
STA 114: Statistics

Lab 5

In Lab 3 we saw that we could sample from any arbitrary univariate pdf by discretizing its range
into small bins. This becomes difficult to do for multivariate pdfs, because you need many more
bins to cover a square on a plane than what you need to cover a line segment. A line segments
of unit length can be covered by n many bins of width 1/n. Whereas a square of unit side length
needs n2 square-shaped bins of side length 1/n for a coverage.

n bins n2 bins

However, there are other methods to sample from a pdf, which often prove more efficient in the
multivariate case. This lab overview a very popular approach, known as the Gibbs sampling.

Gibbs sampling

Let f(w, v) be a bivariate pdf from which we want to draw a sample (w1, v1), · · · , (wM , vM ). Let
f1(w|v) and f2(v|w) denote the two conditional pdfs associated with f(w, v). A Gibbs sampling
draws these samples iteratively as follows:

1. Start with an arbitrary (w0, v0) at which f(w0, v0) > 0.

2. For i = 1, · · · ,M iterate the following

(a) sample wi from the conditional pdf f1(w|v = vi−1) [using vi−1 from previous step]

(b) sample vi from the conditional pdf f2(v|w = wi) [using the new wi].

This program is fairly easy to run provided it is easy to sample from f1(w|v) and f2(v|w). Some
fairly advanced probability theory shows that the samples we generate (perhaps after discarding
some initial draws) well represent the bivariate pdf f(w, v). Consequently (and more usefully),
the samples w1, · · · , wM well represent the marginal pdf f1(w) and the samples v1, · · · , vM well
represent the marginal pdf f2(v).

Example (Bivariate normal). Consider the bivariate pdf
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defined over −∞ < w, v < ∞. This is known as the bivariate normal pdf with means µ1, µ2 ∈
(−∞,∞), variances σ2

1, σ
2
2 ∈ (0,∞) and correlation ρ ∈ (−1, 1). The following facts are known:
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• f1(w) = Normal(µ1, σ
2
1),

• f2(v) = Normal(µ2, σ
2
2).

• f1(w|v) = Normal(µ1 + ρσ1σ2 (v − µ2), σ2
1(1− ρ2)).

• f2(v|w) = Normal(µ2 + ρσ2σ1 (w − µ1), σ2
2(1− ρ2)).

We shall use Gibbs sampler to generate samples of (w, v) and then we shall compare them against
f(w, v), f1(w) and f2(v). The code below runs the sampler for a total of B + M iterations where
B is the number of initial samples to be discarded (these samples are referred to as the burn-in
samples). We start by setting B = 0 and later consider some actual discarding. The first illustration
is done wit h µ1 = µ2 = 0, σ1 = σ2 = 1 and ρ = 0.5.

# pdf parameters

mu.1 <- 0; mu.2 <- 0; sigma.1 <- 1; sigma.2 <- 1; rho <- 0.5

# inital values

w <- 0

v <- 0

# prepare vector to retain samples

M <- 1e3

B <- 0 ## number of initial samples to discard

w.samp <- rep(NA, B + M)

v.samp <- rep(NA, B + M)

# run Gibbs sampler

for(i in 1:(B + M)){

w <- rnorm(1, mu.1 + rho * sigma.1 / sigma.2 * (v - mu.2), sigma.2 * sqrt(1 - rho^2))

v <- rnorm(1, mu.2 + rho * sigma.2 / sigma.1 * (w - mu.1), sigma.1 * sqrt(1 - rho^2))

w.samp[i] <- w

v.samp[i] <- v

}

# discard the initial part

w.samp <- w.samp[B + 1:M]

v.samp <- v.samp[B + 1:M]

Next we visually compare the samples we generated against the pdf f(w, v). For this example,
we could evaluate the pdf, or more usefully, its logarithm, on a grid of values over the range of w
and v. It is convenient to write the log-pdf up to a constant

log f(w, v) = const− 1
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While plotting, we would not care about the constant. In fact, we would shift the values by a
constant amount so that the maximum equals zero. These are mere techniques to improve plots.
The code below gives details of these.
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# grids over ranges of w and v

w.grid <- mu.1 + sigma.1 * seq(-4,4,.1)

v.grid <- mu.2 + sigma.2 * seq(-4,4,.1)

# function to calculate log-pdf

log.pdf <- function(w, v) {

z.1 <- (w - mu.1) / sigma.1

z.2 <- (v - mu.2) / sigma.2

return(-0.5 * (z.1^2 + z.2^2 - 2 * rho * z.1 * z.2) / (1 - rho^2))

}

# contour type plots

lf.grid <- outer(w.grid, v.grid, log.pdf)

lf.grid <- lf.grid - max(lf.grid) ## don’t care about constant subtraction

image(w.grid, v.grid, lf.grid)

contour(w.grid, v.grid, lf.grid, add = TRUE)

points(w.samp, v.samp, pch = 20, cex = 0.3)

Task 1. Get separate histograms for samples of w and samples of v. Com-
pare them against the plots of the marginal pdf f1(w) and f2(v). You can
use the above grids.

Task 2. Run the sampler again and generate the three plots above with
ρ = 0.9.

Task 3. For ρ = 0.9, run the sampler again with starting values w = 10, v =
10. Generate the three plots and comment on the histogram comparisons.

Task 4. Now run the sampler again (ρ = 0.9) but allow burn-in B = 100.
Do the histograms improve?

Example (Normal and inverse-chi-square). Now consider the following bivariate pdf

f(w, v) = const.× v−
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]
defined over w ∈ (−∞,∞) and v ∈ (0,∞). It is fairly difficult to calculate the constant terms that
makes this function a pdf. But it is relatively easy to show that

• f1(w|v) = Normal(nb
2x̄+va
nb2+v

, vb2

nb2+v
) [note: the second parameter is the variance (not standard

deviation) of the normal pdf]

• f2(v|w) = χ−2(r + n, rs+(n−1)s2x+n(x̄−w)2

r+n ). [Note V ∼ χ−2(r′, s′) means (r′s′)/V ∼ χ2(r′)
which is the same as the Gamma(r′/2, 1/2) distribution.]
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Task 5. Use the above two conditionals to run a Gibbs sampler and generate
samples of (w, v) from f(w, v). Take a = 0, b = r = s = 1, n = 10, x̄ = 1.38
and sx = 0.33. Generate contour type plots to compare the samples with
the log-pdf. Also generate histograms of w samples and separately for v
samples.

Task 6. From the samples generated above, give five quantile sum-
maries for f1(w) and f2(v). Use the following grids: w.grid <- x.bar +

seq(-4,4,.1) / sqrt(n); v.grid <- s.x*s.x * seq(0.5, 5, 0.1)
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