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2.12

y|θ ∼ Poisson(θ).
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The Jeffrey’s prior :p(θ) ∝ J(θ)1/2 = θ−1/2. The Gamma(α, β) ∝ yα−1e−yβ then comparing to
the Jeffrey’s prior leads to choosing α = 1/2, β = 0

2.13

a. Assume the number of fatal accidents ∼ Poisson(θ), As a prior, we will use the Jefferey’s
prior from 2.12, p(θ) ∝ θ−1/2 , so the posterior distribution follow as :

p(θ|y) ∝ θ−1/2e−nθθ
P

yi

= e−nθθ
P

yi+1/2

By simulation we obtain a posterior predictive interval of [14,34] in the %95 confidence level.

b. Assume a constant rate of fatal accidents with an exposure propotional to passenger miles

flown. Let Xi be the miles flown, then p(yi|θ) =
(xiθ)y

i

yi!
e−xiθ, carry out the same steps in part

a), we can find the poterior and a predictive interval.

c. Carry out the same steps as above, but using Passenger Deaths instead of Fatal Accidents,
we can find the posterior and the predictive interval.

d. Similar to part b).

e. As for me, the most reasonable techniques are b and d since the number of crashes and the
amount of flying are not independent intuitively. For a and c, they both assuming a constant
rate, that does not seem reasonable. Also, the Poisson model might not be appropriate in
any case since either the fatal accidents or the passenger deaths might not be independent for
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every year. For example, a large number of accidents may force the improvement of safety
procedure, thus reduce the accidents in the next year. We can still argue that the mean and
variance of a Poisson distribution is the same. So model the fatal accidents might be more
accetable.

2.18

With a vague prior, the posterior follow as p(θ|y) ∼ N(ȳ, σ/
√

n), so the predictive distribution follow
as : p(ỹ|y) ∼ N(ȳ,

√

σ2(1 + 1/n)), from this we can get the 99% predictive inteval (17.33,17.98).

2.22

a) y|θ ∼ Exponential(θ). Assume a prior on θ of Γ(α, β) we have one observed value, y ≥ 100.
Then

P (θ|y ≥ 100) ∝
∫

∞

100
p(y|θ)Γ(α, β)dy

= Γ(α, β)e−100θ

∼ Gamma(α, β + 100)

This has a mean of α/(β + 100) and a variance of α/(β + 100)2

b) If we observe y = 100, then our posterior becomes Gamma(α +1, β +100) which has a mean
of α+1

β+100 and a variance of α+1
(β+100)2

c) Although the average psterior variance would decrease, here we are averaging over y ≥ 100.
ActuallyV ar(θ|y) is a decreasing function in y, so the variance of part a should be lower when
averaging over the higher values of y. This does not contradic the identity expression.

3.3

From section 3.2, the posterior distribution for µ given a uniform prior on µ and log(σ) is the
standard Student-t distribution, tn−1(ȳ, s2/n). For the control group, this is t31(1.013, .0018) and
for the treatment group, it is t35(1.173, .0011).

By simulation, we find that the 95% posterior interval for the difference is (0.04777401 ,0.27198640
). A histogram of the diferences is shown in figure 5, below.
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Figure 1: Empirical posterior difference of µt − µc
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