INTRODUCING LINEAR REGRESSION MODELS

Response or Dependent variable y

or variable x
Model with error: for: =1,...,n,
Yyi = a+ pr; +¢
g; : independent errors (sampling, measurement, lack of fit)

Typically € ~ N(0,0?)

Analysis and inference:

Estimate parameters (o, 3, 02)
Assess model fit — adequate? good? if inadequate, how?
Explore implications: 3, Bx

Predict new (“future”) responses at new x,1,...




BIG PICTURE:
e Understanding variability in y as a function of x
e Exploring p(y|z) as a function of x
e One aspect: E(y|xr) as x varies

e Special case: normal, linear in mean
— Other cases: binomial y, success prob depends on x

— e.g., logistic regression, dose-response models

e How much variability does = explain?

e Normal models: Variance measures “variability”




Observational studies versus Designed studies

— “Random” x versus “Controlled” x

Bivariate data (y;, x;), but take x; fixed
“Special” status of response variable

Several or many predictor variables




SAMPLE SUMMARY STATISTICS

e Sample means T, ¥

2 2

e Sample variances sz, s
532; = Syy/(n — 1), 53 = Spa/(n—1)

e sample covariance
Sy = Say/(n — 1)

where the “Sums of Squares” are:

o Sy, =>." (y; —y)* - “Total Variation in response”
g SZCZC — Z?:l(xz — ZE>2
® Syy = 2?21(552 —Z)(yi — 9)




Standardized scale for covariance:

SAMPLE CORRELATION:

Sg Sy

T =

—1 < r <1, measure of dependence

for a single predictor, r? = R?




SQUARED ERRORS AND “FIT” OF CHOSEN LINES
Measurement error version of model: vy, = a + Bx; + ¢;

For any chosen a, 3,

n

Qlap) =) &7 = (yi—a— )’

1=1

measures “fit” of chosen line o 4+ Sx to response data

LEAST SQUARES LINE:
e Choose &, 3 to minimise Q(a, B)
e (Geometric interpretation
e Least squares estimates (LSE) &, A3
e (Venerable/ad-hoc) “principal” of
e Least squares fit is also the MLE




LEAST SQUARES ESTIMATES

FACTS:

Or

A

(3 is correlation coeflicient 7, corrected for relative scales of y : x

so that the units of the “fitted values” Sz are on scale of y

Note also

Say
S$$

3=

of use in theoretical derivations




R2

Simplest model: = B = 0 so y; are a normal random sample

a =1y, Q(y,0) = S,, = total sum of squares

Any other model fit: Residual Sum of Squares Q(&, 3)
DEFINE: R? =1 — Q(&, 3)/S,,

— proportion of variation “explained” by model —

FACT: R? = r?

e “Multiple regression” generalisation later

e Higher %variation explained is better: Higher correlation

e Measures linear correlation

— not general dependence

— not causation




EXAMINING MODEL FIT
e Fitted values y;, = a + Ba:z
e Residuals €, = y; — 9, estimates of ¢;

e Residual sum of squares Q(4, B) =" L E2

=11

— measures remaining/residual variation in response data —

e Residual sample variance:
mn A
2 RSS Z 8%

S —
Y|Xx n—2 _1n—2
1=

o s% + 18 a point estimate of o from fitted model

— note: n — 2 degrees of freedom, not n — 1

— “lose” 2 degrees of freedom for estimation of «, 3




Conjugate Priors for Regression

e Normal is conjugate for a and (3

e Inverse-Gamma is conjugate for o2

Common re-parameterization: Precision ¢ = 0—12

e Gamma is conjugate for ¢

A Reference Prior for Regression

Take limits of conjugate prior as the prior variance goes to infinity

(information goes to zero)

o tlim (0,t) is proportional to a
— 00

e lim I'(a,b) or I'"!(a, b) is proportional to the
a—0,

b—0

p(a, 5,0%) o — pla5,0) x5




THEORY FOR INFERENCE: REFERENCE POSTERIOR

Some key aspects of the reference posterior for (o, 3, 0?):

e (marginal) posterior for (3 is t distribution with n — 2 df.

5 .2 2
tn—2(5, sy |xv3)
where v% =1/5,.
o s%,| + 1s a posterior estimate of o2 — residual variance

Key to assessing significance of regression fit and measuring the
“explanatory power” of chosen predictor z

(HPD or equal-tailed):

B + (svg)tp/g

where t,,/5 is 100(p/2)% quantile of standard ¢,,_»




“TESTING” SIGNIFICANCE OF THE REGRESSION FIT
Question: How probable is # = 0 under the posterior?

Answer:

e Compute posterior probability on § values with lower posterior
density than 3 =10

e “Measures” probability of 3 “less likely” than 8 =0

e Informal “test” of significance —

Probability in tails = significance level = (Bayesian) p—value
e Symmetric posterior density: double one tail area

e (lassical testing terminology:
“The regression on x is significant at the 5% level (or 1%, etc) if
the p—value is smaller than 0.05 (or 0.01, etc)”

R/S-Plus: 2x(1-pt(abs(t), n-2)) where t:ﬁA/syp(uB —
standardized T' Statistic




F TESTS, ANOVA AND DEVIANCES

F test of regression fit:
Theory: If t ~ Ty (0,1) then F =t? ~ F} ,,_2

SO
e p—value = Pr(F > fops)
® fors = 62/32y|xv%
e 1" and F' tests are equivalent: same p—value

e S-Plus output: quotes T' values, p—values in coeflicient table
and F' test result




F TESTS, ANOVA AND DEVIANCES

Deviances = Sums of squares:

Deviance decomposition:
Syy = Q(&7B) + Bz/v%
e Total deviance Sy, = Z?:l(yz' — 7)?
e Residual deviance Q(a, ﬁA) => " (v — Gi)?

e Fitted or explained deviance: 32/ v

— here equal to s%p{fobs —
e Large deviance explained = large F' = significant regression

e ANOVA: analysis of variance (deviance)




PREDICTION FROM FITTED MODEL

Question: What is the posterior predictive distribution for a new

case,

Yn+1 — & + 633714—1 + En+1

Answer: Also a Student t distribution with n — 2 df.

~ 2 2
Yn+1 ~~ Tn—Q(ya SY|XUy)
e Meanis §y = &+ Bxny1

Ce2 2 __ .2 2

— 3%|Xw2 — posterior uncertainty about a + Gz, 1

2

depends on x, 1, spread is higher for z,. far from z

— additional variability +s§,| + due to £,11, estimating o? by

2
Sy |x

e Can use S-Plus function predict.lm()




Model fit assessment /implications: Explore predictive distributions

Residual analysis: Graphical exploration of fitted residuals £;

e Standardize: r; = &;/\/var(&;)
e Check normality assumption

e Treat £; as “new data” — look at structure, other predictors

Other predictors?




