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Structure Comparison and Structure Patterns
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ABSTRACT

This article investigates aspects of pairwise and multiple structure comparison, and the prob-
lem of automatically discover common patterns in a set of structures. Descriptions and rep-
resentation of structures and patterns are described, as well as scoring and algorithms for
comparison and discovery. A framework and nomenclature is developed for classifying dif-
ferent methods, and many of these are reviewed and placed into this framework.
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1. INTRODUCTION

As we enter a post genomic age, considerable effort is being expended on structural-genomics
programs with the aim of determining the structure of as many gene products as possible. These data,

combined with the considerable volume of current structural data, will lead to the emergence of protein
structure comparison as a critical technique—to aid not only in the understanding of the relationships
between proteins in detail but also in the classi� cation of the variety of structures into meaningful categories.

As with most comparison problems, complications arise as there is neither one best way to make the
comparison nor to evaluate the answer. This situation pertains in sequence comparison where, although
there is an optimal alignment algorithm for pairs of sequences, its results depend on a model of sequence
relatedness that is based on much less certain ground. In structure comparison, we do not even have an
algorithm that guarantees an optimal answer for pairs of structures and, with the added complexity of
structure, relative to sequence, the models of relatedness are correspondingly more varied.

We have compiled this review with the aim of lending some order to the bewildering variety of methods
that have been devised both to compare structures and to extract their essential components in the form
of patterns. The result is neither wholly consistent nor complete as many of the more recent methods use
a combination of many approaches. We hope it should, at least, provide a framework which will help in
classifying the simpler methods and aid in breaking the more complex into their components.

Sequence and structure patterns can be used for characterizing families of proteins which are de� ned
to be sets of functionally or structurally related proteins. The discovery of such patterns can help in
the understanding of relationships between sequence, structure, and function of proteins and in a bigger
context help to understand the working of living organisms. Sequence patterns can be used to predict,
from sequence information only, the structure and function of new proteins. Once the sequence of a new
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protein has been found, a database similarity search can identify proteins with similar sequences, and if the
similarity is suf� ciently strong, one can assume that the new protein has the same structure and sometimes
function as the protein in the database. Sets of proteins having the same structure and or function can be
analyzed, and one can � nd which residues are most informative about the structure/function, which are
allowed to vary more freely, etc. Generally, one can de� ne sequence patterns characteristic of each family.
Then, comparing a new sequence to a collection of patterns (one for each structure family) is more ef� cient
and also provides a more sensitive and speci� c test of family membership.

However, even if the two proteins have similar structures, they can have different functions, as a small
number of amino acid changes may be responsible for changing the function of the protein. Families of
proteins having the same function (represented by the same or different structures) may be formed, and it
may be possible to � nd a signature (pattern) which is characteristic of the function so that the new protein
can be matched against, and the outcome of the matching may be used to suggest presence or absence of
the particular function.

In this way, patterns can play a major role in understanding relationships between different structures
(to � nd recurring structural patterns and rules) and relationships between structure and function.

Sequence patterns can be used for characterizing proteins with structural similarity, for example, the
PROSITE entry for the SH3 domain which is a small protein domain of about 60 amino acid residues in
two tightly packed antiparallel beta sheets occurring in a variety of intracellular and membrane-associated
proteins. The PROSITE entry gives a pro� le for this family. The function of the domain is not well
understood, but if one � nds that a new protein matches the pro� le with a suf� ciently high score, one
can be reasonably sure that the protein contains a SH3 domain. Patterns can also be used in relation to
functional properties. For example, PROSITE gives a pattern characteristic for the sequences of a certain
class of aminoacyl-tRNA synthetases (a group of enzymes which activate amino acids and transfer them to
speci� c tRNA molecules as the � rst step in protein biosynthesis). If a new sequence matches this pattern,
one can hypothesize that it is an enzyme having this function.

As the number of known protein structures increases (13049 in the PDB as of September 2000) (Bernstein
et al., 1977), there is need for methods describing and revealing common functionally important units
in (related) structures. Such units could be described by structure patterns, analogous to the sequence
patterns. These patterns could then be used to classify protein structures into structure families, for example
by considering the occurrence of common arrangements of secondary structure elements in the core of
proteins, as described by Koch et al. (1996). Structure patterns can also be used to make a hypothesis of
the function of a protein, for example the “coordinate templates” for � nding Ser-His-Asp catalytic triads
in the serine proteinases and lipases as reported in Wallace et al. (1996). See Figure 1.

The terminology used in the literature for describing common similarities between sequences or structures
is quite confusing. The words “pattern,” “motif,” “� ngerprint,” “template,” “fragment,” “core,” and “site”
are all used. By a pattern we mean here any description of sequence or structure properties for which one
can either (1) decide whether a protein matches it or not or (2) assign a value to the match between the
protein and the pattern. In Case (1) it will be called a deterministic pattern and in Case (2) a probabilistic
pattern. A pattern may or may not match any sequence or structure and it may or may not have a biological
meaning. Different formalisms for describing patterns exist. Following the de� nition above, for any pattern
formalism there is a mechanism for deciding whether or not a sequence or a structure matches a pattern.
In most cases, a pattern is allowed to match part of a sequence or a structure. The part of a sequence or
a structure (e.g., a subsequence or a substructure) that matches a pattern is called an occurrence of (or a
match to) the pattern.

For some pattern classes, one can de� ne a partial ordering of the patterns with respect to their generality.
If it can be proven that any structure that matches a pattern P1 will also match pattern P2, then P2 is a
generalization of P1 (or subsumes P1) which we can denote by P1 ¿ P2 (or L.P1/ ³ L.P2/). This can
also be extended to include structure descriptions, so that if pattern P matches structure S, then S ¿ P

(or S 2 L.P /). This is easiest to do formally for deterministic patterns (see, e.g., Shinohara and Arikawa
(1995) and Conklin (1995)). For probabilistic patterns, it is not that straightforward, but for example for
alignments, a subalignment (consecutive columns) can be seen as a generalization of an alignment.

By a motif we mean a pattern which has a biological meaning—i.e., it can be used to predict functional or
structural properties of the protein, or it describes (nontrivial) features common to biologically (structually
or functionally) related proteins. Having found a pattern, one wants to evaluate whether it is a motif, i.e.,
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FIG. 1. Protein comparison and motif discovery in a context.

if it has a biological meaning. Because in automatic methods there is no way of assessing the biological
meaning of a pattern directly, alternative mathematical methods for pattern evaluation have been developed.
We call them � tness or scoring functions. The term motif can include sites (a small part of the structure
having a speci� c functional or structural role, e.g., the active site in enzymes or metal binding sites), cores
(an often bigger part of the structure in the interior of the protein, e.g., the hydrophobic core), secondary
structures, and supersecondary motifs (constituted of secondary structures).

The PDB (Protein Data Bank, http://www.rcsb.org/pdb/) (Bernstein et al., 1977) at Brookhaven
National Laboratory is the international structural database. It is an archive of experimentally determined
three-dimensional structures of biological macromolecules, together with an extensive annotation. A lot of
other structural databases exist (see Baxevanis, 2000).

In the following sections, we investigate different aspects regarding pairwise and multiple structure com-
parison, and the problem of automatic discovery of common patterns in a set of structures. Descriptions
and representation of structures and patterns, as well as scoring and algorithms for comparison, are inves-
tigated. A framework and nomenclature is developed, and a number of methods are reviewed and placed
into this framework. The current article partly builds on and extends two previous surveys: (Brown et al.
(1996), which discusses structure comparison, and Brazma et al. (1998), which deals with the discovery
of sequence patterns. Some method papers also include small reviews that have been useful in this work
(Gibrat et al., 1996; Godzik, 1996).

2. FRAMEWORK

Figure 2 shows the overall components of discovering structure motifs and matching new structures
against them. The different steps include those following.

1. Feature extraction: In this step, the features to be used in the comparison of the structures or in the
pattern discovery method are extracted. This might include comprehensive computing, e.g., assigning
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FIG. 2. Overview of the process of discovering patterns, either by direct discovery method or using a comparison
algorithm, and pattern matching. The edge marked (1) indicates that the result of a comparison method may need some
further processing in order to be expressed as one or several patterns. Furthermore, if the result of comparing two
structure descriptions can be represented as a pattern and then compared with another structure (or another pattern),
the edge (2) can be used to � nd patterns matching progressively bigger sets of structures. Note that “Matcher” and
“Comparison” are very closely related and may in fact be implemented using the same method.

secondary structures to the residues. Not all methods perform this step explicitly, but all take into
account a well-de� ned set of structural features and conceptually this can be seen as if they � rst
extract the relevant features and then subsequently work on the resulting structure descriptions.

2. Comparison: This step takes as input a pair of structure descriptions (or a description/pattern pair) and
� nds (local or global) similarities between the two, optimizing a similarity measure and outputing a
score. The similarity may also be represented as a pattern.

3. Discovery: patterns matching many or all of the input structures are found. The patterns are chosen
from a solution space so that their � tness with respect to the input structures are as high as possible.

4. Matcher: This step takes as input one pattern and one structure and evaluates the match between the
two; the output is “yes” or “no” if the pattern is deterministic or is a score if the pattern is proba-
bilistic. Note the similarity between the matching and comparison operations; they may sometimes be
implemented using the same method.

The steps involved in these operations will be discussed in more detail in the following sections. Matching
is not discussed separately; for an example matching algorithm, see Gilbert et al. (1999).

3. DESCRIPTIONS AND REPRESENTATIONS

3.1. Feature extraction

This step is used to extract the features from the structure � le which are relevant for pattern discovery,
learning, matching, and comparison.

When deciding which features should be extracted and represented, certain aspects must be considered.
First, one needs to decide on which structure level similarities are sought (e.g., atom group, residue,
secondary structures). Also, one needs to decide whether the similarities should require sequence order to
be preserved, a reasonable requirement if we assume that the proteins are evolutionarily related, but not if
common features have arisen independently.The structure description to be used as input to the comparison
or pattern discovery algorithms should contain only the features which we would like to compare and/or
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to describe as patterns. A structure description will consist of geometry, topology, and properties, and for
each of these we need to decide which features to include:

1. Geometry—e.g., coordinates or relative positions of atoms, residues, fragments, or SSEs.
2. Topology—e.g., the elements’ order along the backbone.
3. Properties—e.g., physico-chemical properties of the elements (e.g., residues)

In our framework, patterns are to be found from structure descriptions so that they represent features
common to a set of such descriptions. Patterns will therefore be generalizations of structure descriptions
and are limited to features included in these.

In order to provide the comparison (pattern-discovery) algorithms with a good starting point, the structure
descriptions should ideally satisfy the following properties:

1. Invariant to trivial changes—such as translation and rotation.
2. Robust—the description should not change drastically due to minor changes in the structure (e.g.,

experimental errors, hydrogen-bonding de� nition).
3. Similar structures—should get similar descriptions.
4. Different structures—should get different descriptions.

Loosely, the de� nition of “similar” and “different” will depend on what aspects of protein structure
one wants to compare or capture in a pattern. For example, if the comparison is to be done at the level
of packing of secondary structure element, the descriptions of structures with similar packing should be
similar.

3.2. Structure descriptions

A natural way to describe a complex object like a protein structure is to break it into pieces (units)
and to describe each unit separately and (most often) the relationship between the units. For structure
comparison, the units are chosen in two ways:

1. Element based—natural structure elements (atoms, residues, fragments, secondary structures (SSEs))
are used as the basic units.

2. Space based—the space in which the structure is located is divided into (possibly overlapping) geo-
metrically de� ned cells, e.g., by using a grid, or shells around center points.

3.2.1. Element based descriptions. Element-based descriptions are by far the most used type. Brown
et al. (1996) give an overview of structure comparison methods using this approach and present a nomen-
clature for use in the comparison of structures. Following this nomenclature, three concepts can be used for
description: element class, properties, and relation (Brown et al. use the word “feature”; we use “property”
to avoid confusion with our use of “feature” at the higher level).

° Element class—the level of the description varies: atom (group), residue, backbone fragment, and
secondary structure element.

° Property—is used for specifying the properties of each element, such as three-dimensional coordinates,
physico-chemical properties, amino acid type, secondary structure type, curvature, and torsion.

° Relation—is used for describing the relation between the elements. In practice, the relations are binary,
such as geometrical distances, difference in orientation, and bonding.

Depending on what element class is used, one might say that the description is on a coarse or a � ne
level. Secondary structure is on a coarse level, and the common similarities in this case are often common
folds. Atom (group) and residue level are � ne, while backbone fragment level might in some cases be
considered as low, in other cases as high.
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The two levels have different goals; the high level aims to classify the whole overall structure, but the
low level aims to be used more directly in determining/� nding active/binding sites.

3.2.2. Space based descriptions. In space-based descriptions, the 3D space in which a structure is
located is divided into (possibly overlapping) cells. The part of the structure falling in each cell is described,
for example, by the number of residues of each type or the number of residues with certain property values.
Examples of space-based descriptions are given by Bagley and Altman (1995) and by Kastenmüller et al.
(1998). Figure 3(a) shows cells as shells around points in the structure space.

3.2.3. Substructure descriptions. Some methods divide the structures into substructures, describe each
substructure, and then � nd (local) patterns common to substructures from different structures. This initial
step is often followed by a step where the identi� ed local patterns are combined to form larger patterns.
For example, Escalier et al. use this approach and element-based structure descriptions. They de� ne a
substructure to consist of elements where the distance between any two elements is below a given threshold
(Escalier et al., 1998).

The approach can also be used together with space-based structure descriptions. For example, Bagley
and Altman (1995) de� ne a substructure as the part of the structure that falls within a certain distance
from a speci� ed point. Similar sites constitute a pattern, and no combination of (local) patterns is made.
Figure 3 illustrates substructures.

3.3. Structure representation

For each protein, the selected features are represented in a data structure. Typically each unit (element or
cell) is represented separately and combined to form a representation of the whole structure. For example,
each residue can be represented by its coordinates and amino acid, and the whole protein structure can
then be represented as a list (ordered) or set (unordered) of residue representations.

We have grouped the different representations into � ve groups:

1. Strings—It is possible to represent structural features as one or several strings, (see, for instance,
Matsuda et al. (1997) where residue i is represented by a letter showing the C®’s position relative

FIG. 3. Substructures illustrated in 2D. The structures are shown by solid curves; the dots represent elements. (a) Two
substructures in a space-based description. One is the part of the structure falling in the shells around P and the other
is the part falling in the shells around Q. (b) A substructure in an element-based description, where a substructure is
a fragment (consequent residues).
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to the positions of the C® of residue i ¡ 2; i ¡ 1; i 1 1). This representation is appropriate only for
matching of (consecutive) substrings.

2. List of unit descriptions—For example, extract one or several coordinates per residue: the coordinates
of the C® atom (Taylor and Orengo, 1989), mean coordinates of side chain (Jonassen et al., 1999),
two pseudo atoms (Artymiuk et al., 1994), or unit vectors (the vectors between succeeding C® atoms
(Chew et al., 1999)). In addition to the coordinates, each unit can have associated additional properties,
such as amino acid type, physico-chemical properties, degree of burial, SSE status, etc.

3. Set of unit descriptions—Same as list, but the units are unordered. Alexandrov et al. (1992) in their
SARF program use a set of backbone fragments.

4. Graphs—A labeled graph can be used to represent all element-based feature descriptions, with nodes
representing the elements and the edges representing the relations. For instance, one can identify
secondary structure elements and label the edges with the distance and angular relationships between
the SSEs of the nodes (Grindley et al., 1993) or label them with the type of parallelism (Koch et al.,
1996).

5. Feature arrays—Features of the structure can be represented by � xed-length arrays. This representation
can be used for both space-based and element-based description. Bagley and Altman (1995) have a
space-based description where each cell is described by an array summing up the properties of it’s
residues.

3.3.1. External/internal representations. For ef� ciency, most of the methods use internal representation
of the structures, hidden from the user. Internal representations can, for example, facilitate more direct
comparison of spatial similarity. In the “double dynamic programming” method by Taylor and Orengo
(1989), a local coordinate system is constructed for each residue into which the remaining residues’
coordinates are transformed. Then, assuming a particular residue pair is aligned, the spatial similarity
of the remaining residues can be assessed and scores assigned to be used in a (lower level) dynamic
programming alignment step (see Section 4.4).

The same approach is used in geometric hashing (Fischer et al., 1994; Wallace et al., 1996; Alesker
et al., 1996); a local coordinate system is constructed for each residue, but in geometric hashing normally
the coordinates of only the neighboring residues are transformed. Then, for a pair of residues (one from
each structure), their spatial neighborhoodscan be compared simply by counting the number of neighboring
residues with similar position (in the respective local coordinate systems). Special hash tables are used to
speed up the computations (see Section 4.6).

Another approach is taken by Jonassen et al. (1999) who represent the spatial neighborhood of each
residue by a string of the spatially close residues (having spatial distance below some threshold). The
strings do not contain information about the exact geometry of the neighbors, but do give the sequence
order (along the backbone) of the neighboring residues. Patterns shared by sets of these strings can be
discovered using ef� cient sequence pattern discovery methods (see Section 5.5).

The external representations can be generalized to be useful for pattern descriptions, which is not the
case for the internal representations. When algorithms using an internal representation are meant to present
the result to the user as a pattern, it must be described in another form. For example, each pattern found
by the SPratt method (Jonassen et al., 1999) is presented as a list of residues, for each residue is given
the allowed amino acids and the 3D coordinates.

4. PAIRWISE STRUCTURE COMPARISON

In this section, we discuss methods for comparing pairs of structures, focusing on element-based structure
descriptions. The most natural way to compare two objects, each represented by a collection of elements,
is to try to � nd element correspondences between the two. More formally, for two objects A and B

having elements a1; a2 : : : ; am, and b1; b2; : : : ; bn , respectively, we de� ne an equivalence as a set of pairs
L.A; B/ 5 .ai1 ; bj1/; .ai2 ; bj2 /; : : : ; .ail ; bjl

/. The equivalence is called an alignment if the elements of
A and B are ordered and if the pairs in L.A; B/ are colinear, i.e., if i1 < i2 < : : : < il and j1 <

j2 < : : : < jl . Many different equivalences exist and a scoring function is needed to rank them and to
discriminate good equivalences from bad ones. We � rst brie� y review different scoring schemes proposed
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for pairwise structure comparison. Then we give an overview of different algorithms, which given two
structure descriptions and a scoring scheme, aims to � nd the equivalences giving the highest score. A
schematic overview of the steps involved is given in Figure 4.

The general problem is NP-hard (Lathrop, 1994); therefore, some simpli� cations have to be made either
in the search or in the scoring.

4.1. Scoring equivalences

Assuming that one wants to assign high values to “good” equivalences, the comparison problem is
one of � nding an equivalence with a score as high as possible (maximization problem). The score of an
equivalence will be high if the pairs are between elements with similar properties (for coordinates, if they
can be superpositioned well—see below) and if relations between pairs of paired elements are similar.

When comparing two sequences, the traditional method is to align the sequences to pair up identical or
similar residues. The score of the alignment is assigned using the similarity of the aligned (equivalenced)
residues (as measured by a scoring matrix, e.g., Dayhoff (1978) and Henikoff and Henikoff (1992)) and
as a function of the gaps inserted in order to obtain the alignment (Sankoff and Kruskal, 1983). Different

FIG. 4. Framework for pairwise structure comparison. First the relevant features are extracted and represented in
structure descriptions.These are input to a comparison algorithm which � nds an equivalence obeying certain constraints
with scores high as possible. The equivalence is output together with the RMSD value. It can be assessed with respect
to whether it is accurate (if a standard of truth is available) and as to whether it is statistically signi� cant—i.e., if the
similarity is stronger than could be expected by chance.
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scoring schemes apply, depending on whether the alignment is to be local or global. Pairwise sequence
comparison is very widely used, in particular in database similarity searches. For each similarity found,
the alignment and its score should be given along with the statistical signi� cance of the hit. Most often,
this is given as an estimate of the probability of � nding a hit at least this strong (having the same score or
higher) by chance (Lipman and Pearson, 1985, Altschul et al., 1990).

When comparing structures, an intuitive method is to try to put the structures on top of each other so
that the equivalenced elements come as close as possible. The obtained distances can be used to quantify
the similarity and to score the equivalence. This is called superposition of structures, and if the geometry
of the structures are not changed in the process, it is referred to as rigid-body superposition.

Algorithms exist for superposing structure A on structure B by � nding the superposition (translation
of 3 distances and rotation of 3 angles) to minimize the coordinate root mean square deviation (RMSDC)
given by

RMSDC 5

r
1
N

6N
i5 1.xA

i ¡ xB
i /2 (1)

where .xA
1 ; xB

1 /; : : : ; .xA
N ; xB

N / are the coordinates (after superpositioning) of the equivalenced elements.
For residue level structure descriptions, there may be one coordinate set per residue (e.g., C® atom) or a
number of coordinate sets per residue. An alternative measure is distance RMSD (RMSDD ). This alleviates
the need for � nding a translation and rotation of one of the structures and is given by

RMSDD 5
1
N

q
6N

i 5 16N
j 5 1.dA

ij ¡ dB
ij /2 (2)

where each dT
ij is the spatial distance between elements i and j in structure T . The two measures are

linearly related except that RMSDD is invariant under re� ection.
It is observed (Brown et al., 1996), that the translation is effected by relocating the origin of the coordinate

system of each protein to the center of mass of its equivalenced elements. Finding the best superposition
is easily done by standard pairwise least-square � tting algorithms (e.g., � nding eigenvalues in a matrix
constructed from the two coordinate sets (Kabsch, 1978)). Some methods will � nd a superposition with
a mirror image of one of the structures (if this is best) and the complexities of this “feature” has been
analyzed by Crippen and Mairov (see below).

Most scoring schemes for evaluating equivalences between structure descriptions contain factors related
to the RMSDC or RMSDD . Related measures include distance map similarity (Holm and Sander, 1993b) or
contact map overlap (Godzik and Skolnick, 1994). Many structure comparison programs give as output an
equivalence and the resulting RMSD (or a closely related measure, such as weighted RMSD or maximum
RMSD) even if they do not use RMSD internally to score equivalences (e.g., Taylor and Orengo (1989)).
Internal measures can use information about, for example, amino acid types, physico-chemical properties,
exposure/buriedness, secondary structure elements, and chemical bonds. Not all methods explicitly specify
a scoring function to be optimized but can be based instead on a combination of (often heuristic) steps
(Taylor and Orengo, 1989).

Falicov and Cohen (1996) use a scoring based on a minimal surface metric. Given a superposition of
two structures, a surface between them can be described by a list of triangles, of which there are two types.
Let ai be the C® of i’th residue in one of the structures, and bj of the other. Then the triangles are either
.ai ; ai 1 1; bj / or .ai ; bj ; bj 1 1/. An atom might be the vertex in several consecutive triangles, thus allowing
for insertion/deletion in a corresponding alignment. The triangulation corresponding to the minimal surface
can be found by a dynamic programming procedure, and this gives the score for the transformation. A
similar idea was proposed by Schulz and Schirmer (1979).

Another alternative scoring is URMS introduced by Chew et al. (1999). A structure is represented by
a list of unit vectors fvi g with a common start point (origin). Each vi is the unit vector along the vector
C®i

; C®i1 1 . They de� ne URMS to be the minimum RMS distance for an equivalence between the two
unit-vector representations. They claim that this measure is effective for � nding small substructures shared
by two structures and allows rapid computation using Fast Fourier Transform.



694 EIDHAMMER ET AL.

Assessing the signi� cance of RMSD values obtained for candidate equivalence sets, one � rst needs to
consider how many elements were equivalenced, as for random comparisons the expected RMS value is
proportional to the square root of the number of equivalenced residues. Rules of thumb are often used (see
Levitt and Gerstein (1998), Gerstein and Levitt (1998), and Section 6).

4.2. Comparison algorithms

A large number of methods exist for comparing pairs of sequences, pairs of structures, and also pairs of
sequence and structure. The methods are used not only for comparing a given pair of objects, but also in
database searches where the objects most similar to a query object are to be found as quickly as possible.
A classi� cation of the methods can be done along different axes, for example, the level of representation
(atom, residue, frames, or secondary structure element), the constraints on topology (content, sequential,
nonsequential (Brown et al., 1996)), or techniques (superposition, dynamic programming, graph theory,
geometric hashing, etc).

In this survey, we focus on the algorithms and make a classi� cation of approaches. Our classi� cation of
the pairwise comparison methods comprises alignment-based methods, search methods, geometric hashing,
statistical approaches, and clustering.

For each approach, we explain the fundamental principles and also explain (on a coarse level) some of
the published methods in which the approach is used, focusing on the most-recently published methods.
Figure 5 shows a schematic overview and the connections of the different approaches.

Pairwise structure alignment includes methods for aligning sequences where structural information is
used and the colinearity is maintained. The most fundamental techniques for comparing structures are
superposition and dynamic programming.

FIG. 5. Schematic diagram of the different approaches for pairwise comparisons. The ellipses representing informa-
tion, the rectangles processing. The dotted line indicates that one process might be used by the other.
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Dynamic programming (DP) (Needleman and Wunsch, 1970) for � nding the best alignment of two
sequences or structures uses a scoring matrix with a score for each pair of residues. One normally starts
from the beginning of each structure and extends the alignment toward the end, � lling in a DP matrix. An
important assumption is that the optimality of earlier choices is not affected by decisions made later on.
This assumption holds for sequence alignment using typical scoring schemes, e.g., edit distance or sum-
of-pairs, but typically not for structure alignment. In the words of Gerstein and Levitt (1998), “structural
alignment fails to converge globally because the possible matches for different segments are tightly linked
as they are part of the same rigid 3D structure.”

4.3. Alternating superposition alignment iteration

Given an equivalence of atoms from each structure, E0, a superposition algorithm can be used to � nd
a transformation T0 minimizing an RMSD measure. When the whole structures are superposed using this
transformation, the distances between all pairs of atoms (residues) from the two structures can be used
to de� ne a new scoring matrix. This matrix can be used for a new alignment, and the equivalences (pair
of residues) with least distances can be chosen for a new superposition. This iteration continues until
convergence (the alignment is not changed) or some maximum number of iterations is done. Figure 6
illustrates the approach.

Rao and Rossmann (1973) and Rossmann and Argos (1975, 1976) � rst used this approach to align protein
structures. Initial equivalences are found by searching for pairs of similar short fragments (3–4 residues).
In the alignment phase, a constraint is used to assure colinearity (dynamic programming is not used). The
scoring is determined by a probability function of the distances between the residues, and a measure of
their conformational similarity is determined by use of the coordinates of the two (sequence) neighboring
residues. In a related method, Cohen and coworkers (Satow et al., 1986; Cohen, 1997) use dynamic
programming in the alignment step. This is also used by Russell and Barton (1992) in the program STAMP,
where the scoring matrix is the probability function of Rossmann and Argos. An analog iteration is used in
the program CONTRUST by Ding et al. (1994), where the scoring between two residues consists of three
components: sequence, local structure, and global structure components. The local structure component
depends on the difference between the curvature and torsion calculated for the residues, and the global
structure component depends on the distance between the two residues after superposition is done.

FIG. 6. (A) Outline of algorithm alternating between alignment and superpositioning.(B) For comparison, the outline
of the SAP method is given.
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The idea of Rossman et al. of automatically � nding an initial equivalence is also used by Zu-Kang and
Sippl (1996). Recognizing that the initial seed alignment is critical to the � nal result, they try different
possible seed alignments and conclude that, depending on the seeds chosen, the alignments can be quite
different (not share many residue pairs) while still giving similar quality measures (RMSD and number of
aligned residues).

Petitjean (1998) uses iteration to � nd the “best" common subset of C® coordinates of two structures,
measured by RMSD. The initial alignment is chosen randomly, and as in the above methods, iterations
with alternating superpositioning and alignment are performed to maximize the number of C® coordinates
aligned. An analog iteration is also used by Gerstein and Levitt (1998) in an extension of the ALIGN
program (Cohen, 1997).

The method of performing alternating superpositioning and alignment has also been used for re� ning
(postprocessing) the results found by other methods (e.g., Holm and Sander (1995, Section 4.6)).

4.4. Two-level alignment

Traditional dynamic programming (DP) guarantees to � nd an optimal alignment of sequences or struc-
tures if the scorings of matched pairs of elements are independent of each other and if inserted gaps can be
penalized independently. When one assumes that the structures are already superposed, reasonable scoring
schemes can be devised which allow the structures to be aligned optimally using DP (see Section 4.3).
However, ideally, one might wish to simultaneously align and superpose the structures to optimize a score
depending on how well aligned substructures superpose. Since any choice to align two substructures affects
the scoring of the alignment of the complete structures, the independency requirement is violated and DP
no longer can guarantee an optimal solution. Several heuristic algorithms which try to extend DP to solve
this problem have been proposed.

A heuristic method was presented by Sali and Blundell (1990) in which several alignments are made, one
for each type of relation. Each alignment is obtained using stochastic optimization (simulated annealing).
The results are summarized into a residue-by-residue scoring matrix U where a residue pair is assigned
a high score if the two residues are aligned in many of the relationship-based alignments. Finally, U is
combined with property information to obtain a new scoring matrix, which is used in an alignment using
dynamic programming.

Another method based on DP has been used in the program SSAP by Taylor and Orengo (1989). The
method is called double dynamic programming since DP is used at two different levels. At the lower level,
a series of DP matrices are calculated. For each, the alignment of one particular pair of residues is � xed.
The highest scoring path from each lower-level DP matrix is propagated to the higher-level “summary”
DP matrix in which DP is done to � nd the overall best alignment.

We will describe this algorithm in a bit more detail. Let i; k be residues in the two structures A; B ,
respectively, and let ikR be a lower-level score matrix. The element ikRj l is a score showing the goodness
of aligning Aj ; Bl , given that Ai ; Bk is aligned. For � nding the score, local reference systems are de� ned
at Ai and Bk , and the coordinates of the remaining residues in each structure are transformed into these
coordinate systems (see Section 3.3.1). The score of aligning Aj ; Bl depends on the distance between Aj

and Bl in the respective coordinate systems de� ned by Ai and Bk , respectively.
The idea of Taylor and Orengo is similar to that used in the methods alternating between superpositioning

and alignment (Section 4.3). While the latter methods � nd the DP matrix using an optimal superposition
for the current equivalence, Taylor and Orengo do not need to decide (assume) one exact alignment to
calculate the higher-level DP matrix. Instead, the residue pairs that participate in high-scoring lower-level
alignments receive high values in the higher-level DP matrix and are likely to be included in the � nal
alignment.

An iterative version of the SSAP algorithm was developed (Orengo and Taylor, 1990) which has been
developed more recently into a program called SAP (Taylor, 1997). This is even more closely related to
the methods of Section 4.3 (see Figure 6). In this version, lower-level DP matrices are only calculated for
a subset of the possible residue pairs. In the � rst iteration, an initial set of residue pairs is used (randomly
chosen or using local seed as secondary structures, burial, or motifs (Jonassen et al., 1999)), and the set to
be used in each subsequent iteration is calculated using the result of the last (high-level) alignment. The
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procedure can be described as below, where DP .R/ is the result of aligning A; B using the matrix R,
where Rik is the score for aligning Ai; Bk . Therefore, DP .R/ returns a list of indices.

Q :5 0 Set high-level score matrix to zero
I :5 list of seed pairs
iter

S :5 f0gm£n Set accumulated low-level score matrix to zero
for each pair .ik/ 2 I do

L :5 DP .ikR/ Low level dynamic programming
for each pair .r; s/ 2 L do Srs :5 Srs 1 ik Rrs end

end
Q :5 1

2 Q 1 log.1 1 S=10/ Update high-level score matrix
L :5 DP .Q/ High-level dynamic programming
I :5 select new pairs

until convergence

4.5. Search

Several methods use general techniques for search in a well-de� ned search space. For example, May
and Johnson (1995) use a genetic algorithm to � nd the superposition giving the best alignment. The search
space is a set of transformations. Each transformation is scored by the score of the best alignment of the
two structures under this transformation. The alignment is computed using dynamic programming where
the score for a residue pair (one residue from each structure) is de� ned depending on the interresidue
distance under the transformation.

A related method presented by Diederichs (1995) also performs a search for the best transformation. The
search space is de� ned by a “Lattmann” angle space as a set of rotations associating equal volumes of angle
space. For each rotation, a “translation grid” with 1Å spacing is de� ned, and for each grid point a count is
made of how many C® pairs (one from each structure) superpose well. This is used as one component of
the scoring of the transformation. Optionally, the similarity of aligned residues and topological matching
can be included in the scoring. Each good superposition is checked for local or global sequentiality.
Local sequentiality is a measure of how frequently contiguous (backbone) fragments are superposed onto
residues having the same sequence order. Global sequentiality is measured by the correlation between the
indices i; j of matching residues. Different scoring schemes are used depending on whether, in addition to
similarity in secondary structure architecture, one also wants topological similarity and whether direction
of SSEs are taken into account.

Falicov and Cohen (1996), also search in the space of transformations. Each transformation is scored
by the minimal surface metric (see Section 4.1). Three techniques were used for the search: Downhill
Simplex, Powell’s Method, and Conjugate Gradient.

Holm and Sander (1996) describe a method based on a threading algorithm for sequence–structure
comparison by Lathrop and Smith (1996). The sequence of their method is replaced by the structure
(residue centers). The method is a branch-and-bound search method, where the solution space consists of
all possible placements of the residues in a structure B relative to the SSE-segments of residues of another
structure A. The structures are represented by distance matrices, and the upper bounds are calculated using
distance matrices.

4.6. Geometric hashing

The aim of this technique is to discover common substructures, i.e., a set of elements from the two
structures with the same mutual spatial relations. A highly redundant representation of the structures is
used, which is independent of rotation, translation, and sequence order. This is normally obtained through
the de� nition of local coordinate (reference) systems into which the coordinates of all (or a selected subset
of) the elements (atom groups/residues/SSEs) are transformed. The methods use hash tables for storing
and comparing local geometrical information (hence the name “geometric hashing”). The local reference
systems are de� ned by use of 3D coordinate frames, and three points are needed for each frame (xyz).
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The principle for the technique will be explained by a simple example using residue-based representation,
where each residue is represented by the 3D coordinates of an atom (e.g., C®).

Let A (the target) and B (the query) be two structures with m and n residues, respectively. For each
i; i 5 2; : : : ; m ¡ 1, de� ne a reference system (Ri) using the neighboring residues .i ¡ 1; i; i 1 1/ in A,
and let T .i; j / be a transformed representation of the position of residue j in reference system Ri . Further,
let H be a hash table (with one dimension for simplicity) indexed by T .i; j/, such that an entry in H

contains a list of reference systems. The hash table is � lled by using all reference systems from A, by the
following procedure:

Preprocess:
for i 5 2; : : : ; m ¡ 1 do

calculate the reference system Ri

for j 5 1::m; j 65 i do calculate T .i; j/; H .T .i; j// :5 H .T .i; j// [ .Ri/ end
end

For each pair of elements i in A and k in B , we count the number of element pairs .j; l/ such that j

has the same spatial relation to i as l has to k and retain those for which this number is above a threshold
.t/. Then the pair of elements .i; k/ is likely to be part of a common structure. The following procedure
can be used (for illustration, see Figure 7):

Recognize:
for k 5 2; : : : ; n ¡ 1 do

calculate the reference system Rk

set S.i/ equal 0 for all i; i 5 2; : : : ; m ¡ 1 For counting
for l 5 1::n; l 65 k do

calculate T .k; l/; for each .Ri/ 2 H.T .k; l// do 1 1 S.i/ end
end
C 5 C [ f.Ri ; Rk/jS.i/ > tg

end

The pair of elements .i; k/ in C are likely to be part of a common substructure. To � nd the actual
substructures, clustering can be performed (see Section 4.7).

FIG. 7. A simple model for geometric hashing. The hash table is � lled from structure A using the preprocess
algorithm. When looking at the pair .k; l/ when B is processed by the recognize algorithm, both S.i/ and S.i 0/ are
increased by one.
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All triples of points can be used for de� ning reference systems. In the above example, triples of residues
were used. Since the number of reference systems can be very large, it may be desirable to use heuristics
to reduce the number of triples to be considered. Also, labels can be assigned to the elements (Nussinov
and Wolfson, 1991), and corresponding elements can be required to have equal labels (implemented by
including the label in hashing T .i; j; label/). It is used also to simultaneously compare a structure to a
set of structures A1; A2; : : : ; An . The hash table is � lled with data from each of the structures, but each
datum is marked with the corresponding structure (Nussinov and Wolfson, 1991).

Holm and Sander (1995) have proposed a method where geometric hashing is used with SSEs as
elements. The SSEs are represented as vectors, and right-handed coordinate systems are de� ned by using
ordered pairs of SSEs, assigning the origin to be at the midpoint of the � rst vector, and directing the y-axis
along that vector. By de� nition, the midpoint of the second vector lies in the z-positive yz halfplane. (A
similar reference frame was used by Orengo et al. (1992).) The SSE vectors are stored at the location of
their midpoint coordinates, for every coordinate system. Each cell in the hash table contains (a pointer
to) a list holding the explicitly transformed coordinates of the SSE vectors, the elements constituting the
coordinate system, and sequential number and type of the stored element. When deciding a match (i.e.,
element q in the query structure has the same relationship to two other elements .k; l/ as an element p

in the target has to .i; j /), the position of the midpoint of q and p, and the directions, must be similar
to a speci� ed degree; additionally, the involved SSEs must be of the same type and come in the same
order along the proteins’ backbones. The hash table contains additional information to be used under the
comparison, such that � nding the common substructures can be done without clustering. A re� nement
procedure analog to the iteration described in Section 4.3 is then performed.

Geometric hashing is often used for � nding compatible elements in methods using clustering (see below).

4.7. Clustering

The result of a pairwise structure comparison is often a set or list of element pairs. Each pair contains
one element from each structure and may have a score associated with it. The elements in each pair must
be compatible. The requirement for compatibility varies. Residues may be de� ned to be compatible if they
have the same amino acid or have amino acids in the same group. Secondary structure elements may be
compatible if they are of the same type or have equal internal distances. Two or several pairs of compatible
elements are consistent if the substructures consisting of the elements satisfy some constraints (e.g., the
substructures are considered as similar).

The methods using clustering follow this scheme: (1) � nd pairs of compatible elements, (2) cluster using
consistent compatible pairs to � nd the (k) substructure(s) with highest score(s), (3) optional re� nement.

Let .Ai ; Bk/ and .Aj ; Bl/ be two compatible pairs. They can be joined (are consistent) if the substructure
consisting of .Ai ; Aj / is “similar" to the substructure consisting of .Bk; Bl/. To decide this, either relations
between elements of the same structure or transformations between compatible elements from different
structures are used. Figure 8 illustrates this, with examples. Transformation, in the most cases, means the
transformation for an optimal superposition; consistency exists if two transformations are similar enough.

The clustering is then done based on either transformation or relation, or in some cases on both. In
addition, an overall score might be used. The clustering problem is NP-hard, and heuristics are often
used in practice. Several clustering techniques for use in comparing structures have been proposed in the
literature. Each aims to group element pairs together so that the groups are as big or as high scoring as
possible similar substructures. The methods differ in the following aspects:

° how the joining is done (whether if only a cluster and a pair can be joined, or two clusters can also be
joined).

° how to test for consistency (is the new pair tested against the cluster as a whole, or against each pair
in the cluster). Let a cluster C 5 ..Ai1 ; Bk1 /.Ai2 ; Bk2 / : : : .Aim ; Bkm

//, and a pair P 5 .Ai; Bk/. If the
consistency is transitive, it is enough to test P for consistency against one of the pairs in C; if not it
must be tested against all.

° how is the next pair for clustering choosen
° can parts of elements be joined to clusters
° are the resulting clusters disjoint or overlapping
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FIG. 8. Examples of relation and transformation. Ai; Aj are two elements from a structure A, and Bk; Bl are from
the same for structure B . Assume .Ai; Bk/ and .Aj ; Bl / each are compatible. (a) Relations, the elements represented
as vectors. The relation is between elements from the same structure, here represented by two distances and an angle
(found by projection on a plane). The substructure .Ai ; Aj / is consistent with .Bk; Bl/ if the relation .d1; d2; ®/A

is similar to the relation .d1; d2; ®/B . (b) Transformation, the elements represented by the 3D coordinate for each
residue. The transformation is between elements from different structures; in the example it is the transformation for
the best superposition. If the transformation for the best superposition of Bk onto Ai is similar to the one for Bl onto
Aj , then .Ai ; Aj / is consistent with .Bk; Bl/.

The clustering methods generally allow for insertions and deletions and topological permutations (but
there exist exceptions).

4.7.1. Clustering by use of transformations. The methods discussed in this section follow the scheme:
(1) � nd compatible pair of elements, (2) � nd the optimal transformation between the compatible pairs, and
(3) cluster compatible pairs using similar transformations, and (4) possibly perform � nal re� nements.

The most widely used method for � nding the compatible elements is geometric hashing. For each pair
of compatible elements, a transformation describes how to transform the � rst element onto the second such
that the “distance" between them becomes minimal. Often, incremental clustering is performed where it is
tested for one pair at a time whether it can be included in the cluster by comparing its transformation to
that of the � rst pair in the cluster.

Using geometric hashing (see Section 4.6), Nussinov and Wolfson (1991) � rst � nd pairs of compatible
triplets. For each pair of compatible triplets, a transformation is calculated from one of the reference
systems to the other, and in a clustering step, pairs with similar transformations are grouped together. The
best superposition for the joined element sets is found.

Vriend and Sander (1991) cluster pairs of fragments. The fragments have at least some minimum length,
and only fragments of equal length can be compatible. Compatibility is decided by � rst using distance
geometry (internal C® -distances). Fragments having similar internal geometry are superposed, and two
fragments are compatible if the RMSD and the longest C®–C® distance between equivalent alpha-carbon
are below speci� ed upper limits. The compatible fragments might be elongated by adjacent residues. Then
an incremental clustering is done, where a new fragment is compared to the � rst member of the cluster. To
decide if the pair (Ai ; Bk) is consistent with (Aj ; Bl), � rst the distance between the center of mass of Ai and
Aj is compared to that between Bk and Bl . If this is satisfactory, the rotations of the best superposition
of (Ai ; Bk) and (Aj ; Bl) are compared. After clustering, a � nal adjustment is done. In principle, each
fragment pair should be used to start a new clustering process.

The SARF program by Alexandrov et al. (1992) also uses fragments as elements. Compatibility is
decided by superposition (of fragments of equal length), and a compatible pair is given a score depending
on the RMSD and the length. The clustering procedure is “best � t”: a list of temporary clusters exists;
initially every compatible fragment pair is a cluster. At each iteration in the clustering, all pairs of current
clusters are temporarily grouped, and a score is calculated for each group. The group with the highest
score is kept permanently. This continues as long as a clustering increases the score. In this manner each
fragment pair does belong to only one cluster.

Another example of using geometric hashing to � nd pairs of compatible elements is the method of Fischer
et al. (1994). They de� ne spheres around each C® atom. Geometric hashing (Nussinov and Wolfson, 1991)
is used to � nd the number of C® atoms inside two spheres (one from each structure) with “similar"
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coordinates, and the two C® atoms are de� ned to be compatible if there are at least 20. Pairs of compatible
spheres having similar transformations are clustered by similarity of transformation. Later, the method was
modi� ed to also use secondary structure constraints (Fischer et al., 1995). Spheres are constructed only
around residues assigned ®-helices or ¯-strands, and corresponding residues must have the same type.

Geometric hashing followed by clustering has also been used for analyzing structures described at
secondary structure level. For example, Alesker et al. (1996) use geometric hashing for � nding pairs of
compatible secondary structure elements (SSEs). Then, for each pair, the six parameters describing the best
superposition transformation are computed. For pairs of (compatible) pairs, a distance measure is de� ned
depending on the similarity of the transformations. Clustering is performed in an iterative manner. In each
iteration, the compatible pair with the minimal distance from one of the clusters is joined to this cluster.
Pennec and Ayache (1998) also use SSEs and geometric hashing. They de� ne an information measure
for the transformations using different types of informations and cluster using “similar" transformations
with decreasing information. When no more transformations can be joined to the current cluster, a new
clustering is started on the rest transformations. The remaining transformations are then clustered using
the same algorithm.

Verbitsky et al. (1997), use geometric hashing when comparing two structures, where one (the model)
is allowed to contain a hinge point and the other is the target. The hash table is � lled by use of the model,
only saving the transformation between the coordinate frame at the hinge and the one at each of the other
residues .C®/. The task then is to � nd the best candidates for the position .C®/ of the target corresponding
to the hinge, together with two transformations, one for each part of the model. This is done using hash
tables and clustering. Finally the candidates are evaluated by RMSD. The complexity is of O.n2/, where
n is the number of C® atoms compared.

Clustering by transformation is also used by Chew et al. (1999). Let Ri;j be the rotation matrix that
best superposes two succeeding unit vectors (i; i 1 1) from structure A with two (j; j 1 1) from B (see
Section 4.1). Two compatible connected substructers (elements) of length k 1 1 are found if Ri;j º
Ri 1 1;j 1 1; : : : ; º Ri 1 k;j 1 k where R º S if the two are approximately equal. Ordinary transformations are
then used for clustering of compatible substructures.

When clustering transformations, it is also possible to de� ne the similarity of two transformations by
comparing the equivalences associated with each transformation. For example, Leibowitz et al. (1999)
identify k residue equivalences and cluster these equivalences by the number of shared residue pairs (see
Section 5.4).

Depending on the clustering procedure, a � nal adjustment or re� nement might be worth while (Vriend
and Sander, 1991; Holm and Sander, 1995). This is either an extension by searching for additional matching
pairs of elements (Fischer et al., 1994), or an iterative procedure, similar to the one described in Section 4.3.

4.7.2. Clustering by use of relations. Clustering methods compare element-based structure descriptions
and build up shared substructures by � rst � nding pairs of compatible elements (one element from each
structure) and then progressively building up larger correspondences. In the previous section, we discussed
methods where the consistency between substructure correspondences was checked by comparing transfor-
mations. In this section, we discuss methods where the consistency is assured by requiring similar relations
between corresponding elements in the two structures.

Analyzing structures A and B , a list of all compatible elements .Ai; Bk/ is generated. Each pair of
compatible pairs is then tested for consistency. Let ½.Ai ; Aj / denote the relation between any two elements
(from the same structure). The pair .Ai; Bk/ is consistent with .Aj ; Bl/ if and only if ½.Ai ; Aj / and
½.Bk; Bl/ satisfy some requirements and ½.Ai; Aj / is similar to ½.Bk; Bl/. The problem then is to � nd
the set of compatible pairs with highest score, such that any two of the compatible pairs are consistent.
Note that this implies that testing a pair for joining a cluster requires testing for consistency against all the
pairs in the cluster; this is due to nontransitivity.

In most methods, the elements are fragments or SSEs, represented as vectors. The relations considered
when checking consistency include distances and angles (projected on speci� c planes) between the two
vectors.

The problem can be formulated with help of graph theory in the following way: the structures are
represented as graphs, where the nodes are the elements, and there is an edge between nodes Ai ; Aj if
the relation ½.Ai ; Aj / satis� es some constraints. The nodes are labeled with element properties, and the
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edges with relations. The problem is then, given two graphs, � nd a subgraph of each so that the subgraphs
are similar and have maximum score. When the scoring is the number of compatible pairs, the problem
can be easily solved by � nding the maximal clique in a product graph (or connection graph) (Grindley
et al., 1993), which can, for example, be done by an algorithm by Bron and Kerbosch (1973). The (node)
product graph is constructed by creating a node for each compatible node pair and an edge from node
.Ai ; Bk/ to node .Aj ; Bl/ if they are consistent.

For example, Grindley et al. (1993) use SSEs, represented as vectors. SSEs of the same type are
compatible, and the relation for deciding consistency is described by three parameters, distances and
torsion angle between the elements, and the algorithm by Bron and Kerbosch is used. The same algorithm
is used in the VAST protein structure comparison method (Madej et al., 1995). Ru� no and Blundel (1994)
also use the same algorithm as Grindley, but the constraint for being compatible and also the relations are
a bit stronger. A � nal dynamic programming step is performed for re� nement.

Koch et al. (1996) also use graph theory and SSEs, but for making an edge between Ai ; Aj they require
that some of the van der Waals volumes around the atoms of Ai overlap with some of the van der Waals
volumes around the atoms of Aj . The relations (edge labels) are “parallel,” “antiparallel,” or “mixed”
(additional information can be added easily). They argue that it is suf� cient to � nd connected subgraphs,
thus reducing the problem. The algorithm is very similar to that of Grindley et al. but they de� ne an edge
product graph, in contrast to the node product graph. A node in an edge product graph consists of two
edges (one from each structure). The difference is illustrated in Figure 9.

The method of Grindley et al. has been generalized by Mizuguchi and Gō (1995) who assign a continuous
number to the edges of the product graph (thus generalizing from consistent/not consistent to giving a score
of the consistency). In that way, each cluster is given a score ¡

P
i 65 j d..Ai; Bi/; .Aj ; Bj //, where d is

a measure of dissimilarity. They then search for the highest scoring clusters using a parallel iterative
clustering procedure, where (the best) m new clusters are generated at each iteration, with the combination
of two existing clusters.

A version of the SARF program, SARF2 (Alexandrov and Fischer, 1996), uses SSEs instead of backbone
fragments. Compatibility is decided by SSEs of same type. The relation consists of � ve parameters de-
scribing distances and angle, and upper limits on these are used to decide if there will be an edge Ai ; Aj .
A recursive incremental clustering procedure is used. After � nding the clusters, they apply an iterative
procedure for re� nement.

The DALI program of Holm and Sander (1993b) starts by using overlapping hexapeptide fragments.
The decision of compatibility is done by use of distance matrices (C®–C® distances), and the relations also
are distance matrices. A list of contact patterns (pairs of compatible fragments, two from each structure)
are formed (which, in effect, is the product graph). The contact patterns are used for � nding seeds for
starting the clustering, which is done by a simulated annealing (Monte Carlo) search. An elastic score for
the similarity of corresponding distances is used. Each step in the search is either adding or removing
a pair of tetrapeptides (one hexapeptide generating three overlapping tetrapeptides). Several searches are
done in parallel so that one can obtain different solutions at the end. A number of techniques are used for
speeding up the computations.

Kleywegt and Jones (1997) describe a program, DEJAVU, which searches for similarities in structures
where the elements are SSEs. The elements are described by type, number of residues, and the C®

coordinates of the � rst and last residue. Two elements are compatible if they have the same type. The user
can specify which type of distances are to be used (center-to-center, etc.), as well as whether directional
and topological constraints are to be included. Weights to a scoring scheme can also be given. The
clustering algorithm is a depth-� rst search. In a � nal step, elaborate iterative re� nements to optimize the
superpositioning of the two structures is performed.

Escalier et al. (1998) use fragments, and compatibility is decided by structure similarity. A pattern-
driven (simultaneous) searching procedure is used for � nding compatible fragments from two structures,
based on the 3D coordinates. One node in the search tree represent a subfragment (by 3D coordinates)
from one of the structures (query), and every occurrences of this in the other structures (scene) is saved
in a list. Two search nodes, of equal length (k atoms) and with k ¡ 1 common atoms, are then used to
generate a search node of k 1 1 atoms. The relations used for clustering are the positions of corresponding
atoms (residues) and the distances between the atoms in two fragments: the pairs .Ai; Bk/ and .Aj ; Bl/

are consistent if (1) every atom a appearing in both Ai and Aj should correspond to the same atom in Bk



STRUCTURE COMPARISON AND STRUCTURE PATTERNS 703

FIG. 9. The difference between the node product graph and edge product graph is illustrated by an example with three
nodes in each substructure; .Ai ; Bk/; .Aj ; Bl/; .Ar ; Bs/ are compatible, and the relations ½ij ¹ ½kl and ½ir ¹ ½ks

but not ½jr ¹ ½ls . The node product graph contains two cliques and hence results in two common substructures,
each with two nodes and an edge product graph in the common substructures .½ij ; Ai ; ½ir /; .½kl ; Bk; ½ks /. The edge
product graph contains only one clique corresponding to one shared subgraph containing two edges.

and Bl , and (2) the distance between atoms in Ai ; Aj should not deviate much from the distance between
corresponding atoms in Bk; Bl . The score of the clustering problem is the number of corresponding atoms.
The clustering is performed by a branch-and-bound search procedure.

Russell (1998) describes a method for � nding similarities at residue level which are possibly related to
functional sites (active and binding sites). The method � nds sets of residue pairs (one from each struc-
ture) with amino acids from the same group and with similar orientation of the side chains. Sequence
order need not be preserved. Only conserved residues are considered (requiring a multiple sequence
alignment); amino acids with only carbon and hydrogen in their side chains and residues involved in
disulphide bindings are excluded. Compatibility between the remaining residues is decided by amino acids
from the same group (Russell de� nes nine groups). Each residue is represented by three atoms, and for
consistency it is required that the distances between corresponding atoms in two residues (in the same
structure) fall below a limit and that corresponding interatomic distances in the two structures are suf� -
ciently close. The clustering is incremental, implemented as a recursive depth-� rst search. A new pair is
tested for consistency against all pairs in the running cluster. A weighted RMSD measure is calculated,
and the statistical signi� cance of the similarity is assigned from analysis of randomly generated side-chain
patterns.
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4.8. Statistical approach

These methods are used when the proteins are characterized by some distributions of biological attributes
and are compared by using a (protein-length independent) function that computes a distance between the
proteins. The three methods classi� ed as Content methods in Brown et al. (1996) are all statistical.

The methods using space-based description are all statistical (Section 3.2). A common pattern can be
found comparing sets of corresponding cells. This is used by Bagley and Altman (1995), where the cells are
shells around a common center. The substructures are described by the set of atoms within the cells, along
with their 3D coordinates. In addition, they include user-de� ned properties, such as the types of atoms,
chemical groups, amino acids, secondary structures, charge, polarity, mobility and solvent accessibility.

The statistical approach is also used by Kastenmüller (1998) to compare structures as a whole. Histograms
are used for representing the distribution of the number of atoms in each cell and the applicable properties.

5. MULTIPLE STRUCTURE COMPARISON—PATTERN DISCOVERY

The problem of discovering a pattern from a set of biological objects (structures or sequences) can be
looked upon as a machine learning problem (e.g., Brazma et al. (1998) and Conklin (1995)).

Brazma et al. (1998) classify the methods for discovering deterministic sequence pattern as sequence
driven and pattern driven. Another term for sequence driven would be comparison based:

1. Pattern driven—methods that search a solution space for patterns with a high � tness value with respect
to the input (training) objects.

2. Comparison based—methods that � nd common patterns through (pairwise) comparisons of the input
objects.

A survey treating both pattern-driven and comparison-driven methods for sequences is presented by
Brazma et al. (1998). For structures, the majority of the methods are comparison based.

Extention of a pairwise method to the multiple (comparison based) case (n > 2 structures) can be done
mainly by three approaches (see also Escalier et al. (1998)):

1. Pivot (PI) uses one object as the pivot and compares it successively to all the other objects. The results
are then compared to � nd the part of the pivot that has similarities to all the other objects, or in at
least k ¡ 1 of them.

2. Linear progressive (LP) starts with one object and successively compares the other objects to the
results. The results are descriptions of the similarities of the objects involved.

3. Tree progressive (TP) compares (results) using a (possibly implicit) tree, where the leafs are objects.

All pairwise methods can be extended to the multiple case by the PI approach. Note, however, that a
description of the similarities is not necessarily given; only the part of the pivot which occurs in (k ¡ 1)
other objects, and where, are given. It may be possible to describe the similarities as a pattern (for different
pattern descriptions, see Section 5.1). Ideas from the pivot approach can be combined with pattern-driven,
search-based methods to obtain a pattern common to the pivot and at least k ¡ 1 other objects simultanously
(e.g., Jonassen (1997)).

If a pairwise comparison method can express each of the (one or several) best local similarities as a
pattern, and if these patterns can be compared to other objects, then the method can be extended to the
multiple case by using the LP approach. Also, if patterns can be compared to � nd common generalizations,
the TP approach can be used.

As noted in Brazma et al. (1998), methods for multiple sequence comparison based on pairwise methods
have the weakness that, in each pairwise comparison, only information about the two sequences/structures
is available and so alignments/patterns optimal for the whole set can be missed if they are not also optimal
for every pair. Therefore, pattern driven methods may � rst be used to � nd elements common to all structures
and these can then guide the pairwise comparisons in a more-detailed structure-based method. For example,
output of the local motif discovery tool SPratt (Jonassen et al., 1999) has been used to guide the multiple
alignment program MSAP (Taylor et al., 1994).
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An alternative to PI, LP, and TP is the following:

° All-by-all (AA) calls for all n.n ¡ 1/=2 pairwise comparisons to be performed to � nd common pairwise
similarities. Comparisons (e.g., intersections) are done on these results to � nd similarities occurring in,
for example, k of the objects (a clique of similarity relations).

Using AA, the result of all pairwise similarities can be used to identify similarities between all objects
(or some minimum proportion of the objects). In a sequence comparison method by Vingron and Argos
(1991), the pairwise similarities are represented by dot matrices (re� ecting residue similarities) and they
are combined using matrix multiplication to � lter out similarities not shared by all objects. We are not
aware of methods using this approach for comparison of structures.

In principle, PI and AA are able to give the same results if the similarity relation used is transitive.
Transitivity exists if similarity between A and B and between B and C implies that A is similar to C.
However, the result of the PI and AA approaches will depend on the exact implementations (for example,
how similarities are scored and how many are included in the analysis).

The structure of the rest of this section is as follows. First is a discussion on how patterns can be
described. Then follows an overview of methods for multiple structure analysis: � rst superpositioning
methods, then alignment- and clustering-based methods, and � nally search methods which take into account
information from all structures simultaneously.

5.1. Pattern representation

In this work, a pattern is an object to which a structure description can be matched. If the pattern
is deterministic, the structure description either matches or does not match a pattern; if the pattern is
probabilistic, the result of the matching is a number (e.g., a probability). In a pattern discovery method,
one needs to de� ne the class of patterns to be considered. For a structure comparison method, it is possible
to de� ne pattern classes which allow one to describe the outcome of the comparison (e.g., a consensus
representation of the aligned substructures).

5.1.1. Sequence patterns. If only primary structure is considered, the patterns will be sequence pat-
terns. A common form of deterministic sequence patterns is regular expression type patterns, such as
those used in the PROSITE database. A simple example taken from this database is the pattern used for
the classical zinc � nger C2H2 motif, ‘C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H’ that matches all
sequences containing a C followed by between two and four arbitrary residues followed by a C and three
arbitrary residues, each one being L, I, V, M, F, Y, W, or C, etc. (For a fuller treatment of regular expres-
sion type sequence patterns, see Brazma et al. (1998).) Probabilistic sequence patterns include pro� les,
hidden Markov models, neural networks, and stochastic context-free grammars. The Probabilistic pattern
formalisms give greater expressive power, but on the other hand have more parameters to be estimated and
are less easily interpreted by humans.

Some protein families are dif� cult to describe adequately using sequence patterns; that is (1) the pattern
does not perfectly discriminate between family members and nonmembers and (2) it does not give a
complete description of the features critical to the function/structure class associated with the family.
When structural information is available, it is possible to de� ne a structure pattern.

5.1.2. Structure patterns describing sites. Kasuya and Thornton (1999) studied the three-dimensional
structure of protein fragments matching PROSITE patterns. They matched each PROSITE pattern against
all structures in the PDB databank and studied cases where PROSITE patterns give false positives (matches
in unrelated proteins). By comparing the structure of each matching fragment to that of a true matching
fragment and requiring similarity to accept the match, they achieved increased speci� city. Jonassen et al.
(2000), in an independent but closely related study, have arrived at equivalent results. Additionally, they
found that sensitivity can sometimes be improved by relaxing the PROSITE pattern by allowing for
approximate matching but requiring structural similarity to a known positive.

The functionality of protein active sites arises from their three-dimensional structures. The residues
forming a site need not be close in sequence, and the sequences of the proteins sharing an active site
are sometimes extremely divergent. For example, the bacterial and eukaryotic serine proteases share a
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very similar active site while having very different structures. Especially when the residues involved in
the site are nonlocal, sequence patterns (deterministic and probabilistic) cannot recognize such structures.
However, one can de� ne structure motifs describing the spatial con� guration of the active site residues.

Wallace et al. (1996, 1997) have constructed the PROCAT database which contains manually de� ned pat-
terns, called “3D coordinate templates,” which describe active sites (http://www.biochem.ucl.ac.uk/
bsm/PROCAT/PROCAT.html ). Each template speci� es the spatial position of a set of atoms in each residue
making up the site and the amino acids allowed for each residue. The sequence positions of the residues
are not constrained. A similar description (called “local packing patterns”) is proposed by Jonassen et al.
(1999), where for each residue the allowed amino acids are given together with one coordinate set (mean
side chain atom). The order (but not distance) of residues along the sequence is given. Similar patterns
discarding the sequence order of the aligned residues can be discovered by the methods using geometric
hashing (see Nussinov and Wolfson (1991), Fischer et al. (1994), and Fischer et al. (1995), Section 4.6).

Yet another similar description formalism, named “Fuzzy Functional Forms" (FFFs), is proposed by
Fetrow and Skolnick (1998). FFFs specify, for a set of residues, which amino acids are allowed, the C®-
C® distance (average and variance) for each pair of residues, and constraints on the sequence distance
between the residues. For example, they specify a FFF for the disul� de oxidoreductase activity of the
glutareoxin/thioredoxin protein family: two cystein residues separated by two residues and an ®-carbon
distance of 5.5Å (§0.5Å) close to a proline residues (distance requirements included).

5.1.3. Structure patterns describing folds or architectures. We say that two proteins (or domains)
share the same architecture if they have secondary structure elements (SSEs) with similar spatial relative
positions. If, additionally, the SSEs are connected in the same way along the sequence, the two proteins
have the same fold. The shared architecture or fold of a set of proteins can be described using structure
patterns. This can be done at residue, fragment, or SSE level.

Gerstein and Altman (1995) de� ne the core of a family of aligned protein structures as a collection
of residues for each of which position (mean and variation) information is given. The descriptions are
made from multiple structure alignments and therefore colinearity of aligned residues is maintained. This
is equivalent to the internal representation in the extension of the SSAP comparison method to multiple
structures (Taylor et al., 1994).

A number of methods for structure comparison perform their analysis at SSE level. Typically, the
structures are described using graphs (Section 4.7) and the common substructures are found as subgraphs
common to the graphs representing the individual structures. When � nding common subgraphs, one can
choose whether the solutions should be restricted to obey the sequence order of the SSEs. Different methods
have been reported using similar structure representations and matching algorithms (see, for example, Koch
et al. (1996), Alexandrov and Fischer (1996), White et al. (1994), and Gilbert et al. (1999)).

5.2. Superposition

Several methods for multiple superposition based on a correspondance (alignment) exist. To avoid biasing
the superposition towards a speci� c (pivot) structure, a simultaneous superposition should be used, resulting
also in an average structure.

MNYFIT is a program by Sutcliffe et al. (1987) that uses pairwise superposition to iterate to a common
average structure. Weights can be used, giving more strength to topologically equivalent positions. Kearsley
(1990) building on the work by Gerber and Müller (1987), optimizes simultaneously the superposition of
all possible pairs by minimizing the sum

Pn ¡ 1
i

Pn
j 5 i 1 1

Pns
k .Qix i

k ¡ Qj x
j
k /2, where Qi is the rotation

of structure i (weights can be allowed for). One structure is selected as static, and all the centroids
are shifted to the origin of coordinates. Minimizing is done by Rational Function Optimization, using
iteration for convergence. Shapiro et al. (1992) and Diamond (1992) describe other methods for optimally
superposing all pairs of structures simultaneously. The method of Diamond has time complexity O.n/,
and the optimization is done without referring to the original coordinates of the structures.

5.3. Multiple structure alignment

5.3.1. Progressive alignment. The multiple alignment of Sali and Blundell (1990), Russell and Barton
(1992), Ding et al. (1994), and May and Johnson (1995) all follow the same algorithmic scheme:
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° Perform all n.n ¡ 1/=2 pairwise alignments, and give a similarity score to each of them.
° Use the scores to generate a dendrogram.
° Perform alignments following the dendrogram from the leaves to the root. When aligning one structure

with a subalignment, or two subalignments, the same procedures as for the pairwise alignments are
used. The score when aligning two subalignments is in principle done in the same manner for all the
methods:
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:

W lk
i 0j 0 if two residues are compared

some value if a residue and a gap are compared
some value if two gaps are compared

where n1 and n2 are the number of structures in the subalignments, i; j are the positions (columns)
compared, and i0; j 0 are the true indices for residues from structures l; k, occupying the columns i; j .

Taylor et al. (1994) have also adopted the progressive approach in a fusion of the pairwise method SSAP
(see Section 4.4) and the multiple sequence alignment program MULTAL (Taylor, 1988). First, each pair
of structures are compared using SSAP to assess all pairwise similarities. The most similar structure pairs
are aligned independently into a consensus structure and then the pairwise similarities between all single
and consensus structures are calculated so as to progressively bring together the most similar of these at
each stage. Note that this approach differs from the TP approach in that the progression of the pairwise
alignments is not determined by a precomputed dendrogram; instead, at each stage the similarities are
recomputed and the most similar objects are aligned � rst.

The main problem when going from sequence to structure is to de� ne the structural equivalent of a
consensus sequence (or pro� le) for use when aligning alignments. In SSAP, interatomic vectors are used,
and the consensus used is an average vector and its variance (error measure). The alignment process results
in multiple sets of interatomic vectors (one vector set for each residue) that are not necessarily mutually
consistent (due to, say, relative domain movements). Procedures for making them consistent and then
calculating the 3D coordinates of the consensus are incorporated.

Gerstein and Levitt (1998) use a similar but simpler method. All pairs of structures are aligned, and the
structure that is on average closest to all other structures, the “median structure,” is identi� ed. A multiple
alignment is formed by the alignment of all the other structures onto this median structure by consistently
combining the alignments. They argue that this simple approach is adequate when the number of structures
is small.

5.3.2. Search for global multiple alignment. All types of searching can, in principle, be used to search
for multiple alignment of structures, though they do not guarantee � nding the best. Each point in the search
space represents an alignment and is evaluated by use of a scoring scheme. Godzik and Skolnick (1994) use
a multidimensional lattice chain and a Monte Carlo (simulated annealing) approach for making a multiple
alignment using different scoring schemes: Dayhoff substitution matrix, RMSD, C®–C® distance difference,
and contact map overlap. Hence, the algorithm can be used for both sequence and structure comparison.
An alignment is represented as a lattice chain, which for d structures consists of a list of elementary vectors
of length d : [1; 0; : : : ; 0]; [0; 1; : : : ; 0]; : : : ; [0; 0; : : : ; 1]. There is a one-to-one correspondance between
an alignment and such a chain. In a single step of the search algorithm, a chain fragment is chosen at
random and replaced by another.

5.3.3. Finding patterns from multiple alignment. When a multiple alignment is done (establishing
correspondance between residues), superpositions can be performed to � nd those residue positions with
small spatial variations, possibly being a core. This can be done as by Gerstein and Altman (1995): the
structural variation of each atom (residue) is computed, and a cutoff value is used to remove atoms with
high structural variation. Then they iterate by making a new multiple superposition on the atoms not
removed. New atoms can be added if they now satisfy the cutoff value, and this removal/adding can be
done until convergence.

Rinaldis et al. (1998) develop pro� les representing the most-conserved residues on the surfaces. A
multiple superposition is done, and the structures are represented in a 3D grid, whose cells have 2Å sides,
a residue represented by a pseudoatom averaging the side chain. Only exposed residues are retained. For
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each cell a column is constructed in a pro� le, as described by Gribskov et al. (1987), with the 20 values
for each amino acid and the 3D coordinates of an average pseudo atom.

5.4. Clustering

The result of a pairwise comparison using clustering of transformations is a list of corresponding residues
(an equivalence). For the multiple case, a pivot can be chosen and equivalences between the pivot and
each of the other structures can be combined. Extention by a progressive method requires calculating an
average structure at each iteration, representing the result of the comparison. We are not aware of any
methods using clustering and progressive extension to multiple structure comparison.

A method using the pivot approach is presented by Leibowitz et al. (1999). The pivot is compared
to each of the other structures using geometric hashing to � nd sets of k residues in the pivot for which
similar sets of k residues are found in each of the other structures. Next, the pivot is compared to each
of the other structures. A superposition is performed for each of the identi� ed k residue equivalences and
the equivalence is extended, if possible. The resulting equivalences are clustered by the number of shared
residue pairs. Now equivalences between the pivot and the other structures can be found by taking the
intersection of equivalences between the pivot and each of the structures. In principle, all combinations
of pairwise equivalences must be tried, but techniques are devised for limiting the work. In conclusion,
information from all structures is used in a pivot step before the pairwise comparisons, which are performed
between a pivot and the remaining structures. The results of the pairwise comparisons can be combined
to � nd sets of residues present in all the structures.

Two of the methods using relations (Section 4.7.2) are extended to the multiple case, both using the pivot-
based extension. Koch et al. (1996) � rst compute all sets E.G1; Gi/; i 5 2; : : : ; n, where E.G1; Gi/ is the
set of all connected maximal common substructures in G1 and Gi represented with the edges. Then they
successively intersect each edge set from E.G1; G2/ with each edge set from E.G1; Gi/; i 5 3; : : : ; n

to � nd subgraphs of G1 that are also contained in one or more G2; : : : ; Gn. These subgraphs may be
disconnected. Other types of analyses can be done.

Escalier et al. (1998) extend to the multiple case in a way analogous to that of Koch et al. The same
procedure as for the pairwise case is used, but n ¡ 1 lists of occurrences are kept in the step for � nding
compatible elements (one list for each structure compared to the pivot).

5.5. Simultaneous search

A few methods using simultaneous search are published. The SPratt method of Jonassen et al. (1999)
is a pattern-driven method; the elements are residues. The method � nds patterns which occur in at least k

of the structures. Each residue’s 3D coordinate is represented by a pseudo atom calculated from the side
chain atoms. For each residue a string of amino acids is generated from the residues falling inside a sphere
around the pseudo atom, satisfying the sequential order. A sequence pattern discovery method called Pratt
(Jonassen et al., 1995; Jonassen, 1997) is then used to discover common patterns in these strings, using
a simultaneously heuristic depth-� rst search method. The occurrences are further constrained to have all
pairwise RMSD values below a given threshold. The patterns are described in a PROSITE-like manner
and give constraints on a set of residues. The constraints are on the coordinates, the allowed amino acid
types, and their relative ordering along the backbone.

Wako and Yamato (1998) divide the space around a structure into nonoverlapping tetrahedrons (using
Delaunay tessellation). The tetrahedrons are constructed using C® atoms as vertices. On the bases of each
tetrahedron and its up-to-four neighboring tetrahedrons, constructed from 20 atoms, a code of up to 32
digits is found (each digit being between 1 and 8). Thus, the codes represent nonsequential overlapping
substructures. For each structure a list of such codes is found. A search procedure then searches for codes
occurring in all or several of the structures. Each such code constitutes a potential motif. The codes do
not represent the 3D structure explicitly, and superposition of the substructures is necessary to assess the
degree of resemblance.

Su and coworkers (Su et al., 1999; Cook et al., 1996), represent the structures as linear graphs (hence,
sequential) with one version on residue level and one on SSE-level. The SSEs constitute the nodes of the
graph labeled with type, length, and direction (right- or left-handed helix, and parallel or antiparallel sheets).
The linear graphs representing the set of structures are concatenated, and the edges inside a structure are
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represented by a label. The procedure for � nding patterns (substructures) is a beam search of width k,
and the evaluation of each node in the search tree is done by use of minimum description length: each
occurrence of a pattern is replaced by a link, and the length of this compressed representation is found.
The search starts with k search nodes representing one element each. At each iteration, each of the k

nodes are extended by all possible neighbors (one from each occurrence), and the k best are kept for the
next iteration. The matches may be inexact, and by combining the search with hill climbing, they obtain
a polynomial run time.

Gilbert et al. (1999) have developed a program for discovering supersecondary motifs in TOPS-cartoons
(Flores et al., 1994) by a pattern-driven approach. The TOPS-cartoons are two-dimentional representations
of protein folds showing the secondary structure elements and illustrating the relative spatial position and
direction of these elements.

5.6. Learning the description of known sites

Fetrow et al. (1998) represent active sites by three-dimensional descriptors, termed “fuzzy functional
forms” (FFF), based on the geometry, residue identity, and conformation of protein-active sites. An FFF
contains the mean and allowed variations of the internal distances between the functionally important
residues. They start with multiple sequence alignment and available information about residues important
for functions. Then they superpose these and iterate to learn a speci� c and unique form.

Bagley and Altman (1995) use a machine learning system, FEATURE, with sites and nonsites, to learn
description of sites (the distribution of the properties over the cells). The method then learns the description
of known sites. Wei et al. (1997) present an application to calcium binding sites.

Generally, � nding motifs in statistically described structures can be done by characterizing a set of
structures by some “middle” distribution, dividing the structure space into subspaces, and comparing the
subspaces from the different structures. Since the number of subspaces is inde� nite (if real values), a � nite
number must be chosen, and the goodness of such a method would depend on how the subspaces are
chosen.

6. ASSESSMENT

When comparing structures, it is widely known from practical experience (e.g., Taylor and Orengo
(1989)) and from more systematic investigations (Godzik, 1996; May, 1996) that, beyond close similar-
ity, there is no uniquely correct structural alignment of two proteins. Different alignments are achieved
depending on which biological properties and relations are emphasized in the comparison. This adds a
complicating element to the assessment of the result of a comparison.

Most assessments are done by comparing the result to manually determined alignments. This is system-
atically done by Gerstein and Levitt (1998), where an assessment of the ALIGN program (Cohen, 1997)
is made using the SCOP classi� cation (Murzin et al., 1995) as a “gold standard.” The program was tested
for 2107 pairs of structures, where each structure in a pair was from the same superfamily (hence, similar
structures). They made a plot of the results, plotting a normalized RMSD against the number N of matched
residues. The RMSD was normalized by 225RMSD=.N 1 135/, and a horizontal demarcation line was
drawn at 4Å. Only 32 of the 2107 pairs got a normalized RMSD value above the demarcation line. They
also assessed their multiple method against 9 SCOP superfamilies.

6.1. Statistical assessment

Several methods are assessed statistically. The scoring found for an alignment of native structures is then
compared against what is expected by chance, most often implemented as what is expected by aligning
random structures or using fragments of nonrelated proteins. RMSD is used alone or as part of most
scoring schemes; hence, knowing the behavior of RMSD of random structures is important.

6.1.1. Structural fragments models. Alexandrov and Go (1994) present an analysis for � nding the
signi� cance of similar SARFs. For a � xed length L, they pick up all fragment pairs of this length in two
unrelated structures and � nd the value RL from the condition that only 1% of pairs have smaller RMSD.
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Assuming normal distribution, this corresponds to the deviation of 4:3½. They then plot RL against L and
show that the result could be approximated by the curve RL 5 1:37 1 .1:16L ¡ 15:1/1=2. Russell (1998)
did an analysis using distance RMSD, which is related to his method for detecting side-chain patterns.
Random pairs of structures with different folds were chosen, and groups of two to six residues within
interaction distance were picked randomly, requiring conservation of amino acid type. For P .x/ being the
proportion of the results with RMSD < x (for a � xed group size), it was found that logP was linearly
related to 1=x in the upper part of P .x/.

When comparing two sequences, the P-value, E-value, and Z-value are used for measuring the signi� -
cance of a score S. The P-value gives the probability of achieving a similar score by chance, the E-value
is the expected number of comparisons achieving the same score by chance in a data base search, and
the Z-value is the number of standard deviations S is from the mean value in an appropriate probability
distribution.

Alexandrov and Fischer (1996) use the Z-value for the statistical signi� cance. Comparing a structure
A with all others in a structural database, they get a distribution of the scores. From this they can, for
each structure B, use the Z-value (number of standard deviations) Z.A; B/. As Z.A; B/ might be unequal
Z.B; A/, they de� ne ZAB 5 Z.A; B/ 1 Z.B; A/, resulting in a symmetrical signi� cance value. Holm and
Sander (1993b, 1996) also express the signi� cance of an alignment in terms of the Z-value, using the
distribution from an all-versus-all comparison. Gibrat et al. (1996) in their VAST program compute a
P-value for an alignment based on how many secondary structure elements are aligned as compared with
the chance of aligning so many elements randomly.

6.1.2. Random structural models. The choice of the best random model against which native/native
comparison scores should be compared is not simple and depends on the degree to which the inherent
nonrandom features of protein structure in general should be considered signi� cant. Some structural mod-
els are discussed by Taylor (1997). The best random models would be those generated with secondary
structures. Ideally, these models should be calculated for each comparison to match the length of the native
comparison and the secondary structure composition. However, these models are complex to generate and
cannot be “tailor made" for each individual comparison without excessive computation. Taylor describes
several random models: constrained random walk, random models from distance geometry (DRAGON),
combinatorial models, combinatorial reconnection, chain reversal, and chain re� ection.

The latter models involving symmetry operations on the protein (reversal and re� ection) can only be used
in situations where the comparison method restricts its calculation to the ®-carbon atoms of the protein, as
the arrangement of the other main-chain atoms is directional. Considering just ®-carbons, the conformations
of local structural features (such as secondary structure and their chirality of connection) in the reversed
chain is virtually indistinguishable from a forward running “native” chain. This principle of reversal applies
equally at the level of the sequence and has been used previously to provide a random model for sequence
pattern matching (Taylor, 1986, 1977). In both sequence and structural data, the reversed model preserves
the length and composition of the protein, including directionally symmetric correlations associated with
secondary structure, while additionally in the reversed structural model, the bulk properties of packing den-
sity and inertial axes are also preserved. The latter are dif� cult to maintain in randomly generated structures.

The re� ected chain is clearly not an ideal model for proteins as they contain both large and small scale
chiral features which will change hand under re� ection. However, Maiorov and Crippen (1994) used greatly
simpli� ed lattice models to avoid this problem and based on this analysis, they proposed a self-referential
nonstatistical de� nition of the signi� cance of RMSD. They take two conformers to be intrinsically similar
if their RMSD is smaller than it is when one of them is mirror inverted.

6.1.3. Randomized alignment models. In general, the closer the random model is to preserving the
properties of the native proteins, the more dif� cult it becomes to generate plausible alternatives. This
problem is particularly accute for the reversed-chain random model discussed above since, for any given
protein, there is only one reversal. This problem can be partially circumvented, however, at the stage of
calculating the alignment. At this point, the alignment with each random model can be expanded into a
population of variants by introducing “noise” into the score matrix and repeating the calculation of the
alignment path from each noisy matrix. This generates a family of near-optimal subalignments and the
spread of scores for this population can provide a measure of the stability or uniqueness of the answer.
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An advantage of this approach is that it can be applied not only to structures belonging to the set of
randomized models but also to the native structure itself and the two resulting score distributions can be
tested statistically to see if they are distinct.

6.2. Comparing scoring schemes

Levitt and Gerstein (1998) made a comparison of the scoring of their iterated dynamic program-
ming/superposition program to RMSD. The P-value of a scoring S for � xed N (number of matched
residues) can be found by � tting a function Z.S/ to an extreme-value distribution. Unrelated structures
from the SCOP database are used. The same statistics can be developed for use of RMSD. These two can
then be compared by a method of Brenner et al. (1998). The E-values of each structure pair were sorted,
and the E-value giving 1% false-positives was recognized, as was the number of true positives, calculated
for the found E-value. The scores used by Levitt and Gerstein both show a much better E-value (log.E/

equal ¡ 1.58 compared to ¡ 32.8) and larger number of true positives (627 compared to 202). This con� rms
that the scoring scheme used is much better than RMSD.

The introduction of “noise” into the alignment calculation can lead to the generation of a population of
alignments (as described above). If there is suf� cient noise and the population is large enough, then almost
all reasonable alignments for a pair of proteins can be sampled. Plotting these solutions by their number
of aligned positions against RMSD revealed a “cloud” of points which was diffuse at high RMSD but
had a sharp boundary on its lower edge (Taylor, 1999). This edge represents the limit, for a given number
of aligned positions, below which a smaller RMSD cannot be found. As judged by the “hard” edge to
the distribution, this limit is not restricted by the the method of comparing the proteins and so provides
an absolute standard against which other methods can be compared. For a few protein pairs, the results
of other methods (gathered by Godzik (1996)) were plotted and compared to these lines. Most of these
results were found to lie above the line, indicating that the optimal solution in terms of minimum RMDS
had not been attained. Only a few results lay on the line and these mostly involved fewer equivalent pairs
of positions.

It should be noted that assessing methods by the use of the RMSD value is sometimes unfair since the
aim of many of the methods is not to minimize the RMSD value, since this is not a good measure when
all equivalent parts of the protein cannot be simultaneously superposed. An advantage of the use of large
randomized alignment populations is that the alignments can be scored by any evaluation function, and
so long as the evaluation function does not radically contradict what would be considered a reasonable
alignment (that is: one with a low, if not minimal RMSD), there is then a good chance that some members
of the population will correspond closely with the minimum of the evaluation function. This can also be
used to check if a method attains the minimum of its own scoring function.

6.3. Scoring and biological signi� cance

When a structure is compared to every other structure (or to a representative selection), then scores will
result ranging from the clear relationships of homologous proteins to a large number of poor scores for
obviously unrelated pairs. Between these extremes lies a twilight zone within which it is very dif� cult to
assess the signi� cance of the score. This problem is exacerbated because many proteins contain similar
substructures, such as secondary and supersecondary structures, and the problem is to decide when a
similarity is just a consequence of being proteinlike and when it indicates a more speci� c relationship
between the two proteins.

Because of its common currency, most considerations of this problem have focused on the signi� cance
of the RMSD measure based on comparison of proteins or protein fragments of equal length (see above).
Others, such as the DALI method, have adopted a similar approach based on the scores achieved over
matches of protein fragments (Holm and Sander, 1993a, 1997). Both these approaches require that the
selected fragments be unrelated to the proteins being assessed; however, this raises the problem of what
criterion can be used to make this distinction and, in principle, it should not be a weaker method than
that used for the current comparison. It is not acceptable, either, to consider completely unrelated proteins
since, to take an extreme example, if the two proteins being compared contained only ®-helices and the
clearly unrelated control set contained only ¯-structure, then the two ® proteins would appear more related
than they should do.
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FIG. 10. Match of a myoglobin probe against a nonredundant PDB. The RMSd of each comparison (Y) is plotted
against the number of residues aligned (X) for comparisons using the native probe structure (e ) and for comparisons
using the reversed probe as a control .1 /. The dashed line follows a function of Meirov and Crippen (1994) that has
been scaled to include 99% of the reversed controls. The matches lying below this line include the probe matching itself
(150 residues with 0 RMSd), other globins (120–140, respectively) and the phycocyanin family (80–115, respectively)
which have a similar fold.

An alternate approach to this problem is to use the reversed structure (as described above). When this is
matched against the structure databank, a similar range of scores should result—since the reversed structure
has exactly the same length, overall shape, and secondary structure content as the native probe. What will
be lost is any speci� c overall similarity to proteins that are homologous to the native probe. In addition,
if the probe structure is a particularly simple fold (such as four ®-helices), then the reversed structure will
also embody this property so a speci� c match will need to capture more than a few matched helices to
gain signi� cantly over the background of scores derived from the reversed structure (see Figure 10).

7. CONCLUSION

From the wide variety of methods surveyed above, it should be clear that there is no single best method
for protein structure comparison. The choice of method depends on the level of data representation, which
in turn depends on the nature of the original question. Possibilities range from considering just fragments
to an overall match, atomic detail to rough fold, and even considering or neglecting chain direction. For
all these aspects there is a method—and often there is more than one.

From the algorithmic viewpoint, the problem of structure comparison remains of interest perhaps because
it has no exact solution (neglecting exhaustive enumeration). This has allowed a variety of standard (and
some less standard) optimization methods to be applied. Often these have a stochastic component which
can bring useful information on the uniqueness of the resulting solution.
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Moving to multiple structure comparison presents yet more complexities which have again been over-
come using a variety of heuristic methods—often following the equivalent multiple sequence alignment
methods. Some innovative developments are being made in this direction (also following sequence-based
methods) that allow a simultaneous approach to the multiple structure data rather than a conventional
progressive approach.
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