STA 114: STATISTICS

Lab 4

This lab overviews graphical and numerical summarization of pdfs and pmfs of scalar variables.
Plotting the pdf/pmf curve is the obvious choice for a graphical summary. Numerical summaries
can be based on various items, such as the expectation and variance under the pdf/pmf as well
as, and perhaps more usefully, its quantiles. We will discuss these keeping in mind applications
to summarizing posterior pdfs/pmfs in a Bayesian analysis. An additional challenge with such
pdfs/pmfs is that they are often known up to a constant multiple (the normalizing constant that
makes the curve a pdf or pmf). We’'ll see simple techniques to deal with this.

Plotting a pdf or a pmf

This is a trivial task if you have access to a R function £ () that returns the pdf/pmf value f (x) at
any input x. The only concern is to choose a good a range for x to display the curve. To display
a Normal(0, 1) pdf we can use a range [—4, 4], because most of the area under the Normal(0, 1) bell
curve is within this range (more than 0.9999). For an arbitrary Normal(u, 0?) pdf, we can display
the range p F 40, i.e., mean plus minus 4 standard deviations, which contains the same area under
the Normal(, 0%) curve as does [-4,4] for the Normal(0, 1) bell curve:
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TASK 1. Make a nice plot of the Normal(—500, 40%) pdf.

To annotate the axes and add a plot title, use:

plot(..., xlab = "x", ylab = "f(x)", main = expression(N(-500, 4072)))



The same strategy applies while plotting other pdfs or pmfs. Consider plotting the Binomial(500,0.4)

pmf. This pmf is supported on the points 0,1, ---,500. But the pmf is fairly tightly concentrated
around its mean 500 x 0.4 = 200, and so plotting it over the whole range is rather useless (see
the left panel of the Figure below). Instead, we can find a range [a, b], such that pmf puts only a
small probability, say 10™%, outside this range. We can find the two end points so that the left out
probability is equally split at the two tails. Then we must have a as the 107#/2-th quantile and b
as the (1 —107%/2)-th quantile of the Binomial(500, 0.4) distribution. The following code generates
the right panel of the Figure below.

a <- gbinom(le-4 / 2, 500, 0.4)

b <- gbinom(le-4 / 2, 500, 0.4, lower = FALSE)

x <- a:b

plot(x, dbinom(x, 500, 0.4), ty = "1", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(Bin(500, 0.4)))
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Task 2. Make plots for pdf/pmf of the Poisson(30), Gamma(2,1/5),
Logis(4, 10) and ¢4 distributions.

Quantiles of a distribution

The quantiles of a distribution offer an excellent way to summarize the distribution numerically or
graphically. We already saw an example of this above in choosing the range of = values [a,b] on
which we plot the pdf/pmf. While those give a sense of the extreme, we can also use quantiles to
mark the central parts of the distribution.

Recall that for any u € (0,1), the u-th quantile of a probability distribution with cdf F(x) is
defined to be the point x, such that F'(z,) = w. That is, u marks the point for which the area
below the pdf/pmf curve in the range (—oo, z,,] equals u. For a pmf curve, we may not get an exact
match between the area and the value u (because for a pmf curve, area below the curve increases
in jumps). In that case x,, is the smallest number x such that F(x) exceeds u.



The 0.5-th quantile is called the median of the distribution, it splits the area below the pdf/pmf
curve into half and half. The 0.25-th and the 0.75-th quantiles are called the first and the third
quartiles (median being the second quartile). Between the 0.025-th and the 0.975-th quantile, the
distribution packs 95% of its area. These five quantiles together give an excellent annotation of a
pdf/pmf. The following code shows these for Normal(0, 1).

qts <- gnorm(c(.025, .25, .5, .75, .975), 0, 1)

a <- gnorm(le-4/2, 0, 1)

b <- gnorm(le-4/2, 0, 1, lower = FALSE)

x <- seq(a, b, length = 101)

plot(x, dnorm(x, O, 1), ty = "1", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(N(0,1)))
segments(qts, 0 * gts, qts, dnorm(qts, 0, 1), lwd = 2)

A slightly fancier version of the above code is the following.

qts <- gnorm(c(.025, .25, .5, .75, .975), 0, 1)

a <- gnorm(le-4/2, 0, 1)

b <- gnorm(le-4/2, 0, 1, lower = FALSE)

x <- seq(a, b, length = 101)

plot(x, dnorm(x, O, 1), ty = "n", ann = FALSE)

title(xlab = "x", ylab = "f(x)", main = expression(N(0,1)))
ix.inner <- (x > qts[2]) & (x < gqts[4])

ix.outer <- (x > qts[1]) & (x < qts[5])

lines(x[ix.outer], dnorm(x[ix.outer], 0, 1), ty = "h", lwd = 1, col = gray(0.8))
lines(x[ix.inner], dnorm(x[ix.inner], 0, 1), ty = "h", lwd = 1, col = gray(0.5))
segments(qts, 0 * gts, qts, dnorm(qts, 0, 1), lwd = 2)
lines(x, dnorm(x, 0, 1))
The following plots result by running these two pieces of codes.
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Task 3. Repeat task 2 now with the five-quantile summaries for each
pdf/pmf.

Getting quantiles from samples

When R does not provide a quantile function for a distribution, we can still approximate its quantiles
by drawing random samples from it. The code below compares a direct calculation against a sample
based approximation of quantiles for Normal(0, 1)

> gnorm(c(.025, .25, .5, .75, .975), 0, 1)

[1] -1.96 -0.67 0.00 0.67 1.96

> as.numeric(quantile(rnorm(led4), c(.025, .25, .5, .75, .975)))
[1] -1.995 -0.690 -0.015 0.656 1.900

Task 4. Get five-quantile summaries of Poisson(30), Gamma(2,1/5),
Logis(4, 10) and ¢4 based on random samples drawn from these distributions
(use 10 draws) and compare them with the actual values

Sampling from a pmf on a finite set

Let f(z) be a pmf on S = {x1,---, x4}, i.e., f(z;) > 0, for each i, f(x) = 0 for any x ¢ S and
flx1) + - f(xg) = 1. A random sample of size n from f(z) can be drawn by using the following
function:

rdisc <- function(n, x, f){
u <- runif(n)
F <- cumsum(f)
below.u <- outer(u, F, "<")
return (x [rowSums (below.u)])

}

While this code is intended to sample from a finite pmf, it can also be used to sample from a
pdf, by approximating the pdf with a discretized version of it. If g(x) is a pdf on a range [a, b], we
can construct a discretized version as follows. Place M bins of width h = (b — a)/M on the range
[a,b]. Calculate the area under the curve within each bin, and call these areas g1,---,gy. Let
x1,- -, ) denote the mid-points of the bins. Then the pmf f(z), found as f(z;) = g;, i =1,--- , M
and f(x) = 0 otherwise is a discrete surrogate of g(z). We can now use the above code on f to get
a proxy sample from g(x).

In the above discretization, when h is small, we have g; ~ hg(x;) and so g; ~ g(x;)/(g(z1)+-- -+
g(xar)). Therefore, we don’t quite need to calculate the bin areas — all we need is to evaluate g(x) at
the mid-points z; and then normalize. So even if we knew g(x) only up to a constant multiple, i.e.,
g(x) = const. X g(x) where we know how to evaluate g(x) but do not know the constant in front, we
could still carry out this program without any hassles, because now g; = g(x;)/(g(x1)+---+g(znr))-

Here’s this in action for a Beta(4,4) distribution, the pdf of which equals g(x) = const x z3(1 —
z)3, x €]0,1], it produces the Figure below. Note that a five-quantile summary is added based on
the proxy sample drawn.



.tilde <- function(x) return(x~3 * (1 - x)~3)

hist(x.samp, freq = FALSE, col = "gray", border = "white", ann = FALSE)
title(xlab = "x", ylab = "f(x)", main = expression(Be(4,4)))

g

M <- 1e3

a<-0

b<-1

h<-(Mb-2a /M

x <-a+h* (1:M) - h/2
g <- g.tilde(x)

g.norm <- sum(g)

f <- g/ g.norm

x.samp <- rdisc(le4, x, f)
lines(x, dbeta(x, 4, 4))

qts <- as.numeric(quantile(x.samp, c(.025, .25, .5, .75, .975)))
segments(qts, 0 * gts, qts, g.tilde(qts) / (b * g.norm), lwd = 2)
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TASK 5. Repeat the above for Beta(3,7) and Beta(1/2,1/2).

A Bayesian analysis

Consider the model X ~ Binomial(n,p), p € [0,1] where n = 500. Suppose p modeled with
the pdf {(p) = e/(e — 1), p € [0,1]. The posterior based on an observations z is {(p|z) =

const X p*(1 —p

)’I’L—J}

eP. The constant, which is one over the integral fol q*(1 — q¢)" ®el, is quite

hard to derive analytically.

Task 6. Use the technique described above to make histogram plot £(p|z)
[you won’t have the smooth pdf curve any more| and to mark it with five-
quantile summary, for x = 200.




