STA 114: STATISTICS

Notes 9. Bayesian Approach to Statistical Inference

Example (Clinical diagnosis). A clinical test for a relatively rare disease (only 1% of pop-
ulation affected) is tested to have a 99% accuracy rate on patients who have the disease,
and a 2% failure rate on patients who do not have it. A patient takes the test and gets a
positive. What are the chances that he has the disease?

Let D denote the event that this patient has the disease. Then P(D) = 0.01. Let T
denote the event that the test results in a positive. Then P(7|D) = 0.99 and P(T,|D°) =
0.02 where D¢ is the complement of D, i..e., the event that the patient does not have this
disease. We want to evaluate P(D|T).

This is an instance of “inverse probability” calculation that we learn as the Bayes theorem
in our probability course:

P(D)P(T,|D) 1
P(D)P(T,|D) + P(D)P(T,|D¢) 3’

P(DIT.) =

So the patient has a one in three chance of having the disease. In other words, his odds of
not having the disease is two to one. O]

Inference via inverse probability

The formal components of the above analysis are

1. Plausibility sores attached to the two possible states of the unknown disease status
(P(D) = 0.01, and consequently, P(D¢) = 0.99).

2. Plausibility scores attached to test outcomes for each state of disease status (P(T|D) =
0.99 =1 — P(T_|D), where T_ is the event that the test gives a negative; similarly,
P(T,|D°) =0.02=1— P(T_|D°)).

3. Combining the above two via the Bayes theorem to update the plausibility scores of
D and D¢ once an outcome of the test has been observed.

Component 2 above is like a probability model X ~ f(x|f), with § € © an unobservable
quantity of interest (disease status of the patient with © = {D, D¢}), while X € S is data
to be observed (outcome of the clinical test, S = {7';,7_}). One learns f(z|f) through
experience and laboratory experimentation.

Component 1 is the novel feature of the Bayesian approach, where one needs to attach
plausibility scores to the possible states of the unobservable quantity of interest before any
observation is made. This plausibility scores represent one’s prior belief — the belief that
precedes the observation process.



Component 3 is pure mathematics, and results straight out of the Bayes theorem once
components 2 and 3 have been specified and an observation has been made for the observable
quantity.

Prior belief is not a singular quantity and cannot be learned. Prior belief combines current
understanding of the unknown quantity of interest with what one is willing to assume about
it. It may vary from one person to another. It may require more than a single set of
plausibility scores to represent one’s prior belief. For our clinical diagnosis example, the
fact that the patient has been recommended to take the test may persuade us to put P(D)
between 1% to 3%. In this case, P(D|T, ) ranges between 33% to 61%.

Bayesian analysis: from prior to posterior

In the general setting, a Bayesian analysis of data combines a statistical model X ~ f(x|6),
x € 8,0 € 0, with a prior pdf/pmf £(f) on ©. This pdf/pmf represents pre-observation
(or a priori) plausibility scores of the parameter values. These plausibility scores £(6) on
@ can be combined on the conditional plausibility scores f(x|f) to construct joint plausi-
bility scores f(x|0)£(6) on (z,0) € S x ©. The function h(z,0) = f(x]|0)£(0) is simply a
pdf/pmf/pdmf/pmdf on S x O, i.e., for any sets A C S and B C O,

( [, [ F@]0)E0)dbdz i both f(x]6) & £(6) are pdfs

D wca ZGGB f(z]0)&(0) if both f(z[f) & £(6) are pmis

JaXoen [(@]0)€(0)dx it f(2]0) is a pdf & £(0) is a pmf
(Y vea [ F(@]0)E(0)d0 it f(x]0) is a pmf & £(0) is a pdf

where pmdf stands for probability mass-density function and pdmf stands for probability
density-mass function.

Once an observation X = x is made, we want to construct conditional plausibility scores
on f given the observed x value. The Bayes theorem says that these scores must come from
the pdf/pmf £(0|x) defined as

P(X € A0eB)=

f(z]0)¢ X .
% if £(0) is a pdf

$(6le) = f(=]0)£(6) ;
; if £(6) is a pmf

2oce f(x]07)5(07)

this is because, by the Bayes theorem, for any set B C ©

fB (x|0)&(
P60 e B|X = C

[a similar calculation holds when £(f) is a pmf].
The pdf/pmf £(0|z) is called the posterior pdf/pmf of # (on ©) based on the model
X ~ f(x]@), the prior £(f) and the observation X = x.



Likelihood function and posterior pdf/pmf
Note that post the observation X = x, the relative plausibility of § = #, against 6 = 6, is

given by
£(O1]x) - f(x]01)€(61) . Lo (01)  &(6h)

EO:17) ~ [@lB)E0) ~ Lu(6:) " E0)
Therefore the scores given by the posterior combine the scores given by the prior (pre-
observation beliefs) with scores given by the likelihood function (evidence/support from
observation). Also note that, if the likelihood function equals L,(6) = const. X a(6), then it
is legitimate to write,

_LOE®)  _ a)®)
Jo Lo0E@) 0~ T al0)E(@)d0r

when £(0) is a pdf, and the same holds when £(#) is a pmf.

§(0]x)

An example: female birth rate in 18th century Paris

The great scholar Pierre-Simon, marquis de Laplace (1749-1827) was interested in learning
the rate p € [0, 1] of female birth in Paris in the 18th century. He had access to a large body
of birth records in Paris between 1745 to 1770 with n entries. From these he could extract
the total number of entires X which recorded a female birth. A reasonable model for X is
X ~ Binomial(n,p), p € [0, 1].

For a prior pdf on p, Laplace decided that he had no reason to believe that for any two
p1,p2 € [0,1], the case p = p; was more plausible than the case p = p,. In other words,
Laplace believed all possible values of p € [0, 1] to be equally plausible. A pdf that ensures
this is the Uniform(0, 1) pdf with {(p) = 1; p € [0,1].

For an observations X = z, where x € {0,1,--- ,n}, the likelihood function is L,(p) =
const. X p*(1 — p)"~*. Therefore, the posterior pdf {(p|z) takes the form:

p:c(l _ p)n—x B px(l _ p)n—x

= , € 0,1].
foqu<1_q)nf:vdq B(:(:—i—l,n—l‘—l-l) p [ ]

£(plz) =

where B(a,b) denotes the beta function, defined for any a > 0,b > 0 as

! a—1 b—1 I'(a)L'(b)
B(a, b) —/0 ¢ (1—q) dg= Tath)’
where I'(a) = [;° 2! exp(—z)dz is the gamma function defined for every a > 0.

The pdf g(y) = y* (1 — y)*~1/B(a,b), y € [0,1] is called the beta pdf with parameters
a,b (both must be positive), and is denoted Beta(a,b). Therefore, {(p|z) equals Beta(z +
1,n—x+1). InR, you can use dbeta(), pbeta(), gbeta() and rbeta() to get, respectively,
the density function, the cumulative distribution function, the quantile function and random
observations from a beta distribution. Figure 1 shows £(p|x) against p for a toy setting with
n = 20. Each curve on the Figure corresponds to one z in the range 0,1,2,--- ;n. As x
increases from 0 to n, the peak of the &(p|z) curve shifts from left to right.



Toy example

Figure 1: Posterior pdfs {(p|z) for the model X|6 ~ Binomial(n,p) and p ~ Uniform(0, 1).
Here n = 20 and the posterior £(p|z) is shown for each of x = 0,1,--- ,20.
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Figure 2: Posterior pdf £(p|z) for female birth analysis by Laplace. The 50% rate (6 = 0.5)
is highlighted with a dotted vertical line in the middle. The posterior concentrates at a
value lower than this mark. The right panel shows the same, but zooms into the range
p € [0.48,0.5].



The data Laplace had contained n = 493472 records with x = 241945 female births. This
leads to a &(p|r) = Beta(241946, 251528) posterior distribution for 6. Figure 2 shows this
posterior pdf. Below are some of several possible summaries of the posterior.

e Laplace was concerned whether the female birth rate was smaller than the commonly
held figure of 50%. The plausibility of this event, based on Laplace’s model and
observed data, is simply P(p < 0.5|X = x) = f00'5 &¢(p|z)dp, which in R can be computed
as
> pbeta(0.5, 241946, 251528) = 1. Keep in mind that this number is close to 1,
but not exactly 1. In fact, it is more useful to look at converse: P(p > 0.5|X = z) =
1—-P(p<0.5x) = f01.5§(p|x)dp, which equals

> pbeta(0.5, 241946, 251528) = 1.146e-42.

Laplace concluded that he was ‘morally certain’ that © is smaller than 0.5.

e If we are interested in a single number summary of p, we could try to extract a single
number summary of the pdf {(p|z). An attractive choice is the mean (expectation)
under this pdf: p(z) = E[p|X = 2] = fol p&(plr)dp. The mean of a Beta(a, b) pdf equals
a/(a+ b), therefore the posterior mean of the female birth rate p is

> 241946 / (241946 + 251528) = 0.490

e If we are interested in reporting a range of values of p, we can look for an interval
such that the pdf &(p|x) assigns a small probability outside this interval. This is best
represented by the quantiles p,(z) of {(p|x), defined for any u € (0,1), as the point a
such that P(0 < a|X = z) = [ &(plz)dp = u. In particular, for any a € (0,1), the
interval A(z) = [pa/2(2), P1—as2(x)] satisfies:

Plp & A(@)|X = ) = P(p < paj2(2)|X =) + P(p > proaj(2)|X = )
=a/2+a/2

= .
For a = 5%, the end-points of the interval [pa/2(x), p1—a/2(x)] equal

> lower.end <- gbeta(.05 / 2, 241946, 251528) = 0.489
> upper.end <- gbeta(l - .05 / 2, 241946, 251528) = 0.491

and, indeed, we can say the (posterior) probability of {0.489 < § < 0.491} equals 95%.

The Bayesian philosophy

The Bayesian approach to inference is tied with the philosophy that any unknown variable
can be quantified and communicated by specifying a pdf/pmf on the set of values the variable
can assume. This is why in addition to quantifying data X by f(x|@) for each possible value
of the parameter 6, the Bayesian approach also requires a prior pdf/pmf £(6) for §. Once an
observation is made, the quantification of # is updated to the posterior pdf/pmf £(6|x).
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Figure 3: Possible choice of prior pdf £(p) for opinion poll.

Unlike the classical approach, we do not view our report as “procedures applied to the
observed data” and spend no energy on calibrating and providing performance guarantees
for the procedures used. In a Bayesian analysis, reports are calibrated by the posterior
pdf/pmf [Laplace reports the interval [0.489,0.491] and attaches to it a 95% chance under
the posterior.] The real point of discussion and communication in a Bayesian analysis is
the choice of prior distribution. Laplace offered a “no preference” logic as a defense of his
choice of &(p) = Uniform(0, 1). Both his choice and logic can be debated. And it might be
important to consider multiple choices, all defensible on some logical ground.

Example (Opinion poll). Let’s go back to our opinion poll example where a researchers
surveys n. = 500 randomly chosen students from a college on their support to a certain federal
policy, and records the number of supporters X in her sample. We model X ~ Binomial(n, p),
p € [0,1]. We could use Laplace’s logic and choose £(p) = Uniform(0, 1). Or, one might argue
that for such well debated policies, the plausibility of a p near 50% should be much higher
than p near 0% or 100%. We can possibly choose £(p) = Beta(10,10), which is much like
the Normal(0.5,0.012) pdf (Figure 3). If instead someone believes this policy to have strong
partisan effects on colleges, then one may go for a pdf that favors values of p close to 0% or
100% than values in the middle. The Beta(1/2,1/2) is such a pdf (Figure 3).

Of course, these three choices of {(p) would lead to three difference posterior pdfs £(p|x)
based on the same observation X = x, and results in three sets of reports on p. To choose
between these reports, it is important to compare the merits of the corresponding choices of
the prior pdf (the rest can not be questionsed because the model on X is the same and the
posterior pdf is merely a mathematical product of the Bayes theorem). If a choice appears
indefensible on further scrutiny, one has to discard the corresponding analysis. If we end up
with multiple acceptable prior choices, then we need to accept a multitude of reports on p,
because, our uncertainty about p does not allow us to narrow the choice any further. O



