
STA 114: Statistics

Lab 4

This lab overviews graphical and numerical summarization of pdfs and pmfs of scalar variables.
Plotting the pdf/pmf curve is the obvious choice for a graphical summary. Numerical summaries
can be based on various items, such as the expectation and variance under the pdf/pmf as well
as, and perhaps more usefully, its quantiles. We will discuss these keeping in mind applications
to summarizing posterior pdfs/pmfs in a Bayesian analysis. An additional challenge with such
pdfs/pmfs is that they are often known up to a constant multiple (the normalizing constant that
makes the curve a pdf or pmf). We’ll see simple techniques to deal with this.

Plotting a pdf or a pmf

This is a trivial task if you have access to a R function f() that returns the pdf/pmf value f(x) at
any input x. The only concern is to choose a good a range for x to display the curve. To display
a Normal(0, 1) pdf we can use a range [−4, 4], because most of the area under the Normal(0, 1) bell
curve is within this range (more than 0.9999). For an arbitrary Normal(µ, σ2) pdf, we can display
the range µ∓ 4σ, i.e., mean plus minus 4 standard deviations, which contains the same area under
the Normal(µ, σ2) curve as does [-4,4] for the Normal(0, 1) bell curve:
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Task 1. Make a nice plot of the Normal(−500, 402) pdf.

To annotate the axes and add a plot title, use:

plot(..., xlab = "x", ylab = "f(x)", main = expression(N(-500, 40^2)))
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The same strategy applies while plotting other pdfs or pmfs. Consider plotting the Binomial(500, 0.4)
pmf. This pmf is supported on the points 0, 1, · · · , 500. But the pmf is fairly tightly concentrated
around its mean 500 × 0.4 = 200, and so plotting it over the whole range is rather useless (see
the left panel of the Figure below). Instead, we can find a range [a, b], such that pmf puts only a
small probability, say 10−4, outside this range. We can find the two end points so that the left out
probability is equally split at the two tails. Then we must have a as the 10−4/2-th quantile and b
as the (1− 10−4/2)-th quantile of the Binomial(500, 0.4) distribution. The following code generates
the right panel of the Figure below.

a <- qbinom(1e-4 / 2, 500, 0.4)

b <- qbinom(1e-4 / 2, 500, 0.4, lower = FALSE)

x <- a:b

plot(x, dbinom(x, 500, 0.4), ty = "l", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(Bin(500, 0.4)))
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Task 2. Make plots for pdf/pmf of the Poisson(30), Gamma(2, 1/5),
Logis(4, 10) and t4 distributions.

Quantiles of a distribution

The quantiles of a distribution offer an excellent way to summarize the distribution numerically or
graphically. We already saw an example of this above in choosing the range of x values [a, b] on
which we plot the pdf/pmf. While those give a sense of the extreme, we can also use quantiles to
mark the central parts of the distribution.

Recall that for any u ∈ (0, 1), the u-th quantile of a probability distribution with cdf F (x) is
defined to be the point xu such that F (xu) = u. That is, u marks the point for which the area
below the pdf/pmf curve in the range (−∞, xu] equals u. For a pmf curve, we may not get an exact
match between the area and the value u (because for a pmf curve, area below the curve increases
in jumps). In that case xu is the smallest number x such that F (x) exceeds u.
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The 0.5-th quantile is called the median of the distribution, it splits the area below the pdf/pmf
curve into half and half. The 0.25-th and the 0.75-th quantiles are called the first and the third
quartiles (median being the second quartile). Between the 0.025-th and the 0.975-th quantile, the
distribution packs 95% of its area. These five quantiles together give an excellent annotation of a
pdf/pmf. The following code shows these for Normal(0, 1).

qts <- qnorm(c(.025, .25, .5, .75, .975), 0, 1)

a <- qnorm(1e-4/2, 0, 1)

b <- qnorm(1e-4/2, 0, 1, lower = FALSE)

x <- seq(a, b, length = 101)

plot(x, dnorm(x, 0, 1), ty = "l", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(N(0,1)))

segments(qts, 0 * qts, qts, dnorm(qts, 0, 1), lwd = 2)

A slightly fancier version of the above code is the following.

qts <- qnorm(c(.025, .25, .5, .75, .975), 0, 1)

a <- qnorm(1e-4/2, 0, 1)

b <- qnorm(1e-4/2, 0, 1, lower = FALSE)

x <- seq(a, b, length = 101)

plot(x, dnorm(x, 0, 1), ty = "n", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(N(0,1)))

ix.inner <- (x > qts[2]) & (x < qts[4])

ix.outer <- (x > qts[1]) & (x < qts[5])

lines(x[ix.outer], dnorm(x[ix.outer], 0, 1), ty = "h", lwd = 1, col = gray(0.8))

lines(x[ix.inner], dnorm(x[ix.inner], 0, 1), ty = "h", lwd = 1, col = gray(0.5))

segments(qts, 0 * qts, qts, dnorm(qts, 0, 1), lwd = 2)

lines(x, dnorm(x, 0, 1))

The following plots result by running these two pieces of codes.
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Task 3. Repeat task 2 now with the five-quantile summaries for each
pdf/pmf.

Getting quantiles from samples

When R does not provide a quantile function for a distribution, we can still approximate its quantiles
by drawing random samples from it. The code below compares a direct calculation against a sample
based approximation of quantiles for Normal(0, 1)

> qnorm(c(.025, .25, .5, .75, .975), 0, 1)

[1] -1.96 -0.67 0.00 0.67 1.96

> as.numeric(quantile(rnorm(1e4), c(.025, .25, .5, .75, .975)))

[1] -1.995 -0.690 -0.015 0.656 1.900

Task 4. Get five-quantile summaries of Poisson(30), Gamma(2, 1/5),
Logis(4, 10) and t4 based on random samples drawn from these distributions
(use 104 draws) and compare them with the actual values

Sampling from a pmf on a finite set

Let f(x) be a pmf on S = {x1, · · · , xk}, i.e., f(xi) ≥ 0, for each i, f(x) = 0 for any x 6∈ S and
f(x1) + · · · f(xk) = 1. A random sample of size n from f(x) can be drawn by using the following
function:

rdisc <- function(n, x, f){

u <- runif(n)

F <- cumsum(f)

below.u <- outer(u, F, "<")

return(x[rowSums(below.u)])

}

While this code is intended to sample from a finite pmf, it can also be used to sample from a
pdf, by approximating the pdf with a discretized version of it. If g(x) is a pdf on a range [a, b], we
can construct a discretized version as follows. Place M bins of width h = (b− a)/M on the range
[a, b]. Calculate the area under the curve within each bin, and call these areas g1, · · · , gM . Let
x1, · · · , xM denote the mid-points of the bins. Then the pmf f(x), found as f(xi) = gi, i = 1, · · · ,M
and f(x) = 0 otherwise is a discrete surrogate of g(x). We can now use the above code on f to get
a proxy sample from g(x).

In the above discretization, when h is small, we have gi ≈ hg(xi) and so gi ≈ g(xi)/(g(x1)+· · ·+
g(xM )). Therefore, we don’t quite need to calculate the bin areas – all we need is to evaluate g(x) at
the mid-points xi and then normalize. So even if we knew g(x) only up to a constant multiple, i.e.,
g(x) = const.× g̃(x) where we know how to evaluate g̃(x) but do not know the constant in front, we
could still carry out this program without any hassles, because now gi ≈ g̃(xi)/(g̃(x1)+· · ·+g̃(xM )).

Here’s this in action for a Beta(4, 4) distribution, the pdf of which equals g(x) = const×x3(1−
x)3, x ∈ [0, 1], it produces the Figure below. Note that a five-quantile summary is added based on
the proxy sample drawn.
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g.tilde <- function(x) return(x^3 * (1 - x)^3)

M <- 1e3

a <- 0

b <- 1

h <- (b - a) / M

x <- a + h * (1:M) - h/2

g <- g.tilde(x)

g.norm <- sum(g)

f <- g / g.norm

x.samp <- rdisc(1e4, x, f)

hist(x.samp, freq = FALSE, col = "gray", border = "white", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(Be(4,4)))

lines(x, dbeta(x, 4, 4))

qts <- as.numeric(quantile(x.samp, c(.025, .25, .5, .75, .975)))

segments(qts, 0 * qts, qts, g.tilde(qts) / (h * g.norm), lwd = 2)
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Task 5. Repeat the above for Beta(3, 7) and Beta(1/2, 1/2).

A Bayesian analysis

Consider the model X ∼ Binomial(n, p), p ∈ [0, 1] where n = 500. Suppose p modeled with
the pdf ξ(p) = ep/(e − 1), p ∈ [0, 1]. The posterior based on an observations x is ξ(p|x) =
const × px(1 − p)n−xep. The constant, which is one over the integral

∫ 1
0 q

x(1 − q)n−xeq, is quite
hard to derive analytically.

Task 6. Use the technique described above to make histogram plot ξ(p|x)
[you won’t have the smooth pdf curve any more] and to mark it with five-
quantile summary, for x = 200.
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