
STA 114: Statistics

Lab 10

Revisiting HW 10 #3

In HW 10, #3 we looked at data X = (X1, X2) modeled as X ∼ Multinomial(n, p), p ∈ ∆2 and
wanted to test H0 : p = p0 for some fixed p0 = (p01, p02) ∈ ∆2. We talked about two different ways
of doing this. First is the usual Pearson’s chi-square test and the second is the ML test for the
equivalent problem: X1 ∼ Binomial(n, p1), p1 ∈ (0, 1) and test H0 : p1 = p01 against H1 : p1 ̸= p01.
We saw that the two tests are similar and can be described as:

Size-α Pearson’s test. Reject H0 if Q(x) = (x1−np01)2

np01(1−p01)
> F−1

1 (1− α) = z(α)2

Size-α binomial ML test. Reject H0 if T (x) = (x1−np01)2

n(x1/n)(1−x1/n)
> z(α)2.

We’ll assess how similar these two tests really are. Note that the p-value based on Pearson’s tests
is 1− F1(Q(x)) whereas the same based on the binomial ML tests is 1− F1(T (x)).

Task 1. Fix n = 500 and p0 = (0.4, 0.6). Generate an x from
Multinomial(n, p0) [it suffices to get x1 ∼ Binomial(n, p01) and set x2 =
n − x1]. Calculate the two p-values for this data under the two kinds of
tests. Now repeat this 100 times. Make a plot of these 100 pairs of p-
values and compare them with the 45 degree line. Are the two types of tests
behaving similarly for this simulation setting?

Task 2. Continue using n = 500 and p0 = (0.4, 0.6) but now generate an x
from Multinomial(n, (0.5, 0.5)) and get the two p-values for this data. Repeat
this 100 times and make a plot of the 100 pair of p-values. Compare against
the 45 degree line. Are the two tests still behaving similarly?

Task 3. Repeat the above task but generate your x’s from
Multinomial(n, (0.9, 0.1)).

Task 4. Which type of tests appears to have smaller type II error probabil-
ities? Can you make a precise statement?

Performing simple linear regression on R

Next we’d look at how to perform simple linear regression on R. To start with load the dataset
“highway” from R package “alr3”. This dataset contains observations from 39 segments of a highway
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about on accident rate (Rate) and physical characteristics of the road segment including speed limit
(Slim), number of access points (Acpt), etc. We’ll work with accident rate as the response and
speed limit as the explanatory variable.

library(alr3)

data(highway)

y <- highway$Rate

x <- highway$Slim

If you can’t load the data from the library, simple copy and paste the following

x 55, 60, 60, 65, 70, 55, 55, 55, 50, 50, 60, 50, 50, 60,
55, 60, 60, 50, 55, 60, 55, 60, 50, 60, 40, 45, 55, 55,
45, 60, 45, 55, 55, 55, 55, 50, 55, 60, 55

y 4.58, 2.86, 3.02, 2.29, 1.61, 6.87, 3.85, 6.12, 3.29, 5.88,
4.2, 4.61, 4.8, 3.85, 2.69, 1.99, 2.01, 4.22, 2.76, 2.55,
1.89, 2.34, 2.83, 1.81, 9.23, 8.6, 8.21, 2.93, 7.48, 2.57,
5.77, 2.9, 2.97, 1.84, 3.78, 2.76, 4.27, 3.05, 4.12

Task 5. Get n, x̄, s2x, sxy and ȳ from the data. Recall s2x = 1
n−1

∑n
i=1(xi−x̄)2

and sxy = 1
n−1

∑n
i=1 yi(xi − x̄).

Task 6. Calculate β̂0 and β̂1 based on these numbers. Also calculate σ̂.
Recall σ̂2 = 1

n−2

∑n
i=1(yi − β̂0 − β̂1xi)

2.

Task 7. Now use the lm() function of R to perform the data analysis and
check them against your answers. You can use the following codes

hwy.lm <- lm(y ~ x)

print(hwy.lm)

summary(hwy.lm)

The summary() function prints a lot of details in addition to the estimated values of the intercept
and the slope. In particular “Residual standard error” gives σ̂.

Task 8. Extract the residuals ei = Yi − β̂0 − β̂1xi, i = 1, · · · , n by using
resid <- hwy.lm$resid

and draw a histogram of these residuals (with freq = FALSE). Overlay the
pdf of Normal(0, σ̂2) on the histogram.

I’d leave you one thing to think about. Why is the slope estimated negative? Should increasing
the speed limit decrease highway accident rate? Or is there something more subtle going on for
this dataset? (Think about which segments of a highway are likely to have lower speed limits.)
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