STA 113 Spring 2004 I. H. Dinwoodie Sample Percentiles, QQ Plots

The Matlab command prctile(data,75) computes sample percentiles in a way that is equivalent to the following procedure.

To get the q^{th} quantile, or $100 \times q^{th}$ percentile, on data x_1, x_2, \ldots, x_n :

- 1. Order the data $x_{(1)} \leq x_{(2)} \leq \dots \leq x_{(n)}$ and set $x_{(0)} = x_{(1)}, x_{(n+1)} = x_{(n)}$, the min and max respectively.
- 2. Find $q \times n + .5$, and write it as an integer plus a decimal remainder $r \in [0, 1)$: $q \times n + .5 = i + r$.
- 3. The answer is the linear interpolation $x_{(i)} + r \times (x_{(i+1)} x_{(i)})$.

Note that if r = 0, then q = (i - .5)/n, and the procedure says that the q^{th} sample quantile is the i^{th} data point.

Also, observe that the q^{th} sample quantile is nearly the value x where the empirical cdf (cdfplot(data)) reaches level q, but not quite. The median is the 50th percentile, the upper fourth is the 75th percentile, the lower fourth is the 25th percentile. It is useful to think of the q^{th} sample quantile as the $x_{(qn)}$ data point in the ordered sample.

This procedure is not the only one in the literature or in current software.

QQ Plots

Let us introduce the notation \tilde{x}_q for the q^{th} sample quantile of a random sample x_1, \ldots, x_n (a random sample is a collection of independent random variables from the same distribution function F). This notation fits in with the notation \tilde{x} for the sample median or q = .50 sample quantile.

Then $\tilde{x}_q \to F^{-1}(q)$ the q^{th} quantile of the distribution, denoted $\eta(q)$ in our book as the size of the sample *n* gets large . This is a consequence of the law of large numbers. For motivation, think of \tilde{x}_q as approximately $F_n^{-1}(q)$, the point where the empirical cdf F_n hits height *q* (Recall: $F_n(x)$ is the fraction of data points less than or equal to *x*, and its graph jumps up by height 1/n at each data point.) Then $F_n \to F$ by the law of large numbers, and $\tilde{x}_q = F_n^{-1}(q) \to F^{-1}(q)$.

Then for a large sample n, one should see that $\tilde{x}_q \approx F^{-1}(q)$. The ordered data point $x_{(i)}$ is the (i - .5)/n sample percentile, so the pairs

$$(F^{-1}(\frac{i-.5}{n}), x_{(i)})$$

should be close to the line y = x. A plot of these pairs is called a "probability" plot in our book, or sometimes a qqplot.

Recall that the quantiles $\eta(q)$ for a $N(\mu, \sigma^2)$ distribution are related to those of the N(0, 1) distribution with cdf Φ by

$$\eta(q) = \mu + \sigma \Phi^{-1}(q).$$

In other words, the graph $(\Phi^{-1}(q), \eta(q))$ is a straight line with slope σ and intercept μ .

If the underlying distribution behind the random sample is any $N(\mu, \sigma^2)$ distribution, then the graph using the N(0, 1) quantiles on the x-axis and the ordered data on the y-axis of the points

$$(\Phi^{-1}(\frac{i-.5}{n}), x_{(i)}), \ i = 1, \dots, n$$

is useful without knowing μ, σ . It is called the "normal probability plot" or "qqplot" (in Matlab the commands are qqplot, normplot). Since

$$(\Phi^{-1}(\frac{i-.5}{n}), x_{(i)}) \approx (\Phi^{-1}(\frac{i-.5}{n}), \mu + \sigma \Phi^{-1}(\frac{i-.5}{n}))$$

the plot will be near a straight line with slope σ and intercept μ if the underlying distribution is Normal.