
STA 114: Statistics

Notes 19. Categorical Data

Category count data

A great deal of social and biological science studies involve category count data. We have
seen the simplest example of this in our opinion poll study, where a researcher looks at
number of supporters and number of opposers of a federal law among n college students.
More generally, one might be interested in counts of k categories where k could be larger than
2. For example, in the opinion poll study, we could consider three categories of response:
“support”, “oppose” and “do not care”.

For n units of observations (e.g., college students) grouped into k categories (e.g., response
types), we shall denote the count data as X = (X1, · · · , Xk), where Xl ≥ 0 is the count in
the l-th category (e.g., number of supporters), and X1 + · · · +Xk = n. As usual, observed
data will be denoted x = (x1, · · · , xk), with xl ≥ 0 and x1+ · · ·+xk = n. The set of all such
vectors x is our samples space S.

The multinomial model

To describe a model for X, we look at the probability vector p = (p1, · · · , pk), with pl
denoting the probability that an observation unit is of type l. For p to be a probability
vector, we must have pl ≥ 0 and p1 + · · · + pk = 1. The set of all k-vectors p with these
properties will be denoted ∆k and called the k-dimensional simplex.

We make the assumption that the category types of the units are independent of each
other (same as assuming independent Bernoulli trials in defining a binomial count). Then
X can be described by the pmf

f(x|p) =
(

n

x1 · · · xk

)
px1
1 · · · pxk

k , x ∈ S

and f(x|p) = 0 for any other x. This pmf is called the multinomial pmf and is denoted
Multinomial(n, p). In above the multinomial coefficient(

n

x1 · · · xk

)
=

n!

x1! · · · xk!

is an extension of the binomial coefficient and gives the number of ways n units can be split
into k distinct groups.

It is easy to see that if X ∼ Multinomial(n, p) then for every l = 1, · · · , k, Xl ∼
Binomial(n, pl). To see this, simply label being in category l as ‘success’ and being in
any other category as ‘failure’, which makes Xl the total number of successes in n inde-
pendent trials each with success probability pl. Similarly for any two categories l ̸= j,
Xl +Xj ∼ Binomial(n, pl + pj) and so on.
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Maximum likelihood

Consider the multinomial model X ∼ Multinomial(n, p), p ∈ ∆k. For onservation X = x, the
likelihood function in p ∈ ∆k is given by

Lx(p) =

(
n

x1 · · · xk

)
px1
1 · · · pxk

k = const×
k∏

l=1

pxl
l

and the log-likelihood function is given by

ℓx(p) = const +
k∑

l=1

xl log pl.

To maximize this over p ∈ ∆k, we cannot directly use the standard trick of setting the partial
derivatives to zero, because ∆k imposes the restriction

∑k
l=1 pl = 1. Instead we use Lagrange

multiplies trick and set to zero the partial derivatives of the function

g(p, λ) = ℓx(p) + λ(
k∑

l=1

pl − 1)

jointly over (p, λ). That is we solve for (p, λ) in

∂

∂pl
g(p, λ) =

xl

pl
+ λ = 0, l = 1, 2, · · · , k

∂

∂λ
g(p, λ) =

k∑
l=1

pl − 1 = 0.

The first k equations ensure that the solution (p̂, λ̂) satisfies p̂l = −xl/λ̂, l = 1, · · · , k, which,
when plugged into the last equation, gives λ̂ = −n. Therefore p̂l = xl/n, l = 1, · · · , k. That
is, the maximum likelihood estimate of p based on data X = x is given by

p̂MLE(x) =

(
x1

n
, · · · , xk

n

)
.

Hypothesis testing

Categorical data provide a very useful platform for testing various scientific hypotheses.
Below are some examples.

Example (Mendel’s peas). Mendel, the founder of modern genetics, studied how physical
characteristics are inherited in plants. His studies led him to propose the laws of segregation
and independent assortment. We’ll test this in a simple context. Under Mendel’s laws, when
pure round-yellow and pure green-wrinkled pea plants are cross-bred, the next generation of
plant seeds should exhibit a 9:3:3:1 ratio of round-yellow, round-green, wrinkled-yellow and
wrinkled-green combinations of shape and color. In a sample of 556 plants from the next
generation the observed counts for these combinations are (315, 108, 101, 32). Does the data
support Mendel’s laws?

2



In this case, we have X = (X1, X2, X3, X4) giving the category counts of the four types of
plants with X ∼ Multinomial(n = 556, p), p ∈ ∆4. We want to test the point null hypothesis
H0 : p = ( 9

16
, 3
16
, 3
16
, 1
16
) against H1 : p ̸= ( 9

16
, 3
16
, 3
16
, 1
16
).

Example (Hardy-Weinberg equilibrium). The spotting on the wings of Scarlet tiger moths
are controlled by a gene that comes in two varieties (alleles) whose combinations (moths have
pairs of chromosomes) produce three varieties of spotting pattern: “white spotted”, “little
spotted” and “intermediate”. If the moth population is in Hardy-Weinberg equilibrium (no
current selection drift), then these varieties should be in the ratio a2 : (1 − a)2 : 2a(1 − a),
where a ∈ (0, 1) denotes the abundance of the dominant white spotting allele. In a sample of
1612 moths, the three varieties were counted to be 1469, 5 and 138. Is the moth population
in HW equilibrium?

Letting X = (X1, X2, X3) denote the category counts of the three spotting patterns, with
model X ∼ Multinomial(n = 1612, p), p ∈ ∆3, we want to test whether H0 : p ∈ ∆HW

3 against
H1 : p ̸= ∆HW

3 where ∆HW
3 is a subset of ∆3 containing all p of the form (a2, (1−a)2, 2a(1−a))

for some a ∈ (0, 1).
A third and widely used type of hypotheses, relating to independence of two or more

attributes with categorical outcomes, will be discussed in the next lecture.

ML tests

We’ll start with the point null hypothesis. We have X ∼ Multinomial(n, p) and we want to
test H0 : p = p0 against p ̸= p0 for some fixed p0 = (p01, p02, · · · , p0k) ∈ ∆k of interest. Any
ML test is given by

reject H0 if
Lx(p0)

Lx(p̂MLE(x))
< k

for some k ∈ (0, 1]. By using the form of the likelihood function and that of the MLE, we
get

Lx(p̂MLE(x))

Lx(p0)
=

k∏
l=1

(
xl

np0l

)xl

=
k∏

l=1

(
xl

el

)xl

where el = np0l is the expected count for category l if H0 were true. [Under H0, Xl ∼
Binomial(n, p0l) so EXl = np0l].

It can be shown that if n is fairly large and if none of the coordinates p0l of p0 is too close
to zero, then

Lx(p̂MLE(x))

Lx(p0)
≈ eQ(x)

where Q(x) =
∑k

l=1
(xl−el)

2

el
. Therefore, an ML test is approximately the same as

reject H0 if Q(x) > c

for some positive constant c.
To calculate the size of this test, we need to know the distribution of Q(X) when X ∼

Multinomial(p0). Karl Pearson showed that Q ∼ χ2(k − 1) approximately. Let Fk−1 denote
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the cdf of the χ2(k − 1) distribution. Then, an approximately size α ML test is given by

reject H0 if Q(x) > F−1
k−1(1− α).

Clearly, the p-value based on X = x for such tests is 1− Fk−1(Q(x)).

Pearson’s chi-square tests

The above test is known as the Pearson’s chi-square test. It applies beyond the point null
case. In general, suppose we’re testing H0 : p ∈ ∆0

k against H1 : p ̸= ∆0
k where ∆0

k is
determined by r many “free parameters”. [In the point null case, ∆0

k is a single point, and
has r = 0 free parameters. In the Hardy-Weinberg equilibrium example above, ∆k, with
k = 3 contains all p = (a2, (1− a)2, 2a(1− a)) with r = 1 free parameter a ∈ (0, 1).]. Given
observation X = x, the Pearson’s chi-square test can be performed by taking the following
steps:

1. Find the restricted MLE p̂0(x) = argmaxp∈∆0
k
Lx(p) under the null hypothesis.

2. Calculate “expected” category counts under the estimated null: êl = np̂0l, l = 1, · · · , k.

3. Calculate Pearson’s test statistic

Q(x) =
∑ (observed− expected)2

expected
=

k∑
l=1

(xl − êl)
2

êl

4. Given a level α ∈ (0, 1), reject H0 at level α if Q(x) > F−1
k−1−r(1− α).

5. Alternatively, report the p-value = 1− Fk−1−r(Q(x)).

Example (Mendel’s peas (contd)). Here H0 is a point null consisting of the single point
p0 = ( 9

16
, 3
16
, 3
16
, 1
16
). Therefore the restricted MLE is same as p̂0 = p0 and so

e1 = 312.75, e2 = 104.25, e3 = 104.25, e4 = 34.75.

So fro observed data x = (315, 108, 101, 32) we get Q(x) = 0.47. The p-value is 1−F3(0.47) =
1 - pgamma(0.47, 3/2, 1/2) = 0.92, because χ2(m) = Gamma(m/2, 1/2).

Example (HW equilibrium). Here H0 is not a point null, but has a free parameter a ∈ (0, 1).
Writing the likelihood function in terms of a we see,

Lx,H0(a) = const× {a2}x1 × {(1− a)2}x2 × {2a(1− a)}x3 = const× a2x1+x3(1− a)2x2+x3

and so this is maximized at â = 2x1+x3

2x1+x3+2x2+x3
= x1+x3/2

n
. So for our data, â = 1469+138/2

1612
=

0.954. Which leads to Q(x) = 0.83 and with p-value 1− F1(0.83) = 0.36.
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