

STA 114: STATISTICS

Notes 9. Bayesian Approach to Statistical Inference

Example (Clinical diagnosis). A clinical test for a relatively rare disease (only 1% of population affected) is tested to have a 99% accuracy rate on patients who have the disease, and a 2% failure rate on patients who do not have it. A patient takes the test and gets a positive. What are the chances that he has the disease?

Let D denote the event that this patient has the disease. Then $P(D) = 0.01$. Let T_+ denote the event that the test results in a positive. Then $P(T_+|D) = 0.99$ and $P(T_+|D^c) = 0.02$ where D^c is the complement of D , i.e., the event that the patient does not have this disease. We want to evaluate $P(D|T_+)$.

This is an instance of “inverse probability” calculation that we learn as the Bayes theorem in our probability course:

$$P(D|T_+) = \frac{P(D)P(T_+|D)}{P(D)P(T_+|D) + P(D^c)P(T_+|D^c)} = \frac{1}{3}.$$

So the patient has a one in three chance of having the disease. In other words, his odds of not having the disease is two to one. \square

Inference via inverse probability

The formal components of the above analysis are

1. Plausibility scores attached to the two possible states of the unknown disease status ($P(D) = 0.01$, and consequently, $P(D^c) = 0.99$).
2. Plausibility scores attached to test outcomes for each state of disease status ($P(T_+|D) = 0.99 = 1 - P(T_-|D)$, where T_- is the event that the test gives a negative; similarly, $P(T_+|D^c) = 0.02 = 1 - P(T_-|D^c)$).
3. Combining the above two via the Bayes theorem to update the plausibility scores of D and D^c once an outcome of the test has been observed.

Component 2 above is like a probability model $X \sim f(x|\theta)$, with $\theta \in \Theta$ an unobservable quantity of interest (disease status of the patient with $\Theta = \{D, D^c\}$), while $X \in S$ is data to be observed (outcome of the clinical test, $S = \{T_+, T_-\}$). One learns $f(x|\theta)$ through experience and laboratory experimentation.

Component 1 is the novel feature of the Bayesian approach, where one needs to attach plausibility scores to the possible states of the unobservable quantity of interest before any observation is made. These plausibility scores represent one’s prior belief – the belief that precedes the observation process.

Component 3 is pure mathematics, and results straight out of the Bayes theorem once components 2 and 3 have been specified and an observation has been made for the observable quantity.

Prior belief is not a singular quantity and cannot be learned. Prior belief combines current understanding of the unknown quantity of interest with what one is willing to assume about it. It may vary from one person to another. It may require more than a single set of plausibility scores to represent one's prior belief. For our clinical diagnosis example, the fact that the patient has been recommended to take the test may persuade us to put $P(D)$ between 1% to 3%. In this case, $P(D|T_+)$ ranges between 33% to 61%.

Bayesian analysis: from prior to posterior

In the general setting, a Bayesian analysis of data combines a statistical model $X \sim f(x|\theta)$, $x \in S$, $\theta \in \Theta$, with a **prior pdf/pmf** $\xi(\theta)$ on Θ . This pdf/pmf represents pre-observation (or *a priori*) plausibility scores of the parameter values. These plausibility scores $\xi(\theta)$ on θ can be combined on the conditional plausibility scores $f(x|\theta)$ to construct joint plausibility scores $f(x|\theta)\xi(\theta)$ on $(x, \theta) \in S \times \Theta$. The function $h(x, \theta) = f(x|\theta)\xi(\theta)$ is simply a pdf/pmf/pdmf/pmdf on $S \times \Theta$, i.e., for any sets $A \subset S$ and $B \subset \Theta$,

$$P(X \in A, \theta \in B) = \begin{cases} \int_A \int_B f(x|\theta)\xi(\theta)d\theta dx & \text{if both } f(x|\theta) \text{ \& } \xi(\theta) \text{ are pdfs} \\ \sum_{x \in A} \sum_{\theta \in B} f(x|\theta)\xi(\theta) & \text{if both } f(x|\theta) \text{ \& } \xi(\theta) \text{ are pmfs} \\ \int_A \sum_{\theta \in B} f(x|\theta)\xi(\theta)dx & \text{if } f(x|\theta) \text{ is a pdf \& } \xi(\theta) \text{ is a pmf} \\ \sum_{x \in A} \int_B f(x|\theta)\xi(\theta)d\theta & \text{if } f(x|\theta) \text{ is a pmf \& } \xi(\theta) \text{ is a pdf} \end{cases}$$

where pmdf stands for probability mass-density function and pdmf stands for probability density-mass function.

Once an observation $X = x$ is made, we want to construct conditional plausibility scores on θ given the observed x value. The Bayes theorem says that these scores must come from the pdf/pmf $\xi(\theta|x)$ defined as

$$\xi(\theta|x) = \begin{cases} \frac{f(x|\theta)\xi(\theta)}{\int_{\Theta} f(x|\theta')\xi(\theta')d\theta'} & \text{if } \xi(\theta) \text{ is a pdf} \\ \frac{f(x|\theta)\xi(\theta)}{\sum_{\theta \in \Theta} f(x|\theta')\xi(\theta')} & \text{if } \xi(\theta) \text{ is a pmf} \end{cases},$$

this is because, by the Bayes theorem, for any set $B \subset \Theta$

$$P(\theta \in B|X = x) = \frac{\int_B f(x|\theta)\xi(\theta)d\theta}{\int_B f(x|\theta)\xi(\theta)d\theta + \int_{\Theta \setminus B} f(x|\theta)\xi(\theta)d\theta} = \int_B \xi(\theta|x)d\theta$$

[a similar calculation holds when $\xi(\theta)$ is a pmf].

The pdf/pmf $\xi(\theta|x)$ is called **the posterior pdf/pmf** of θ (on Θ) based on the model $X \sim f(x|\theta)$, the prior $\xi(\theta)$ and the observation $X = x$.

Likelihood function and posterior pdf/pmf

Note that post the observation $X = x$, the relative plausibility of $\theta = \theta_1$ against $\theta = \theta_2$ is given by

$$\frac{\xi(\theta_1|x)}{\xi(\theta_2|x)} = \frac{f(x|\theta_1)\xi(\theta_1)}{f(x|\theta_2)\xi(\theta_2)} = \frac{L_x(\theta_1)}{L_x(\theta_2)} \times \frac{\xi(\theta_1)}{\xi(\theta_2)}.$$

Therefore the scores given by the posterior combine the scores given by the prior (pre-observation beliefs) with scores given by the likelihood function (evidence/support from observation). Also note that, if the likelihood function equals $L_x(\theta) = \text{const.} \times a(\theta)$, then it is legitimate to write,

$$\xi(\theta|x) = \frac{L_x(\theta)\xi(\theta)}{\int_{\Theta} L_x(\theta')\xi(\theta')d\theta'} = \frac{a(\theta)\xi(\theta)}{\int_{\Theta} a(\theta')\xi(\theta')d\theta'}$$

when $\xi(\theta)$ is a pdf, and the same holds when $\xi(\theta)$ is a pmf.

An example: female birth rate in 18th century Paris

The great scholar Pierre-Simon, marquis de Laplace (1749-1827) was interested in learning the rate $p \in [0, 1]$ of female birth in Paris in the 18th century. He had access to a large body of birth records in Paris between 1745 to 1770 with n entries. From these he could extract the total number of entires X which recorded a female birth. A reasonable model for X is $X \sim \text{Binomial}(n, p)$, $p \in [0, 1]$.

For a prior pdf on p , Laplace decided that he had no reason to believe that for any two $p_1, p_2 \in [0, 1]$, the case $p = p_1$ was more plausible than the case $p = p_2$. In other words, Laplace believed all possible values of $p \in [0, 1]$ to be equally plausible. A pdf that ensures this is the **Uniform**(0, 1) pdf with $\xi(p) = 1$; $p \in [0, 1]$.

For an observations $X = x$, where $x \in \{0, 1, \dots, n\}$, the likelihood function is $L_x(p) = \text{const.} \times p^x(1-p)^{n-x}$. Therefore, the posterior pdf $\xi(p|x)$ takes the form:

$$\xi(p|x) = \frac{p^x(1-p)^{n-x}}{\int_0^1 q^x(1-q)^{n-x}dq} = \frac{p^x(1-p)^{n-x}}{B(x+1, n-x+1)}, \quad p \in [0, 1].$$

where $B(a, b)$ denotes the beta function, defined for any $a > 0, b > 0$ as

$$B(a, b) = \int_0^1 q^{a-1}(1-q)^{b-1}dq = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

where $\Gamma(a) = \int_0^{\infty} x^{a-1} \exp(-x)dx$ is the gamma function defined for every $a > 0$.

The pdf $g(y) = y^{a-1}(1-y)^{b-1}/B(a, b)$, $y \in [0, 1]$ is called the beta pdf with parameters a, b (both must be positive), and is denoted **Beta**(a, b). Therefore, $\xi(p|x)$ equals **Beta**($x+1, n-x+1$). In R, you can use **dbeta()**, **pbeta()**, **qbeta()** and **rbeta()** to get, respectively, the density function, the cumulative distribution function, the quantile function and random observations from a beta distribution. Figure 1 shows $\xi(p|x)$ against p for a toy setting with $n = 20$. Each curve on the Figure corresponds to one x in the range $0, 1, 2, \dots, n$. As x increases from 0 to n , the peak of the $\xi(p|x)$ curve shifts from left to right.

Toy example

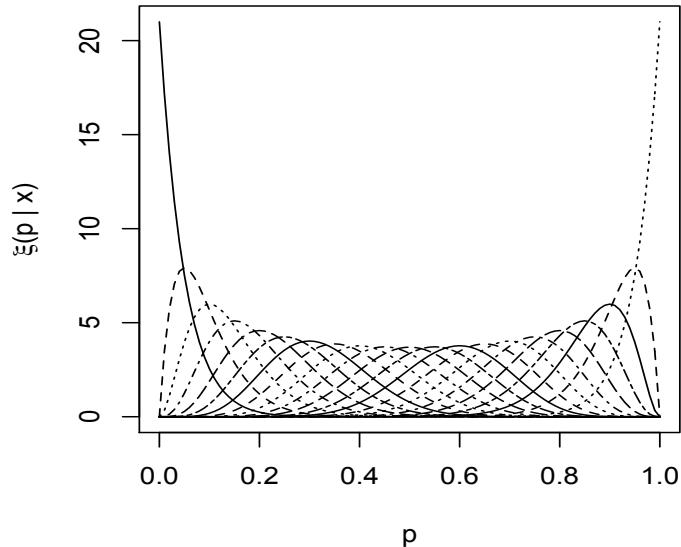


Figure 1: Posterior pdfs $\xi(p|x)$ for the model $X|\theta \sim \text{Binomial}(n, p)$ and $p \sim \text{Uniform}(0, 1)$. Here $n = 20$ and the posterior $\xi(p|x)$ is shown for each of $x = 0, 1, \dots, 20$.

Female birth rate

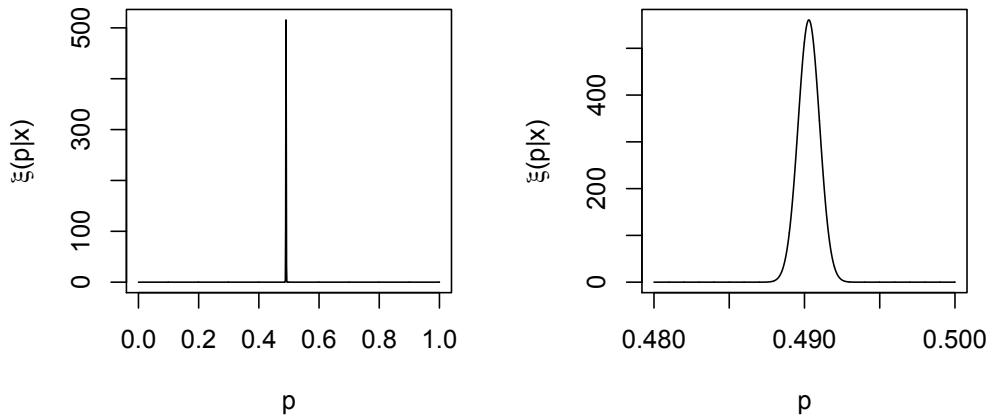


Figure 2: Posterior pdf $\xi(p|x)$ for female birth analysis by Laplace. The 50% rate ($\theta = 0.5$) is highlighted with a dotted vertical line in the middle. The posterior concentrates at a value lower than this mark. The right panel shows the same, but zooms into the range $p \in [0.48, 0.5]$.

The data Laplace had contained $n = 493472$ records with $x = 241945$ female births. This leads to a $\xi(p|x) = \text{Beta}(241946, 251528)$ posterior distribution for θ . Figure 2 shows this posterior pdf. Below are some of several possible summaries of the posterior.

- Laplace was concerned whether the female birth rate was smaller than the commonly held figure of 50%. The plausibility of this event, based on Laplace's model and observed data, is simply $P(p \leq 0.5|X = x) = \int_0^{0.5} \xi(p|x)dp$, which in R can be computed as

```
> pbeta(0.5, 241946, 251528) = 1. Keep in mind that this number is close to 1, but not exactly 1. In fact, it is more useful to look at converse:  $P(p > 0.5|X = x) = 1 - P(p \leq 0.5|x) = \int_{0.5}^1 \xi(p|x)dp$ , which equals
```

```
> pbeta(0.5, 241946, 251528) = 1.146e-42.
```

Laplace concluded that he was 'morally certain' that Θ is smaller than 0.5.

- If we are interested in a single number summary of p , we could try to extract a single number summary of the pdf $\xi(p|x)$. An attractive choice is the mean (expectation) under this pdf: $\bar{p}(x) = E[p|X = x] = \int_0^1 p\xi(p|x)dp$. The mean of a $\text{Beta}(a, b)$ pdf equals $a/(a + b)$, therefore the posterior mean of the female birth rate p is

```
> 241946 / (241946 + 251528) = 0.490
```

- If we are interested in reporting a range of values of p , we can look for an interval such that the pdf $\xi(p|x)$ assigns a small probability outside this interval. This is best represented by the quantiles $p_u(x)$ of $\xi(p|x)$, defined for any $u \in (0, 1)$, as the point a such that $P(\theta \leq a|X = x) = \int_0^a \xi(p|x)dp = u$. In particular, for any $\alpha \in (0, 1)$, the interval $A(x) = [p_{\alpha/2}(x), p_{1-\alpha/2}(x)]$ satisfies:

$$\begin{aligned} P(p \notin A(x)|X = x) &= P(p < p_{\alpha/2}(x)|X = x) + P(p > p_{1-\alpha/2}(x)|X = x) \\ &= \alpha/2 + \alpha/2 \\ &= \alpha. \end{aligned}$$

For $\alpha = 5\%$, the end-points of the interval $[p_{\alpha/2}(x), p_{1-\alpha/2}(x)]$ equal

```
> lower.end <- qbeta(.05 / 2, 241946, 251528) = 0.489
> upper.end <- qbeta(1 - .05 / 2, 241946, 251528) = 0.491
```

and, indeed, we can say the (posterior) probability of $\{0.489 \leq \theta \leq 0.491\}$ equals 95%.

The Bayesian philosophy

The Bayesian approach to inference is tied with the philosophy that any unknown variable can be quantified and communicated by specifying a pdf/pmf on the set of values the variable can assume. This is why in addition to quantifying data X by $f(x|\theta)$ for each possible value of the parameter θ , the Bayesian approach also requires a prior pdf/pmf $\xi(\theta)$ for θ . Once an observation is made, the quantification of θ is updated to the posterior pdf/pmf $\xi(\theta|x)$.

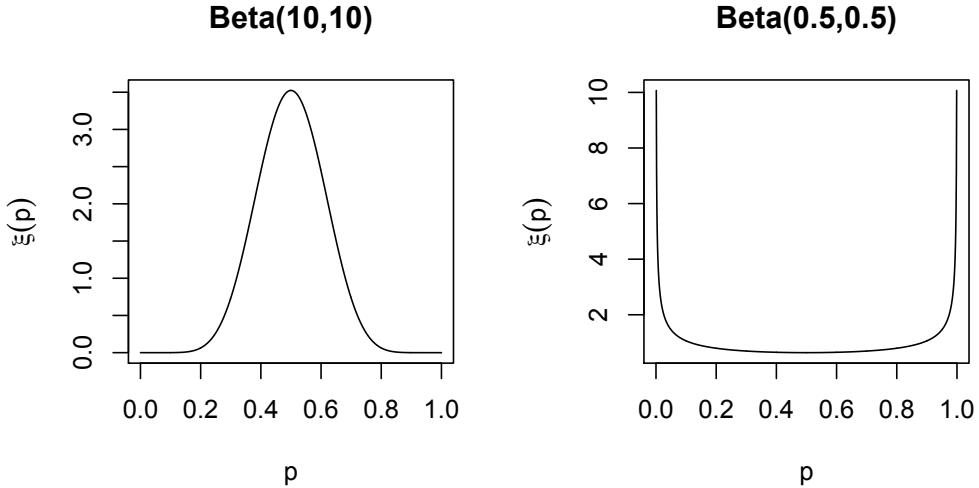


Figure 3: Possible choice of prior pdf $\xi(p)$ for opinion poll.

Unlike the classical approach, we do not view our report as “procedures applied to the observed data” and spend no energy on calibrating and providing performance guarantees for the procedures used. In a Bayesian analysis, reports are calibrated by the posterior pdf/pmf [Laplace reports the interval $[0.489, 0.491]$ and attaches to it a 95% chance under the posterior.] The real point of discussion and communication in a Bayesian analysis is the choice of prior distribution. Laplace offered a “no preference” logic as a defense of his choice of $\xi(p) = \text{Uniform}(0, 1)$. Both his choice and logic can be debated. And it might be important to consider multiple choices, all defensible on some logical ground.

Example (Opinion poll). Let’s go back to our opinion poll example where a researchers surveys $n = 500$ randomly chosen students from a college on their support to a certain federal policy, and records the number of supporters X in her sample. We model $X \sim \text{Binomial}(n, p)$, $p \in [0, 1]$. We could use Laplace’s logic and choose $\xi(p) = \text{Uniform}(0, 1)$. Or, one might argue that for such well debated policies, the plausibility of a p near 50% should be much higher than p near 0% or 100%. We can possibly choose $\xi(p) = \text{Beta}(10, 10)$, which is much like the $\text{Normal}(0.5, 0.012)$ pdf (Figure 3). If instead someone believes this policy to have strong partisan effects on colleges, then one may go for a pdf that favors values of p close to 0% or 100% than values in the middle. The $\text{Beta}(1/2, 1/2)$ is such a pdf (Figure 3).

Of course, these three choices of $\xi(p)$ would lead to three difference posterior pdfs $\xi(p|x)$ based on the same observation $X = x$, and results in three sets of reports on p . To choose between these reports, it is important to compare the merits of the corresponding choices of the prior pdf (the rest can not be questioned because the model on X is the same and the posterior pdf is merely a mathematical product of the Bayes theorem). If a choice appears indefensible on further scrutiny, one has to discard the corresponding analysis. If we end up with multiple acceptable prior choices, then we need to accept a multitude of reports on p , because, our uncertainty about p does not allow us to narrow the choice any further. \square