
STA 114: Statistics

Lab 3

This lab work is intended to illustrate normal approximation theory. You have seen a first instance of
this theory in your probability course, in the form of the central limit theorem (CLT) that states that
for IID random variables X1, X2, · · · , Xn with mean µ = EXi and variance σ2 = VarXi, the sample
mean X̄ is approximately distributed as Normal(µ, σ2/n). More precisely, the random variable

Zn = X̄−µ
σ/
√
n

converges in distribution/law to Normal(0, 1) as n→∞. i.e., limn→∞ P (Zn ≤ z) = Φ(z)

for every real number z.
For many regular statistical models, with differentiable log-likelihood functions that admit a

unique maxima, the MLE often exhibits approximate normality. This is what we’ll explore today.
In particular, for a statistical model X ∼ f(x|θ), θ ∈ Θ, and a fixed θ0 ∈ Θ we will see whether the
distribution of Z =

√
IX(θ̂MLE(X) − θ0) can be approximated by Normal(0, 1), when θ = θ0 is the

truth.

Asymptotic Normality of the MLE

Consider the model X1, · · · , Xn
IID∼ Poisson(µ), µ ∈ (0,∞). We know that µ̂MLE(x) = x̄ and

Ix = n/x̄. Let’s look at the distribution of Z =
√
IX(µ̂MLE(X)− µ0) for µ0 = 1, n = 50.

get.z <- function(x, mu.0, n){

mu.mle <- mean(x)

I.x <- n / mean(x)

return(sqrt(I.x) * (mu.mle - mu.0))

}

M <- 10000

n <- 50

mu.0 <- 1

z.samp <- replicate(M, get.z(rpois(n, mu.0), mu.0, n))

hist(z.samp, freq = FALSE, col = "gray", border = "white")

z.grid <- seq(-5, 5, .1)

lines(z.grid, dnorm(z.grid))

Task 1. Comment on how good the Normal(0, 1) approximation is. Is there
a particular feature of the histogram that the approximation fails to capture
the most? Explain.
Repeat the above experiment with n = 100 and n = 200. Comment how the
approximation improves.

Task 2. Now repeat the experiments with µ0 = 5 (for n = 50, 100, 200).
Comment on any differences you notice from the case of µ0 = 1.
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Task 3. Repeat the above experiment for the model X1, · · · , Xn
IID∼

Exponential(λ), λ ∈ (0,∞), for n = 50, 100, 200 and λ0 = 1, 5. Com-
ment on how well the Normal(0, 1) distribution match the histogram of
Z =

√
IX(λ̂MLE(X)− λ0). Recall, λ̂MLE(x) = 1/x̄, Ix = nx̄2.

Asymptotic Normality of Median

Many other estimators exhibit asymptotic normality. For example, if X1, · · · , Xn
IID∼ g(xi|µ),

where g(xi|µ) = g0(xi − µ) for a pdf g0 symmetric around zero, then Xmed is approximately
Normal(µ, 1

4ng0(0)2
), i.e., Z = Xmed−µ

2g0(0)
√
n

is approximately Normal(0, 1).

Task 4. Demonstrate asymptotic normality of the median for

1. Xi
IID∼ Normal(0, 1) [g0(y) = (2π)−1/2 exp(−y2/2)]

2. Xi
IID∼ Laplace(0, 1) [g0(y) = (1/2) exp(−|y|)]

3. Xi
IID∼ Logis(0, 1) [g0(y) = exp(−y)/{1 + exp(−y)}2]

To demonstrate for the normal you can use the following code

M <- 10000

n <- 50

mu <- 0

g0.term <- 1 / sqrt(2 * pi)

sigma <- 1 / (2 * g0.term * sqrt(n))

z.samp <- replicate(M, (median(rnorm(n)) - mu) / sigma)

hist(z.samp, freq = FALSE, col = "gray", border = "white")

z.grid <- seq(-5, 5, .1)

lines(z.grid, dnorm(z.grid))

For the logistic case, use the above code but replace rnorm with rlogis [and use the appropriate
formula for g0.term]. And for the Laplace model, use rlap instead, where the code is given below:

rlap <- function(n, mu = 0, sigma = 1){

u <- runif(n)

return(mu + sigma * sign(u - .5) * log(2 * pmin(u, 1 - u)))

}

Comparing various asymptotic CIs

For the model X1, · · · , Xn
IID∼ Poisson(µ), µ ∈ (0,∞), the ML asymptotically 95%-CI for µ is

B1.96(x) = µ̂MLE(x)∓ 1.96/
√
Ix = x̄∓ 1.96

√
x̄/n,
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i.e., the confidence coefficient γ(B1.96) is approximately 0.95 for large n (gets closer with larger
values of n). Two other asymptotically 95%-CIs for µ are:

C1.96(x) = x̄∓ 1.96
sx√
n

D1.96(x) =

(
x̄+

1.962

2n
− 1.96√

n

{
1.962

4n
+ x̄

}1/2

, x̄+
1.962

2n
+

1.96√
n

{
1.962

4n
+ x̄

}1/2)

Our goal is to compare these three interval procedures by their coverage and length. Here’s how to
get these characteristics for Bc for a given n at a fixed µ0.

get.B <- function(x){

x.bar <- mean(x)

n <- length(x)

B <- x.bar + c(-1, 1) * 1.96 * sqrt(x.bar / n)

return(B)

}

features <- function(x, mu.0, int.proc){

Int <- int.proc(x)

Int.length <- Int[2] - Int[1]

Int.inclusion <- (Int[1] <= mu.0) & (mu.0 <= Int[2])

return(c(length = Int.length, coverage = Int.inclusion))

}

M <- 10000

n <- 10

mu.0 <- 1

options(digits = 2)

rowMeans(replicate(M, features(rpois(n, mu.0), mu.0, get.B)))

Task 5. Complete the comparison by first writing codes for get.C and
get.D. Repeat this for n = 10, 20, 50 and µ0 = 1, 5.

3


