STA 113 Solutions

Chapter 9.5

a: H_{α} says that the average calories output for suffers is more than $1 \ cal/cm^2/min$ below that for nonsuffers. $\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} = 0.1414$, so $z = \frac{(.64 - 2.05) + 1}{0.1414} = -2.90$. At level .01, H_0 is rejected if $z \le -2.33$, so we reject H_0

b: $P = \Phi(-2.90) = 0.0019$

Chapter 9.41

We test $H_0: \mu_d = 0$ vs $H_\alpha: \mu_d > 0$. With $\bar{d} = 7.6$, and $s_d = 4.178$, $t = \frac{7.6-5}{4.178\sqrt{9}} = 1.87$. With df = 8, the corresponding p-value is P(t > 1.87) = 0.047. We would like to reject H_0 at any α greater than 0.047. So, at the typical significance level of 0.05, we would like (barely) reject H_0 and conclude that the data indicates that the higher level of illumination yields a decrease of more than 5 seconds in true average task completion time.

Chapter 14.16

Chapter 14.41

The null hypothesis $H_0: p_{ij} = p_i p_j$ states that level of parental use and level of student use are independent in the population of interest. The test is based on df = (3-1)(3-1) = 4

	Estimated	Expected	
119.3	57.6	58.1	235
82.5	33.9	40.3	163
23.9	11.5	11.6	47
226	109	110	445

The calculated value of $\chi^2 = 22.4$. Since $22.4 > \chi^2_{0.005,4} = 14.86$, p-value < 0.005, so H_0 should be rejected at any significance level greater than 0.005. Parental and student use level do not appear to be independent.

Chapter 15.13

 $H_0: \mu_1 - \mu_2 = 0$ will be rejected at level .01 in favor of $H_\alpha: \mu_1 - \mu_2 \neq 0$ if $z \ge 2.58$ or $z \le -2.58$. Identifying X with orange juice, the X ranks are 7, 8,9,10,11,16,17,18,19,and 20, so w = 135. With $\frac{m(m+n+1)}{2} = 105$ and $\sqrt{\frac{mn(m+n+1)}{12}} = \sqrt{175} = 13.22, z = \frac{135 - 105}{13.22} = 2.27$. So H_0 is rejected. p-value $\doteq 2(1 - \Phi(2.27)) = 0.0232$