
STA104: solutions to Homework 2

September 16, 2003

Pr 7

a) Each person can fall into one of 2 × 3 = 6 categories, so the number of
outcomes in the sample space is 615 = 470184984576

b) The number of ways to have 15 white-collar workers is 315, so the number
with at least one blue-color worker is 615 − 315 = 470170635669.

c) 415 = 1073741824

Pr 10

This is Venn Diagram question— it’s helpful to draw the picture (or fill in the
2 × 2 table). 30% wear one or the other, and 10% wear both.

Pr 17

There are 8 rows and 8 columns, for a total of 64 squares. Altogether there are
(

64

8

)

ways to choose eight squares for the rooks.
For the rooks to be safe from each other there must be one rook on each

row. The first can be in any of the eight columns; given that choice, the second
has seven possibilities, the next six, the next five, and so forth. This leaves us
with 8! ways to place the rooks so that none can capture another. Therefore
the probability is:

P (Rooks safe) =
8!

(

64

8

) =
40320

4426165368
=

560

61474519
≈ 9.109465 · 10−06.

Another approach is to place the eight rooks one at a time. When placing the
k + 1’st rook we must avoid the k rows of its predecessors and the k files of its
predecessors, leaving (8 − k)2 acceptable locations out of the 64 − k available
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ones; thus, multiplying terms for k = 0..7,

P (Rooks safe) =
(8−0)2

64

(8−1)2

63

(8−2)2

62

(8−3)2

61

(8−4)2

60

(8−5)2

59

(8−6)2

58

(8−7)2

57

=
8!2

8!
(

64

8

) ≈ 9.109465 · 10−06.

Pr 19

The probability of both red or both black is (2/6)2 = 1/9 and both white or
both yellow is (1/6)2 = 1/36. Thus the probability of both the same color is:
1/9 + 1/9 + 1/36 + 1/36 = 5/18 ≈ 0.2778.

Pr 28

The probability of 3 red is
(

5

3

)

/
(

19

3

)

= 10/969 ≈ 0.01032. The probabilities of
choosing 3 green or 3 blue are computed similarly. Thus the probability of 3 of
the same color is:

(

5

3

)

(

19

3

) +

(

6

3

)

(

19

3

) +

(

8

3

)

(

19

3

) =
86

969
≈ 8.875%.

Pr 56

One should choose to go second in this game. Notice that the average of each
wheel is 5. This means that whoever chooses first has no obvious basis on which
to choose one wheel over another.

If the first player chooses wheel a and the second c, we notice that on wheel
a, 9 always wins, 1 always loses, and 5 wins only 1/3 of the time, so a will beat
c with probability (1/3) × 1 + (1/3) × 0 + (1/3) × 1

3
= 4/9, and so if the first

player chooses a he or she will lose with probability 5/9.
Similarly if the first player chooses b and the second a then the first player

will lose with probability 5/9. Finally, if the first player chooses c and the second
b, then again the first player will lose with probability 5/9. Evidently the second
player has the advantage, no matter which wheel the first player chooses.

Ex 13

Notice that E = EF ∪ EF c Since EF and EF c are disjoint, we know that
P (EF ∪ EF c) = P (EF ) + P (EF c). Therefore, P (E) = P (EF ) + P (EF c). A
lot of you wrote things like P (something)∪P (something else) or P (something)∩
P (something else). This does not make sense because probabilities are numbers,
and union and intersections work on sets. Similarly, if E and F is a set, then
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E · P (F ) does not mean anything. Finally, an argument using Venn diagrams
can be convincing and is a good way to get the right ideas for the proof. How-
ever, this by itself does not qualify as a proof. In general, a proof should consist
of a series of statements, each of which is true and follows directly from pre-
vious statements. If a statement is incorrect or does not follow from previous
statements, then something is missing.

Ex 20

Denote our sample space by S and its countably-many elements by S = {s1, s2, · · · }.
We proceed by contradiction.

Suppose that all the elementary outcomes had the same probability ε > 0.
Then for any large enough M (any M greater than 1/ε will do), the probability
of the first M elements would be

P
(

{s1, ..., sM}
)

=

M
∑

i=1

P
(

{si}
)

= Mε > 1,

an impossibility. Thus our supposition that all the elementary outcomes had
the same probability ε > 0 cannot be true.

Let pi be any sequence of (strictly) positive numbers that sum to one— for
example, consider pi = 2−i. If each elementary outcome si has probability pi,
and every event E ⊂ S probability P (E) =

∑

{pi : si ∈ E}, then we have
a probability assignment obeying all three rules with infinitely-many outcomes
each with positive probability.

Any other sequence pi > 0 satisfying
∑

pi = 1 would work as well— such as
pi = e−1/i!, or 6/(πi)2, or any of the infinitely-many other choices.

Another Problem

Under the given assumptions, each student has probability 364/365 of not shar-
ing my birthday; the probability that every one of these n = 39 students do not
share my probability is (364/365)39, so the chance that at least one does share
my birthday is

1 −

(

364

365

)39

≈ 0.1014707.
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For a class to have a 50 : 50 chance of including someone who shares my birthday,
the class size n would have to satisfy

0.50 ≤ 1 −

(

364

365

)n

, i.e.

0.50 ≥

(

364

365

)n

, i.e.

log(1/2) ≥ n log

(

364

365

)

, i.e.

n ≥ log(2)/(log(365)− log(364))

≈ 252.65,

more than half of 365. Does that surprise you?
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