Hypothesis Testing – Examples and Case Studies
23.1 How Hypothesis Tests Are Reported in the News

1. Determine the null hypothesis and the alternative hypothesis.
2. Collect and summarize the data into a test statistic.
3. Use the test statistic to determine the p-value.
4. The result is statistically significant if the p-value is less than or equal to the level of significance.

Often media only presents results of step 4.
23.2 Testing Hypotheses About Proportions and Means

If the null and alternative hypotheses are expressed in terms of a population proportion, mean, or difference between two means and if the sample sizes are large …

… the test statistic is simply the corresponding standardized score computed assuming the null hypothesis is true; and the \textit{p-value} is found from a table of percentiles for standardized scores.
Example 2: Weight Loss for Diet vs Exercise

Did dieters lose more fat than the exercisers?

Diet Only:
- sample mean = 5.9 kg
- sample standard deviation = 4.1 kg
- sample size = $n = 42$
- standard error = $SEM_1 = 4.1/\sqrt{42} = 0.633$

Exercise Only:
- sample mean = 4.1 kg
- sample standard deviation = 3.7 kg
- sample size = $n = 47$
- standard error = $SEM_2 = 3.7/\sqrt{47} = 0.540$

measure of variability $= \sqrt{[(0.633)^2 + (0.540)^2]} = 0.83$
Example 2: Weight Loss for Diet vs Exercise

Step 1. Determine the null and alternative hypotheses.

Null hypothesis: No difference in average fat lost in population for two methods. Population mean difference is zero.

Alternative hypothesis: There is a difference in average fat lost in population for two methods. Population mean difference is not zero.

Step 2. Collect and summarize data into a test statistic.

The sample mean difference = 5.9 – 4.1 = 1.8 kg and the standard error of the difference is 0.83.

So the test statistic: $z = \frac{1.8 - 0}{0.83} = 2.17$
Example 2: Weight Loss for Diet vs Exercise

Step 3. Determine the \(p \)-value.

Recall the alternative hypothesis was two-sided.

\[
p\text{-value} = 2 \times [\text{proportion of bell-shaped curve above 2.17}]
\]

Table 8.1 \(\Rightarrow \) proportion is about \(2 \times 0.015 = 0.03 \).

Step 4. Make a decision.

The \textit{p-value of 0.03 is less than or equal to 0.05, so …}

\begin{itemize}
 \item If really no difference between dieting and exercise as fat loss methods, would see such an extreme result only 3% of the time, or 3 times out of 100.
 \item Prefer to believe truth does not lie with null hypothesis. We conclude that there is a \textit{statistically significant difference between average fat loss for the two methods}.
\end{itemize}
Example 3: Public Opinion About President

On May 16, 1994, Newsweek reported the results of a public opinion poll that asked: “From everything you know about Bill Clinton, does he have the honesty and integrity you expect in a president?” (p. 23).

Poll surveyed 518 adults and 233, or 0.45 of them (clearly less than half), answered yes.

Could Clinton’s adversaries conclude from this that only a minority (less than half) of the population of Americans thought Clinton had the honesty and integrity to be president?
Example 3: Public Opinion About President

Step 1. Determine the null and alternative hypotheses.

Null hypothesis: There is no clear winning opinion on this issue; the proportions who would answer yes or no are each 0.50.

Alternative hypothesis: Fewer than 0.50, or 50%, of the population would answer yes to this question. The majority do not think Clinton has the honesty and integrity to be president.

Step 2. Collect and summarize data into a test statistic.

Sample proportion is: $233/518 = 0.45$.

The *standard deviation* $= \sqrt{(0.50) \times (1 - 0.50)} = 0.022$. Using $n = 518$.

Test statistic: $z = (0.45 - 0.50)/0.022 = -2.27$
Example 3: Public Opinion About President

Step 3. Determine the p-value.

Recall the alternative hypothesis was one-sided.

p-value = proportion of bell-shaped curve below -2.27
Exact p-value = 0.0116.

Step 4. Make a decision.

The *p-value of 0.0116 is less than 0.05*, so we conclude that the proportion of American adults in 1994 who believed Bill Clinton had the honesty and integrity they expected in a president was **significantly less** than a majority.
23.3 Revisiting Case Studies: How Journals Present Tests

Whereas newspapers and magazines tend to simply report the decision from hypothesis testing, journals tend to report p-values as well. This allows you to make your own decision, based on the severity of a type 1 error and the magnitude of the p-value.
Case Study 5.1: Quitting Smoking with Nicotine Patches

Compared the smoking cessation rates for smokers randomly assigned to use a nicotine patch versus a placebo patch.

Null hypothesis: The proportion of smokers in the population who would quit smoking using a nicotine patch and a placebo patch are the same.

Alternative hypothesis: The proportion of smokers in the population who would quit smoking using a nicotine patch is higher than the proportion who would quit using a placebo patch.
Case Study 5.1: Quitting Smoking with Nicotine Patches

Higher smoking cessation rates were observed in the active nicotine patch group at 8 weeks (46.7% vs 20%) \((P < .001)\) and at 1 year (27.5% vs 14.2%) \((P = .011)\).

(Hurt et al., 1994, p. 595)

Conclusion: \(p\)-values are quite small: less than 0.001 for difference after 8 weeks and equal to 0.011 for difference after a year. Therefore, rates of quitting are significantly higher using a nicotine patch than using a placebo patch after 8 weeks and after 1 year.
Case Study 6.4: Smoking During Pregnancy and Child’s IQ

Study investigated impact of maternal smoking on subsequent IQ of child at ages 1, 2, 3, and 4 years of age.

Null hypothesis: Mean IQ scores for children whose mothers smoke 10 or more cigarettes a day during pregnancy are same as mean for those whose mothers do not smoke, in populations similar to one from which this sample was drawn.

Alternative hypothesis: Mean IQ scores for children whose mothers smoke 10 or more cigarettes a day during pregnancy are not the same as mean for those whose mothers do not smoke, in populations similar to one from which this sample was drawn.
Case Study 6.4: Smoking During Pregnancy and Child’s IQ

Children born to women who smoked 10+ cigarettes per day during pregnancy had developmental quotients at 12 and 24 months of age that were 6.97 points lower (averaged across these two time points) than children born to women who did not smoke during pregnancy (95% CI: 1.62, 12.31, \(P = .01 \)); at 36 and 48 months they were 9.44 points lower (95% CI: 4.52, 14.35, \(P = .0002 \)). (Olds et al., 1994, p. 223)

Researchers conducted two-tailed tests for possibility the mean IQ score could actually be higher for those whose mothers smoke. The CI provides evidence of the direction in which the difference falls. The \(p \)-value simply tells us there is a statistically significant difference.
For Those Who Like Formulas

Some Notation for Hypothesis Tests
The null hypothesis is denoted by H_0, and the alternative hypothesis is denoted by H_1 or H_a.

“alpha” $= \alpha = \text{desired probability of making a type 1 error when } H_0 \text{ is true; we reject } H_0 \text{ if } p\text{-value } \leq \alpha$.

“beta” $= \beta = \text{probability of making a type 2 error when } H_1 \text{ is true; power } = 1 - \beta$

Steps for Testing the Mean of a Single Population
Denote the population mean by μ and the sample mean and standard deviation by \bar{X} and s, respectively.

Step 1. $H_0: \mu = \mu_0$, where μ_0 is the chance or status quo value.

$H_1: \mu \neq \mu_0$ for a two-sided test; $H_1: \mu < \mu_0$ or $H_1: \mu > \mu_0$ for a one-sided test, with the direction determined by the research hypothesis of interest.

Step 2. This test statistic applies only if the sample is large. The test statistic is

$$z = \frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}}$$
For Those Who Like Formulas

Step 3. The p-value depends on the form of H_1. In each case, we refer to the proportion of the standard normal curve above (or below) a value as the “area” above (or below) that value. Then we list the p-values as follows:

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_1: \mu \neq \mu_0$</td>
<td>$2 \times \text{area above }</td>
</tr>
<tr>
<td>$H_1: \mu > \mu_0$</td>
<td>$\text{area above } z$</td>
</tr>
<tr>
<td>$H_1: \mu < \mu_0$</td>
<td>$\text{area below } z$</td>
</tr>
</tbody>
</table>

Step 4. You must specify the desired α; it is commonly 0.05. Reject H_0 if p-value $\leq \alpha$.
For Those Who Like Formulas

Steps for Testing a Proportion for a Single Population
Steps 1, 3, and 4 are the same, except replace μ with the population proportion \(p \) and \(\mu_0 \) with the hypothesized proportion \(p_0 \). The test statistic (step 2) is:

\[
z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0) \frac{1}{n}}}
\]

Steps for Testing for Equality of Two Population Means
Using Large Independent Samples
Steps 1, 3, and 4 are the same, except replace μ with \((\mu_1 - \mu_2)\) and \(\mu_0\) with 0. Use previous notation for sample sizes, means, and standard deviations; the test statistic (step 2) is:

\[
z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
\]