
STA 114: Statistics

Lab 9

Pearson’s chi-square test for point null hypothesis on multinomial models

In this lab we’d explore Pearson’s chi-square test, which is an approximate ML test for the model
X ∼ Multinomial(n, p), p ∈ ∆k for hypotheses H0 : p = p0 against H1 : p ̸= p0. Pearson’s test
rejects H0 if Q(x) > c where

Q(x) =

k∑
l=1

(xl − el)
2

el

with el = np0l denoting the expected category counts under the null hypothesis. Size calculation
of this test is done by the approximate description Q(X) ∼ χ2(k − 1) under the null. We’ll
generate hypothetical data X from the null and see whether the distribution of Q(X) can indeed
be approximated by χ2(k − 1). The key things to look at are (i) how large n should be for the
approximation to be useful and (ii) does the quality of the approximation depends on what p0 is?

Before proceeding let’s see how to sample an x from a Multinomial(n, p0) pmf. R provides a
function rmultinom() in its stats package to do just this. You must first load the package (need
to do this only once for your whole session):

library(stats)

Next, write a function getQ() that would take n and p0 as inputs, sample an x fromMultinomial(n, p0)
and calculate and return Q(x):

getQ <- function(n, p0){

x <- c(rmultinom(1, n, p0))

ex.count <- n * p0

Q.x <- sum((x - ex.count)^2 / ex.count)

return(Q.x)

}

The following code helps to compare Q(X) with the candidate χ2(k−1) distribution. We essentially
draw a large number of samples of Q(x) with x generated from Multinomial(n, p0) and then compare
the histogram of the sampled values of Q(x) against the pdf of χ2(k − 1) = Gamma(k−1

2 , 12)

M <- 1e5

Q.samp <- replicate(M, getQ(n, p0))

Qs.max <- ceiling(max(Q.samp)) + 1

hist(Q.samp, freq = FALSE, col = "gray", border = "white", breaks = 0:Qs.max)

q.grid <- seq(0, Qs.max, .1)

lines(q.grid, dgamma(q.grid, (k - 1)/2, 1/2))

Q.chi <- rgamma(M, (k - 1)/2, 1/2)

Qc.max <- ceiling(max(Q.chi)) + 1

hist(Q.chi, freq = FALSE, add = TRUE, breaks = 0:Qc.max)
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Task 1. Fix n = 20, k = 3 and p0 = (13 ,
1
3 ,

1
3). Use the code above to

compare the actual distribution ofQ(X) against the proposed approximation
χ2(k − 1). Is the approximation satisfactory at this n (for the given p0)?

Task 2. Repeat Task 1 for increasing values of n = 30, 40, · · · etc. At
what n do you see a satisfactory agreement between the actual and the
approximating distributions?

Task 3. Now change p0 to (34 ,
1
8 ,

1
8). At what n do you see a good agreement

between the actual distribution of Q(X) and Pearson’s approximation?

Task 4. Would you say that the approximation kicks in at a lower n when
p0 has equal coordinates than when it does not?

Pearson’s chi-square goodness-of-fit tests

Now suppose we have data Y1, · · · , Yn and we want to test whether Yi’s are distributed according
to Normal(0, 1). We can set this up as a point null hypothesis in a multinomial model. To see this,
first split the range of the data (−∞,∞) into k bins:

(a0 = −∞, a1], (a1, a2], · · · , (ak−2, ak−1], (ak−1, ak = ∞)

and letXl count the number of Yi values in the l-th bin. ThenX = (X1, · · · , Xk) ∼ Multinomial(n, p),
p = (p1, · · · , pk) ∈ ∆k where pl gives the probability that Y1 belongs to the l-th bin. So accepting

that Yi
IID∼ Normal(0, 1) would imply accepting H0 : p = p0 where p0l = Φ(al)−Φ(al−1) with Φ(z) =

the cdf of Normal(0, 1). This hypothesis can be tested by using a size α Pearson’s chi-square test.
From our study before, we would want to choose the bins so that p0 has close to identical

coordinate values [i.e., p0 = (1/k, 1/k, · · · , 1/k)]. This can be achieved by taking a1 = Φ−1(1/k),
a2 = Φ−1(2/k) and so on. Also it is generally recommended that each bin must have an expected
count of at least 5, i.e., np0l ≥ 5. Which means we should not go for more than k = n/5 bins.

We would like to see how much power (1 - type II error probability) a size 5% test of this kind
has when Yi’s are NOT from the Normal(0, 1) distribution. The code below does this when true
distribution of Yi’s is the t(d) distribution for some d > 0.

typeII.err <- function(n, d){

y <- rt(n, df = d)

k <- floor(n / 5)

a <- qnorm(0:k/k)

a[1] <- min(y) - 1 ## adjust the end points

a[k + 1] <- max(y) + 1 ## to avoid -Inf, Inf

x <- hist(y, breaks = a, plot = FALSE)$counts

ex.ct <- n * rep(1/k, k)

Q.x <- sum((x - ex.ct)^2 / ex.ct)

return(Q.x < qgamma(1 - .05, (k -1)/2, 1/2)) ## TRUE = type II error

}
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You can use 1 - mean(replicate(5e3, typeII.err(n, d))) to approximate the power of
the test at true distribution t(d) for the given n.

Task 5. Use the above codes to approximate the power of the test at t(1).
What n do you need to get power more than 50%?

Task 6. Now do the same but with d = 5. Do you need a larger n to hit
the 50% power mark? Why would you need more observations than in the
case of d = 1?
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