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3.11

Follow the bioassay example, we get the following two figures:
Figure 1 shows that the distribution is a compromise between the likelihood and the normal prior
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Figure 1: Contour plot and sample points

distribution.With a normal prior, the resulting posterior is going to be influenced by it. So to
assume such a prior we need justify it.
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Figure 2: Ditribution of LD50
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4.2

Calculate the information matrix, and then approximate the variance by the inverse of the infor-
mation matix.



4.3

Delta Method: (Refer to C&B P240) The posterior mode can be approximated by:
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with «, 8 obtained by fitting a GLM. By expanding the function :—%, we get the approximate
variance :

Var(=3) = V(= @ HV(=5)
= 0.0091

i.e, std =~ 0.0955 Sampling from the normal distribution yields the following figure. Compared to
the histogram in Figure 4.2, they look kind of similar .
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Figure 3: Ditribution of LD50 by Delta Method

11.3 Metropolis algorithm:

1.09 3.55

3.55 23.74 )), which is the

Arbitrarily choose the starting point to be (g, 8o, X0) = (0.85,7.75, (
estimation from the GLM fitting. And take the jumping rule to be :

J(O*6Y) = N0 D)

Run the Metropolis algorithm, we get the following figures:
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Figure 4: Ditribution of LD50 by Delta Method



