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o Simple Linear Regression Analysis
@ Using simple regression to describe a linear relationship
@ Inferences From a Simple Regression Analysis
@ Assessing the Fit of the Regression Line
@ Prediction with a Sample Linear Regression Equation

Q Multiple Linear Regression
@ Using Multiple Linear Regression to Explain a
Relationship
@ Inferences From a Multiple Regression Analysis
@ Assessing the Fit of the Regression Line
@ Comparing Two Regression Models
@ Multicollinearity
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Purpose and Formulation

@ Regression analysis is a statistical technique used to
describe relationships among variables.

@ In the simplest case where bivariate data are observed,
the simple linear regression is used.

@ The variable that we are trying to model is referred to as
the dependent variable and often denoted by y.

@ The variable that we are trying to explain y with is referred
to as the independent or explanatory variable and often
denoted by x.

@ If a linear relationship between y and x is believed to exist,
this relationship is expressed through an equation for a
line:

y = bo + b1 X
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Purpose and Formulation

@ Above equation gives an exact or a deterministic
relationship meaning there exists no randomness.

@ In this case recall that having only two pairs of
observations (x, y) would suffice to construct a line.

@ However many things we observe have a random
component to it which we try to understand through
various probability distributions.
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Example
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Least Squares Criterion to Fit a Line

@ We need to specify a method to find the “best” fitting line to
the observed data.

@ When we pass a line through the the observations, there
will be differences between the actual observed values and
the values predicted by the fitted line. This difference at
each x value is called a residual and represents the “error”.

@ lItis only sensible to try to minimize the total error we make
while fitting the line.

@ The least squares criterion minimizes the sum of squared
errors to fit a line, i.e. min Y7, (y; — 7).
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Least Squares Criterion to Fit a Line

This is a simple minimization problem and results in the
following expressions for by and by:

b~ Thalu—Ri-7)
S (xi — X)?
by = y—bix

These are simply obtained by differentiating >, (y; — 7i)?

(Vi = bg + b1 x;) with respect to by and b; and setting them
equal to zero at the solution which leaves us with two equations
and two unknowns.
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Assumptions

@ |t is assumed that there exists a linear deterministic
relationship between x and the mean of y, pyx:

Hyix = Bo + B1X
Since the actual observations deviate from this line, we
need to add a noise term giving
Vi = Bo+ B1Xi + €.

@ The expected value of this error term is zero: E(e;) = 0.
@ The variance of each e; is equal to o2. This assumptions
suggests a constant variance along the regression line.

@ The ¢; are normally distributed.
@ The g, are independent.
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Inferences about 5, and 5

@ The point estimates of Gy and 3; are justified by the least
squares criterion such that by and by minimize the sum of
squared errors for the observed sample.

@ It should be also noted that, under the assumptions made
earlier, the maximum likelihood estimator for 3y and (34 is
identical to the least squares estimator.

@ Recall that a statistic is a function of a sample (which is a
realization of a random variable), thus is a random variable
itself. by and by have sampling distributions.
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Sampling Distribution of by

@ E(bo) = Bo
%2
(] Val’(bo) = O'g (15 + m)
@ The sampling distribution of by is normal.
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Sampling Distribution of by

@ E(by) =5
0.2
o Val’(bo) - Wi_)—@)z
@ The sampling distribution of b; is normal.
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Properties of by and b,

@ by and by are unbiased estimators for 5y and 34
@ by and by are consistent estimators for 5y and 34

@ by and by are minimum variance unbiased estimators for
Bo and (4. That said, they have smaller sampling errors
than any other unbiased estimator for 5y and 3.
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Estimating o2

@ The sampling distributions of by and by are normal when
o2 is known.

@ In realistic cases we won't know o3.
@ An unbiased estimate of 02 is given by

n ~\D
2 Yo (Vi — i) _ SSE
se = 5 _n—Z_MSE

where y; = by + by X;.
@ Substituting s, for o, earlier, sp, and sp, can be obtained.
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Constructing Confidence Intervals for 5y and (4

@ Now that o, is not known, the sampling distributions of b

and by are t,ie. 25 1, 5 and B, o,
6o by

@ (1 —a)100% confidence intervals then can be constructed
as

(bo — tajo,n-2Sp, > bo+ laj2,n-2Sb,)
(b1 — taj2n—2Sp, , b1+ 1ty20-28p,)
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Hypothesis tests about 5, and j

@ Conducting a hypothesis test is no more involved than
constructing a confidence interval. We make use of the
same pivotal quantity, bng which is t distributed.

1

@ Since we often include the intercept in our model anyway,
a hypothesis test on 5y may be redundant. Our main goal
is to see whether there exists a linear relationship between
the two variables which is implied by the slope, f;.

@ We first state the null and alternative hypotheses:

Ho : p1=(><)5
Ha @ B1#(<,>)6
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Hypothesis tests about 5, and j

by —p5

@ To test this hypothesis, a t statistic is used, t = 5

1
@ A significance level, «, is specified to decide whether or not
reject the null hypothesis.

@ Possible alternative hypotheses and corresponding

decision rules are
Alternative Decision Rule

Ha: 81 # 87 Reject Ho if [t] > t,/2.n—2
Ha: 3y <7 Reject Hyift < —t, p2
Hz: 1> p; Reject Hyift > t, 2
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Pricing Communication Nodes

®@n00 R Console )

@ Rl [ x| O H O o]
~/Desktop/STA121/Chap3&é Q

> dat = read.csv("comnode3. txt"’

dat
COST NUMPORTS

1 52388 68
2 51761 52
3 50221 44
4 36095 32
5 27500 16
6 57088 56
7 54475 56
8 33969 28
9 31309 2
10 23444 24
11 24269 12
12 53479 52
13 33543 20
14 33056

2
> sunmary(1m(COST~NUMPORTS, data~dat))

Call:
m(formula = COST ~ NUMPORTS, data - dat)

Residuals:
Min Q Median 3Q  Max
-8753.7 -873.9 681.8 2675.4 5019.9
Coefficients
Estimate Std. Error t value Pr(>ltl
(Intercept) 16593.65  2687.05  6.175 4.76e-05 **
NUMPORTS 650.17 66.91 9.717 4.88e-07 ***

. codes: @ ‘*¥*' 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ' 1

ual standard error: 4387 on 12 degrees of freedom
e R-squared: 0.8872, Adjusted R-squared: 0.8778
stic: 94.41 on 1 and 12 DF, p-value: 4.882e-07

> confint(obj)
2.5%  97.5%
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comnode3: Fit Y by X of COST by NUMPORTS =)
B e B L eL
¥ [~|Bivariate Fit of COST By NUMPORTS

55000
50000
45000

I

8 40000

S
35000

30000+
25000 -

0 30 40 s0 60 7
NUMPORTS
~}— Linear Fit
¥ Linear Fit
COST = 16593.647 + 650.16917*NUMPORTS
v Summary of Fit

RSquare 0.887229
RSquare Adj 0.877832
Root Mean Square Error 4306.914
Mean of Response 40185.5
Observations (or Sum Wgts) 14
¥ Lack Of Fit
¥ Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1751268376  17513e+9  94.4105
Error 12 222594146 18549512 Prob > F
C. Total 13 1973862522 <.0001"
v Parameter Estimates

Term Estimate  Std Error  tR: Prob>|t| Lower 95% Upper 95%
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Lab Assignment #1

@ Work on Exercises 6 and 7 in Chapter 3. You are
encouraged to use R but may use JMP if you feel more
comfortable.

@ Due date is September 9.
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¥ Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 1 1751268376 1.7513e+9  94.4105
Error 12 222594146 18549512 Prob>F
C. Total 13 1973862522 <.0001*
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The Coeficient of Determination

@ In an exact or deterministic relationship, SSR=SST and
SSE=0. This would imply that a straight line could be
drawn through each observed value.

@ Since this is not the case in real life, we need a a measure
of how well the regression line fits the data.

@ The coefficient of determination gives the proportion of
total variation explained in the response by the regression
line and is denoted by R?.

_ SSR

2 [
A - SST
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The Correlation Coefficient

@ For simple linear regression the correlation coefficient is
r=+vRz2
@ This does not apply to multiple linear regression.

@ If the sign of r is positive, then the relationship between the
variables is direct, otherwise is inverse.

@ rranges between —1 and 1.
@ A correlation of 0 merely implies no linear relationship.
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The F Statistic

@ An additional measure of how well the regression line fits
the data is provided by the F statistic, which tests whether
the equation y = by + by x provides a better fit to the data
than the equation y = y.

_ MSR
~ MSE

where MSR = SSR/1 and MSE = SSE/(n — 2).

@ The degrees of freedom corresponding to SSR and SSE
add up to the total degrees of freedom, n — 1.

F
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The F Statistic

@ To formalize the use of F statistic, consider the hypotheses
Hy : By =0vs. Hy: B4 #0.

@ We reject Hy if F > F,1.p-2.

@ For simple linear regression, F = %—gg =

@ Since both a t-test and an F-test will yield the same
conclusions, it doesn’t matter which one we use.
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Pricing Communication Nodes

comnode3: Fit Y by X of COST by NUMPORTS =)
B e B L eL
¥ [~|Bivariate Fit of COST By NUMPORTS

55000
50000
45000

I

8 40000

S
35000

30000+
25000 -

0 30 40 s0 60 7
NUMPORTS
~}— Linear Fit
¥ Linear Fit
COST = 16593.647 + 650.16917*NUMPORTS
v Summary of Fit

RSquare 0.887229
RSquare Adj 0.877832
Root Mean Square Error 4306.914
Mean of Response 40185.5
Observations (or Sum Wgts) 14
¥ Lack Of Fit
¥ Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 1 1751268376  17513e+9  94.4105
Error 12 222594146 18549512 Prob > F
C. Total 13 1973862522 <.0001"
v Parameter Estimates

Term Estimate  Std Error  tR: Prob>|t| Lower 95% Upper 95%
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7
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Pricing Communication Nodes

> dat-read.csv("comnode3. txt")

> 1m. connode-1m(COST NuuPGR\S data=dat)

> pe=predict(lm.connode, in

> pp=predict(lm.connode, in

Warning message

In predict.im(lm.comnode, int = "p")
bredictions on corent data refer to

_future_ responses

> pl al(dnl[ 23,pc[, 1], type:
> t(dat[,2]), sort(pel,21)

»2] )
rt(dat[,21),sortCpp[,31),1
 pointsaatl, 2 dat T, 10>

ty="dotted"

"1",ylim <(/' "(Vp/"‘ﬂx(plh,,y»ﬂb "COST",x1ab="NUMPORTS ")

cosT

40000 50000 60000 70000
L L

30000
L

20000
L
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What Makes a Prediction Interval Wider?

@ The difference arises from the difference between the
variation in the mean of y and the variation in one
individual y value.

_ _y)2
MOREHC =)
32
° V(y) =03 (1+ 5+ &)
@ Replace o2 by s2 when the error variance is not known and
is to be estimated.
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Assessing the Quality of Fit

@ The mean square deviation is used commonly.

MSD = er',:‘l (yl - JA/i)z
Np

where ny, is the size of the hold-out sample.
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Lab Assignment #2

@ Work on Exercises 8, 9, 10, 11, 12 and 13 in Chapter 3.
You are encouraged to use R but may use JMP if you feel
more comfortable.

@ Due date is September 18.
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Formulation

@ If a linear relationship between y and a set of xs is
believed to exist, this relationship is expressed through an
equation for a plane:

y = b() + b1X1 + b2X2 + b3X3 4+ ...+ b,OXp
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Meddicorp Sales
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Assumptions

@ Assumptions are the same with simple linear regression
model. Thus the population regression equation is written
as

Yi = Bo + B1Xi1 + BeXi2 + B3Xi3 + ... + BpXjp + €;
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Inferences About the Population Regression
Coefficients

> 1m.med=1m(SALES~ADV+BONUS+MKTSHR+COMPET, data=dat)
> summary(lm.med)

Call:
v Summary of Fit m(formula = SALES ~ ADV + BONUS + MKTSHR + COMPET, data - dat)
RSquare 0.8592 il
RSquare Adj 0.83104 Residuals:
Root Mean Square Error 93.76972 Min 1Q Median 3Q Max
Mean of Response 1269.02 -186.98 -73.97 16.95 55.62 125.52
Observations (or Sum Wgts) 25
v Analysis of Variance Coefficients:
P Estimate Std. Error t value Pr(>1t1)
. DF  Squares MeanSquare FRatio (Intercept) -593.5375  259.1959 -2.290 0.0333 *
Model 4 10731185 268280  30.5114 ADV 2.5131 0.3143  7.997 1.17e-07 ***
Error 20 175855.2 8793 Prob > F BONUS 1.9059 0.7424  2.567 0.0184 *
C. Total 24 1248973.7 <.0001% MKTSHR 2.6510 4.6357 0.572 9.5738
v Parameter Estimates COMPET -0.1207 0.3718 -0.325 0.7488
Term Estimate Std Error tRatio Prob>|t| Lower 95% Upper 95% . _

Intercept  -593.5375 2591959 -2.29 0.0330* -1134.211 -52.86438 ©-9nif. codes:i @ TR 0.001 X2 9.01 27 9.05 f.7 9.1 ¢ 1
AD 2513138 0314275  8.00 <0001 18575708 3.1687052

SRS 1905948 0742386  2.57 0.0184* 03573588 34545372 Residual standard error: 93.77 on 20 degrees of freedom
MKTSHR 2.651007 4.635655 0.57 0.5738 -7.018801 12.320815 Multiple R-squared: 8.8592, Adjusted R-squared: 9.831

COMPET ~ -0.120731 0371815 -032 0.7488 -0.896324 0.654861 F-statistic: 30.51 on 4 and 20 DF, p-value: 2.937¢-08
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@ An R? value is computed as in the case of simple linear regression.

@ Although it has a nice interpretation, it also has a drawback in the case
of multiple linear regression.

@ Intuitively, R* will never decrease as we add more independent variable
into the model disregarding the fact that the variables being thrown in to
the model may be explaining an insignificant portion of the variation in
y. And as far as we can tell, the closer R? is to 1, the better.

@ This means, we have to somehow account for how many variables we
include in our model. In other words, we need to somehow “penalize”
for the number of variables included in the model.

@ Always remember that, the simpler the model we come up with, the
better.
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R? and F:’gdj

@ The adjusted R? does not suffer from this limitation and it
accounts for the number of variables included in the model
_SSE/(n—-p-1)
SST/(n—1)

@ Note that, in this case, if a variable is causing an
insignificant amount of decrease in SSE, the denominator
in the above equation may actually be increasing, leading
to a smaller R value.
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F Statistic

@ And F statistic is computed in a similar fashion to that of
simple linear regression case.

@ A different use of the F statistic will come into play with the
comparison of nested models in the multiple linear
regression case.

@ This helps us compare a larger model to a reduced model
which comprises a subset of variables included in the full
model.

@ This statistic is computed for each variable in the model if
one uses anova () in R or looks at “Effect tests” in JMP.
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F Statistic

v Effect Tests

Sum of
Source Nparm DF Squares F Ratio Prob>F
ADV il 1 562259.56 63.9457 <.0001*
BONUS 1 1 57954.64 6.5912 0.0184~
MKTSHR il 1 2875.57 0.3270 0.5738
COMPET il 1 927.07 0.1054 0.7488

> anova(lm.med)
Analysis of Variance Table

Response: SALES
Df Sum Sq Mean Sq F value Pr(>F)

ADV 1 1012498 1912498 115.1411 9.546e-19 ***
BONUS 1 55389 55389 6.2994 9.92079 *
MKTSHR 1 4394 4394  9.4997  0.48777
COMPET 1 927 927  9.1054 9.74877

Residuals 29 175855 8793

Signif. codes: @ “*¥*' 9,901 ‘**’ 9.91 ‘*' 9.05 *.' 9.1 ¢ ' 1
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F Statistic

(] Ho:ﬁ/+1 :...:ﬁp:O
H; : At least one of 3.1, ..., Bp is not equal to zero.

@ This implies, under the reduced model we have
Yi = Bo+ B1Xin + Ba2Xiz + B3Xiz + ... + BpXiy + €;.

@ If we want to compare this reduced model to the full model
and find out if the reduction was reasonable, we have to
compute an F statistic:

(SSEr — SSEF)/(p— 1)
SSEf/(n—p—1)

F=
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Meddicorp

(] Ho:ﬁ3:...:ﬂ4:0
H, : At least one of 3, 84 is not equal to zero.

vl = -
Analysis of Variance ¥ Analysis of Variance
Sum of Sum of
Source DF Squares Mean Square F Ratio N
Model 4 1073118.5 268280 30.5114 Source DF Squares Mean Square F Ratio
Model 2 1067797.3 533899 64.8306
Error 20 175855.2 8793  Prob>F
C. Total 24 1248973.7 <.0001* Error 22 181176.4 8235 Prob>F
—— — . C. Total 24 1248973.7 <.0001*
o F — (181176-175855)/2 _ (y 5nqg
- 175855/20 -

@ 3.49 is the 5% F critical value with 2 numerator and 20
denominator degrees of freedom. Thus we accept Hp.
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Using Conditional Sums of Squares

> anova(lm.med)
Analysis of Variance Table

Response: SALES
Df Sum Sq Mean Sq F value Pr(>F)

ADV 1 1912498 1012408 115.1411 9.546e-19 ***
BONUS 1 55389 55389 6.2994 9.02079 *
MKTSHR 1 4394 4394  9.4997  0.48777
COMPET 1 927 927 9.1054  0.74877

Residuals 20 175855 8793

Signif. codes: @ “**¥*' 9. 901 ‘**' 9.91 ‘*' 9.95 ‘." 9.1 * ' 1
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Lab Assignment #3

@ Work on Exercises 1, 2, 3 and 4 in Chapter 4. You are
encouraged to use R but may use JMP if you feel more

comfortable.
@ Due date is September 25.
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Multicollinearity

@ When explanatory variables are correlated with one
another, the problem of multicollinearity is said to exist.

@ The presence of a high degree multicollinearity among the
explanatory variables result in the following problem:

e The standard deviations of the regression coefficients are
disproportionately large leading to small {-score although
the corresponding variable may be an important one.

e The regression coefficient estimates are highly unstable.
Due to high standard errors, reliable estimation is not
possible.
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Multiple Linear Regression

Detecting multicollinearity

@ Pairwise correlations.
@ Large F, small t.
@ Variance inflation factor (VIF).
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Example - Hald’s data

Montgomery and Peck (1982) illustrated variable selection
techniques on the Hald cement data and gave several
references to other analysis. The response variable y is the
heat evolved in a cement mix. The four explanatory variables
are ingredients of the mix, i.e., x1: tricalcium aluminate, x2:
tricalcium silicate, x3: tetracalcium alumino ferrite, x4:
dicalcium silicate. An important feature of these data is that the
variables x1 and x3 are highly correlated (corr(x1,x3)=-0.824),
as well as the variables x2 and x4 (with corr(x2,x4)=-0.975).
Thus we should expect any subset of (x1,x2,x3,x4) that
includes one variable from highly correlated pair to do as any
subset that also includes the other member.
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[,1] [,2] [,3] [,4]
] 1.0000000 0.2285795 -0.82413376 -0.24544511
] ©.2285795 1.0000000 -0.13924238 -0.97295500
] -0.8241338 -0.1392424 1.00000000 0.02953700
J]-0
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Multiple Linear Regression

Example - Hald’s data

Summary of Fit

RSquare 0.982376
RSquare Adj 0.973563
Root Mean Square Error 2.446008
Mean of Response 95.42308
Observations (or Sum Wgts) 1

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Call: Model 4 2667.8994 666.975 111.4792
mCformula = y.hald ~ x.hald) Error 8 47.8636 5.983  Prob > F
C. Total 12 2715.7631 <.0001*
Residuals: .
Min 10 Median E Max Parameter Estimates
-3.1750 -1.6709 0.2508 1.3783 3.9254 Term Estimate  Std Error tRatio Prob>|t|
Intercept  62.405369 70.07096 0.89 0.3991
(aeFF\(\ants[‘sﬁmate Std. Error t value Pr(>1tl) - ST ZOsgutaTes
(Intercept) 62.4054  70.0710 0.891 0.3991 ;g g'iég;ggg g;s;gg g'ig g';ggi
x.haldl 1.5511 0.7448  2.083  0.0708 . . . g .
x-hald2 2.5102  0.7238 0.705 0.5009 X4 -0.144061 0.709052  -0.20  0.8441
x.hald3 0.1019 0.7547  0.135  0.8950 Effect Tests
x.haldd -0.1441 0.7001 -0.203 0.8441
- Sum of
Signif. codes: © ‘***’ 0.001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1 ¢ ' 1 Source Nparm  DF Squares  FRatio Prob > F
X1 1 1 25950911  4.3375  0.0708
Residual standard error: 2.446 on 8 degrees of freedom X2 1 1 2.972478 0.4968 0.5009
Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736 X3 1 1 0109090  0.0182  0.8959
F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07 X4 1 1 0.246975 0.0413  0.8441
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Multiple Linear Regression

Example - Hald’s data

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t| VIF
Intercept  62.405369 70.07096 0.89 0.3991 :
X1 1.5511026 0.74477 2.08 0.0708 38.496211
X2 0.5101676 0.723788 0.70 0.5009 254.42317
X3 0.1019094 0.754709 0.14 0.8959 46.868386
X4 -0.144061 0.709052 -0.20 0.8441 282.51286
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Multiple Linear Regression

Example - Hald’s data

Summary of Fit

RSquare 0.978678
RSquare Adj 0.974414
Root Mean Square Error 2.406335
Mean of Response 95.42308
Observations (or Sum Wagts) 13
Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 2 2657.8586 1328.93 229.5037
Error 10 57.9045 579 Prob>F
C. Total 12 2715.7631 <.0001*
Parameter Estimates
Term Estimate Std Error tRatio Prob>|t| VIF
Intercept 52.577349 2.286174 23.00 <.0001* 5
X1 1.4683057 0.121301 12.10 <.0001* 1.055129
X2 0.6622505 0.045855 14.44 <.0001* 1.055129
Effect Tests

Sum of
Source Nparm DF Squares F Ratio Prob > F
X1 1 1 848.4319 146.5227 <.0001*
X2 1 1 1207.7823 208.5818 <.0001*
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