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Purpose and Formulation

Regression analysis is a statistical technique used to
describe relationships among variables.
In the simplest case where bivariate data are observed,
the simple linear regression is used.
The variable that we are trying to model is referred to as
the dependent variable and often denoted by y .
The variable that we are trying to explain y with is referred
to as the independent or explanatory variable and often
denoted by x .
If a linear relationship between y and x is believed to exist,
this relationship is expressed through an equation for a
line:

y = b0 + b1x
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Purpose and Formulation

Above equation gives an exact or a deterministic
relationship meaning there exists no randomness.
In this case recall that having only two pairs of
observations (x , y) would suffice to construct a line.
However many things we observe have a random
component to it which we try to understand through
various probability distributions.
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Least Squares Criterion to Fit a Line

We need to specify a method to find the “best” fitting line to
the observed data.
When we pass a line through the the observations, there
will be differences between the actual observed values and
the values predicted by the fitted line. This difference at
each x value is called a residual and represents the “error”.
It is only sensible to try to minimize the total error we make
while fitting the line.
The least squares criterion minimizes the sum of squared
errors to fit a line, i.e. min

∑n
i=1(yi − ŷi)

2.

Armagan



Simple Linear Regression Analysis
Multiple Linear Regression

Using simple regression to describe a linear relationship
Inferences From a Simple Regression Analysis
Assessing the Fit of the Regression Line
Prediction with a Sample Linear Regression Equation

Least Squares Criterion to Fit a Line

This is a simple minimization problem and results in the
following expressions for b0 and b1:

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

b0 = ȳ − b1x̄

These are simply obtained by differentiating
∑n

i=1(yi − ŷi)
2

(ŷi = b0 + b1xi ) with respect to b0 and b1 and setting them
equal to zero at the solution which leaves us with two equations
and two unknowns.
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Estimating Residential Real Estate Values

●●
●

●
●

●
●

●●
●

●

●
●

●●●

●
●●

●
●

●

●

●●

● ●
● ●

●

●●
●

●

●

●

●

●
● ●●●

●

● ●

●
● ●●

●
●●

●
●

●●
●●● ● ●●

●

●
●●

●● ● ●
●

●
●

●
●

●

●

●

●

●

● ● ●
● ●

● ●
●

●

●

●

●

●
●

● ●

●

●

●

●

1000 2000 3000 4000

50
00

0
10

00
00

20
00

00
30

00
00

SIZE

V
A

LU
E

ˆVALUE = −50035 + 72.8SIZEArmagan



Simple Linear Regression Analysis
Multiple Linear Regression

Using simple regression to describe a linear relationship
Inferences From a Simple Regression Analysis
Assessing the Fit of the Regression Line
Prediction with a Sample Linear Regression Equation

Assumptions

It is assumed that there exists a linear deterministic
relationship between x and the mean of y , µy |x :

µy |x = β0 + β1x

Since the actual observations deviate from this line, we
need to add a noise term giving

yi = β0 + β1xi + ei .

The expected value of this error term is zero: E(ei) = 0.
The variance of each ei is equal to σ2

e. This assumptions
suggests a constant variance along the regression line.
The ei are normally distributed.
The ei are independent.
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Inferences about β0 and β1

The point estimates of β0 and β1 are justified by the least
squares criterion such that b0 and b1 minimize the sum of
squared errors for the observed sample.
It should be also noted that, under the assumptions made
earlier, the maximum likelihood estimator for β0 and β1 is
identical to the least squares estimator.
Recall that a statistic is a function of a sample (which is a
realization of a random variable), thus is a random variable
itself. b0 and b1 have sampling distributions.
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Sampling Distribution of b0

E(b0) = β0

Var(b0) = σ2
e

(
1
n + x̄2Pn

i=1(xi−x̄2)2

)
The sampling distribution of b0 is normal.
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Sampling Distribution of b1

E(b1) = β1

Var(b0) = σ2
ePn

i=1(xi−x̄2)2

The sampling distribution of b1 is normal.
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Properties of b0 and b1

b0 and b1 are unbiased estimators for β0 and β1

b0 and b1 are consistent estimators for β0 and β1

b0 and b1 are minimum variance unbiased estimators for
β0 and β1. That said, they have smaller sampling errors
than any other unbiased estimator for β0 and β1.
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Estimating σ2
e

The sampling distributions of b0 and b1 are normal when
σ2

e is known.
In realistic cases we won’t know σ2

2.
An unbiased estimate of σ2

e is given by

s2
e =

∑n
i=1(yi − ŷi)

2

n − 2
=

SSE
n − 2

= MSE

where ŷi = b0 + b1xi .
Substituting se for σe earlier, sb0 and sb1 can be obtained.
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Constructing Confidence Intervals for β0 and β1

Now that σe is not known, the sampling distributions of b0
and b1 are t , i.e. b0−β0

sb0
∼ tn−2 and b1−β1

sb1
∼ tn−2.

(1− α)100% confidence intervals then can be constructed
as

(b0 − tα/2,n−2sb0 , b0 + tα/2,n−2sb0)

(b1 − tα/2,n−2sb1 , b1 + tα/2,n−2sb1).
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Hypothesis tests about β0 and β1

Conducting a hypothesis test is no more involved than
constructing a confidence interval. We make use of the
same pivotal quantity, b1−β1

sb1
which is t distributed.

Since we often include the intercept in our model anyway,
a hypothesis test on β0 may be redundant. Our main goal
is to see whether there exists a linear relationship between
the two variables which is implied by the slope, β1.
We first state the null and alternative hypotheses:

H0 : β1 = (≥,≤)β∗1
Ha : β1 6= (<,>)β∗1
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Hypothesis tests about β0 and β1

To test this hypothesis, a t statistic is used, t =
b1−β∗1

sb1
.

A significance level, α, is specified to decide whether or not
reject the null hypothesis.
Possible alternative hypotheses and corresponding
decision rules are
Alternative Decision Rule
Ha : β1 6= β∗1 Reject H0 if |t | > tα/2,n−2
Ha : β1 < β∗1 Reject H0 if t < −tα,n−2
Ha : β1 > β∗1 Reject H0 if t > tα,n−2
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Lab Assignment #1

Work on Exercises 6 and 7 in Chapter 3. You are
encouraged to use R but may use JMP if you feel more
comfortable.
Due date is September 9.
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ANOVA
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The Coeficient of Determination

In an exact or deterministic relationship, SSR=SST and
SSE=0. This would imply that a straight line could be
drawn through each observed value.
Since this is not the case in real life, we need a a measure
of how well the regression line fits the data.
The coefficient of determination gives the proportion of
total variation explained in the response by the regression
line and is denoted by R2.

R2 =
SSR
SST
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The Correlation Coefficient

For simple linear regression the correlation coefficient is
r = ±

√
R2.

This does not apply to multiple linear regression.
If the sign of r is positive, then the relationship between the
variables is direct, otherwise is inverse.
r ranges between −1 and 1.
A correlation of 0 merely implies no linear relationship.
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The F Statistic

An additional measure of how well the regression line fits
the data is provided by the F statistic, which tests whether
the equation ŷ = b0 + b1x provides a better fit to the data
than the equation ŷ = ȳ .

F =
MSR
MSE

where MSR = SSR/1 and MSE = SSE/(n − 2).
The degrees of freedom corresponding to SSR and SSE
add up to the total degrees of freedom, n − 1.
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The F Statistic

To formalize the use of F statistic, consider the hypotheses
H0 : β1 = 0 vs. Ha : β1 6= 0.
We reject H0 if F > Fα,1,n−2.

For simple linear regression, F = MSR
MSE = t2.

Since both a t-test and an F -test will yield the same
conclusions, it doesn’t matter which one we use.

Armagan



Simple Linear Regression Analysis
Multiple Linear Regression

Using simple regression to describe a linear relationship
Inferences From a Simple Regression Analysis
Assessing the Fit of the Regression Line
Prediction with a Sample Linear Regression Equation

Pricing Communication Nodes

Armagan



Simple Linear Regression Analysis
Multiple Linear Regression

Using simple regression to describe a linear relationship
Inferences From a Simple Regression Analysis
Assessing the Fit of the Regression Line
Prediction with a Sample Linear Regression Equation

Pricing Communication Nodes

Armagan



Simple Linear Regression Analysis
Multiple Linear Regression

Using simple regression to describe a linear relationship
Inferences From a Simple Regression Analysis
Assessing the Fit of the Regression Line
Prediction with a Sample Linear Regression Equation

Pricing Communication Nodes

Armagan



Simple Linear Regression Analysis
Multiple Linear Regression

Using simple regression to describe a linear relationship
Inferences From a Simple Regression Analysis
Assessing the Fit of the Regression Line
Prediction with a Sample Linear Regression Equation

What Makes a Prediction Interval Wider?

The difference arises from the difference between the
variation in the mean of y and the variation in one
individual y value.

V(ȳf ) = σ2
e

(
1
n + (xf−x̄)2

(n−1)s2
x

)
V(yf ) = σ2

e

(
1 + 1

n + (xf−x̄)2

(n−1)s2
x

)
Replace σ2

e by s2
e when the error variance is not known and

is to be estimated.
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Assessing the Quality of Fit

The mean square deviation is used commonly.

MSD =

∑n
i=1(yi − ŷi)

2

nh

where nh is the size of the hold-out sample.
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Lab Assignment #2

Work on Exercises 8, 9, 10, 11, 12 and 13 in Chapter 3.
You are encouraged to use R but may use JMP if you feel
more comfortable.
Due date is September 18.
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Formulation

If a linear relationship between y and a set of xs is
believed to exist, this relationship is expressed through an
equation for a plane:

y = b0 + b1x1 + b2x2 + b3x3 + ...+ bpxp
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Assumptions

Assumptions are the same with simple linear regression
model. Thus the population regression equation is written
as

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ...+ βpxip + ei
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Inferences About the Population Regression
Coefficients
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R2 and R2
adj

An R2 value is computed as in the case of simple linear regression.

Although it has a nice interpretation, it also has a drawback in the case
of multiple linear regression.

Intuitively, R2 will never decrease as we add more independent variable
into the model disregarding the fact that the variables being thrown in to
the model may be explaining an insignificant portion of the variation in
y . And as far as we can tell, the closer R2 is to 1, the better.

This means, we have to somehow account for how many variables we
include in our model. In other words, we need to somehow “penalize”
for the number of variables included in the model.

Always remember that, the simpler the model we come up with, the
better.
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R2 and R2
adj

The adjusted R2 does not suffer from this limitation and it
accounts for the number of variables included in the model

R2
adj = 1− SSE/(n − p − 1)

SST/(n − 1)

Note that, in this case, if a variable is causing an
insignificant amount of decrease in SSE , the denominator
in the above equation may actually be increasing, leading
to a smaller R2

adj value.
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F Statistic

And F statistic is computed in a similar fashion to that of
simple linear regression case.
A different use of the F statistic will come into play with the
comparison of nested models in the multiple linear
regression case.
This helps us compare a larger model to a reduced model
which comprises a subset of variables included in the full
model.
This statistic is computed for each variable in the model if
one uses anova() in R or looks at “Effect tests” in JMP.
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F Statistic
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F Statistic

H0 : βl+1 = ... = βp = 0
Ha : At least one of βl+1, ..., βp is not equal to zero.
This implies, under the reduced model we have

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ...+ βpxil + ei .

If we want to compare this reduced model to the full model
and find out if the reduction was reasonable, we have to
compute an F statistic:

F =
(SSER − SSEF )/(p − l)

SSEF/(n − p − 1)
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Meddicorp

H0 : β3 = ... = β4 = 0
Ha : At least one of β3, β4 is not equal to zero.

F = (181176−175855)/2
175855/20 = 0.303

3.49 is the 5% F critical value with 2 numerator and 20
denominator degrees of freedom. Thus we accept H0.
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Using Conditional Sums of Squares
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Lab Assignment #3

Work on Exercises 1, 2, 3 and 4 in Chapter 4. You are
encouraged to use R but may use JMP if you feel more
comfortable.
Due date is September 25.
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Multicollinearity

When explanatory variables are correlated with one
another, the problem of multicollinearity is said to exist.
The presence of a high degree multicollinearity among the
explanatory variables result in the following problem:

The standard deviations of the regression coefficients are
disproportionately large leading to small t-score although
the corresponding variable may be an important one.
The regression coefficient estimates are highly unstable.
Due to high standard errors, reliable estimation is not
possible.
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Detecting multicollinearity

Pairwise correlations.
Large F , small t .
Variance inflation factor (VIF).
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Example - Hald’s data

Montgomery and Peck (1982) illustrated variable selection
techniques on the Hald cement data and gave several
references to other analysis. The response variable y is the
heat evolved in a cement mix. The four explanatory variables
are ingredients of the mix, i.e., x1: tricalcium aluminate, x2:
tricalcium silicate, x3: tetracalcium alumino ferrite, x4:
dicalcium silicate. An important feature of these data is that the
variables x1 and x3 are highly correlated (corr(x1,x3)=-0.824),
as well as the variables x2 and x4 (with corr(x2,x4)=-0.975).
Thus we should expect any subset of (x1,x2,x3,x4) that
includes one variable from highly correlated pair to do as any
subset that also includes the other member.
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Example - Hald’s data
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Example - Hald’s data
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Example - Hald’s data
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