Regression function E(y|x) as x varies

• Special case: normal, linear in mean

– Other cases: binomial y, success prob depends on x

– e.g., logistic regression, dose-response models

• How much variability does x explain?

• Normal models: Variance measures “variability”



• Observational studies versus Designed studies

– “Random” x versus “Controlled” x

• Bivariate data (yi, xi), but take xi fixed

• “Special” status of response variable

• Several or many predictor variables



SAMPLE SUMMARY STATISTICS

• Sample means x̄, ȳ

• Sample variances s2
x, s2

y

s2
y = Syy/(n − 1), s2

x = Sxx/(n − 1)

• sample covariance

sxy = Sxy/(n − 1)

where the “Sums of Squares” are:

• Syy =
∑n

i=1
(yi − ȳ)2 – “Total Variation in response”

• Sxx =
∑n

i=1
(xi − x̄)2

• Sxy =
∑n

i=1
(xi − x̄)(yi − ȳ)



Standardized scale for covariance:

SAMPLE CORRELATION:

r =
sxy

sxsy

−1 < r < 1, measure of dependence

for a single predictor, r2 = R2



SQUARED ERRORS AND “FIT” OF CHOSEN LINES

Measurement error version of model: yi = α + βxi + εi

For any chosen α, β,

Q(α, β) =
n

∑

i=1

ε2
i =

n
∑

i=1

(yi − α − βxi)
2

measures “fit” of chosen line α + βx to response data

LEAST SQUARES LINE:

• Choose α̂, β̂ to minimise Q(α, β)

• Geometric interpretation

• Least squares estimates (LSE) α̂, β̂

• (Venerable/ad-hoc) “principal” of least squares estimation

• Least squares fit is also the MLE



LEAST SQUARES ESTIMATES

FACTS:

β̂ =
sxy

s2
x

, α̂ = ȳ − β̂x̄

Or

β̂ = r

(

sy

sx

)

β̂ is correlation coefficient r, corrected for relative scales of y : x

so that the units of the “fitted values” β̂x are on scale of y

Note also

β̂ =
Sxy

Sxx

of use in theoretical derivations



R2 measure of model fit:

Simplest model: β = β̂ = 0 so yi are a normal random sample

α̂ = ȳ, Q(ȳ, 0) = Syy = total sum of squares

Any other model fit: Residual Sum of Squares Q(α̂, β̂)

DEFINE: R2 = 1 − Q(α̂, β̂)/Syy

– proportion of variation “explained” by model –

FACT: R2 = r2

• “Multiple regression” generalisation later

• Higher %variation explained is better: Higher correlation

• Measures linear correlation

– not general dependence

– not causation



EXAMINING MODEL FIT

• Fitted values ŷi = α̂ + β̂xi

• Residuals ε̂i = yi − ŷi estimates of εi

• Residual sum of squares Q(α̂, β̂) =
∑n

i=1
ε̂2
i

– measures remaining/residual variation in response data –

• Residual sample variance:

s2

Y |X =
RSS

n − 2
=

n
∑

i=1

ε̂2
i

n − 2

• s2

Y |X is a point estimate of σ2 from fitted model

– note: n − 2 degrees of freedom, not n − 1

– “lose” 2 degrees of freedom for estimation of α, β



Conjugate Priors for Regression

• Normal is conjugate for α and β

• Inverse-Gamma is conjugate for σ2

Common re-parameterization: Precision φ = 1

σ2

• Gamma is conjugate for φ

A Reference Prior for Regression

Take limits of conjugate prior as the prior variance goes to infinity

(information goes to zero)

• lim
t→∞

N(0, t) is proportional to a constant

• lim
a→0,

b→0

Γ(a, b) or Γ−1(a, b) is proportional to the inverse

p(α, β, σ2) ∝
1

σ2
p(α, β, φ) ∝

1

φ



THEORY FOR INFERENCE: REFERENCE POSTERIOR

Some key aspects of the reference posterior for (α, β, σ2):

• (marginal) posterior for β is t distribution with n − 2 df.

tn−2(β̂, s2

Y |Xv2
β)

where v2
β = 1/Sxx

• s2

Y |X is a posterior estimate of σ2 – residual variance

Key to assessing significance of regression fit and measuring the

“explanatory power” of chosen predictor x

Intervals (HPD or equal-tailed):

β̂ ± (svβ)tp/2

where tp/2 is 100(p/2)% quantile of standard tn−2



“TESTING” SIGNIFICANCE OF THE REGRESSION FIT

Question: How probable is β = 0 under the posterior?

Answer:

• Compute posterior probability on β values with lower posterior

density than β = 0

• “Measures” probability of β “less likely” than β = 0

• Informal “test” of significance –

Probability in tails = significance level = (Bayesian) p−value

• Symmetric posterior density: double one tail area

• Classical testing terminology:

“The regression on x is significant at the 5% level (or 1%, etc) if

the p−value is smaller than 0.05 (or 0.01, etc)”

R/S-Plus: 2*(1-pt(abs(t), n-2)) where t=β̂/sY |Xvβ –

standardized T Statistic



F TESTS, ANOVA AND DEVIANCES

F test of regression fit:

Theory: If t ∼ Tk(0, 1) then F = t2 ∼ F1,n−2

So

• p−value = Pr(F ≥ fobs)

• fobs = β̂2/s2

Y |Xv2
β

• T and F tests are equivalent: same p−value

• S-Plus output: quotes T values, p−values in coefficient table

and F test result



F TESTS, ANOVA AND DEVIANCES

Deviances = Sums of squares:

Deviance decomposition:

Syy = Q(α̂, β̂) + β̂2/v2
β

• Total deviance Syy =
∑n

i=1
(yi − ȳ)2

• Residual deviance Q(α̂, β̂) =
∑n

i=1
(yi − ŷi)

2

• Fitted or explained deviance: β̂2/v2
β

– here equal to s2

Y |Xfobs –

• Large deviance explained ≡ large F ≡ significant regression

• ANOVA: analysis of variance (deviance)



PREDICTION FROM FITTED MODEL

Question: What is the posterior predictive distribution for a new

case,

yn+1 = α + βxn+1 + εn+1

Answer: Also a Student t distribution with n − 2 df.

yn+1 ∼ Tn−2(ŷ, s2

Y |Xv2
y)

• Mean is ŷ = α̂ + β̂xn+1

• Spread: s2

Y |Xv2
y = s2

Y |X + s2

Y |Xw2 ...

– s2

Y |Xw2 – posterior uncertainty about α + βxn+1

depends on xn+1, spread is higher for xn+1 far from x̄

– additional variability +s2

Y |X due to εn+1, estimating σ2 by

s2

Y |X

• Can use S-Plus function predict.lm()



Model fit assessment/implications: Explore predictive distributions

Residual analysis: Graphical exploration of fitted residuals ε̂i

• Standardize: ri = ε̂i/
√

var(ε̂i)

• Check normality assumption

• Treat ε̂i as “new data” – look at structure, other predictors

Other predictors?


