STA 114: STATISTICS

Lab 9

Pearson’s chi-square test for point null hypothesis on multinomial models

In this lab we’d explore Pearson’s chi-square test, which is an approximate ML test for the model
X ~ Multinomial(n,p), p € Ay for hypotheses Hy : p = po against Hy : p # po. Pearson’s test
rejects Hy if Q(x) > ¢ where

~ (o - a)?
Q(x)zzleill
=1

with e; = npy denoting the expected category counts under the null hypothesis. Size calculation
of this test is done by the approximate description Q(X) ~ x%(k — 1) under the null. We’ll
generate hypothetical data X from the null and see whether the distribution of Q(X) can indeed
be approximated by x?(k — 1). The key things to look at are (i) how large n should be for the
approximation to be useful and (ii) does the quality of the approximation depends on what pg is?

Before proceeding let’s see how to sample an z from a Multinomial(n, py) pmf. R provides a
function rmultinom() in its stats package to do just this. You must first load the package (need
to do this only once for your whole session):

library(stats)

Next, write a function getQ() that would take n and pg as inputs, sample an x from Multinomial(n, pg)
and calculate and return Q(z):

getQ <- function(n, p0){
x <- c(rmultinom(1, n, p0))
ex.count <- n * p0
Q.x <- sum((x - ex.count)”2 / ex.count)
return(Q.x)

}

The following code helps to compare Q(X) with the candidate x?(k—1) distribution. We essentially
draw a large number of samples of Q(z) with x generated from Multinomial(n, pp) and then compare

the histogram of the sampled values of Q(z) against the pdf of x?(k — 1) = Gamma(%31, 1)

M <- 1eb

Q.samp <- replicate(M, getQ(n, p0))

Qs.max <- ceiling(max(Q.samp)) + 1

hist(Q.samp, freq = FALSE, col = "gray", border = "white", breaks = 0:Qs.max)
q.grid <- seq(0, Qs.max, .1)

lines(q.grid, dgamma(q.grid, (k - 1)/2, 1/2))

Q.chi <- rgamma(M, (k - 1)/2, 1/2)

Qc.max <- ceiling(max(Q.chi)) + 1

hist(Q.chi, freq = FALSE, add = TRUE, breaks = 0:Qc.max)

Task 1. Fix n = 20, £k = 3 and pg = (%,%,%) Use the code above to

compare the actual distribution of Q(X) against the proposed approximation
x2(k —1). Is the approximation satisfactory at this n (for the given pg)?

TASK 2. Repeat Task 1 for increasing values of n = 30,40, --- etc. At
what n do you see a satisfactory agreement between the actual and the
approximating distributions?

Task 3. Now change pg to (%, %, %) At what n do you see a good agreement

between the actual distribution of Q(X) and Pearson’s approximation?

Task 4. Would you say that the approximation kicks in at a lower n when
po has equal coordinates than when it does not?

Pearson’s chi-square goodness-of-fit tests

Now suppose we have data Y7,--- .Y, and we want to test whether Y;’s are distributed according
to Normal(0,1). We can set this up as a point null hypothesis in a multinomial model. To see this,
first split the range of the data (—oo, 00) into k bins:

(ap = —o0,a1], (a1,az], - -, (ag—2, a1}, (ag—1,ar = 00)

and let X; count the number of Y; values in the I-th bin. Then X = (X7, , X}) ~ Multinomial(n, p),
p=(p1, - ,pr) € A where p; gives the probability that Y7 belongs to the I-th bin. So accepting
that ¥; '~ Normal(0, 1) would imply accepting Hy : p = py where py; = ®(a;) — ®(a;_1) with &(z) =
the cdf of Normal(0,1). This hypothesis can be tested by using a size a Pearson’s chi-square test.

From our study before, we would want to choose the bins so that py has close to identical
coordinate values [i.e., po = (1/k,1/k,---,1/k)]. This can be achieved by taking a; = ®~1(1/k),
as = ®1(2/k) and so on. Also it is generally recommended that each bin must have an expected
count of at least 5, i.e., npo; > 5. Which means we should not go for more than k& = n/5 bins.

We would like to see how much power (1 - type II error probability) a size 5% test of this kind
has when Y;’s are NOT from the Normal(0,1) distribution. The code below does this when true
distribution of Y;’s is the ¢(d) distribution for some d > 0.

typell.err <- function(n, d){
y <- rt(n, df = d)
k <- floor(n / 5)
a <- gnorm(0:k/k)
al1] <- min(y) - 1 ## adjust the end points
alk + 1] <- max(y) + 1 ## to avoid -Inf, Inf
x <- hist(y, breaks = a, plot = FALSE)$counts
ex.ct <- n * rep(1/k, k)
Q.x <- sum((x - ex.ct)"2 / ex.ct)
return(Q.x < ggamma(l - .05, (k -1)/2, 1/2)) ## TRUE = type II error

You can use 1 - mean(replicate(5e3, typell.err(n, d))) to approximate the power of
the test at true distribution ¢(d) for the given n.

Task 5. Use the above codes to approximate the power of the test at #(1).
What n do you need to get power more than 50%7?

TAsk 6. Now do the same but with d = 5. Do you need a larger n to hit
the 50% power mark? Why would you need more observations than in the
case of d =17

