
STA 114: Statistics

Notes 20. Chi-square tests for Independence, Goodness-of-fit

Two-way tables: category counts based on two attributes

A two-way contingency table is a special kind of categorical data where n units are split into
categories determined by two attributes. In the following table, 231 humans are categorized
according to their hair color and eye color.

Eye color
Blue Green Brown Black Total

H
ai
r
co
lo
r Blonde 20 15 18 14 67

Red 11 4 24 2 41
Brown 9 11 36 18 74
Black 8 17 20 4 49
Total 48 47 98 38 231

The table contains counts dataX on 16 categories and so we can modelX ∼ Multinomial(n, p)
with p in the 16-dimensional simplex.

However, as shown in the table, it is more convenient and informative to present the
counts as a two-dimensional array, with the labels of one attribute along each dimension.
Therefore, we would interpret, with R = number of rows and C = number of columns of the
table,

X = (X11, · · · , XR1, X12, · · · , XR2, · · · , X1C , · · · , XRC)

p = (p11, · · · , pR1, p12, · · · , pR2, · · · , p1C , · · · , pRC),

i.e., xij is the count in the (i, j)-th cell of the table and pij is the probability that any
unit would land up in that cell. Observed data would be denoted in the same manner:
x = (x11, · · · , xR1, x12, · · · , xR2, · · · , x1C , · · · , xRC).

To facilitate discussion, introduce the following margin counts

Xi· = Xi1 +Xi2 + · · ·+XiC , i = 1, 2, · · · , R
X·j = X1j +X2j + · · ·+XRj, j = 1, 2, · · · , C

and use similar definitions on p to get pi·’s, p·j’s and on x to get xi···’s and x·j’s. For the
hair-eye color table, x1· = 67, x·3 = 98 and so on.

The row counts XR = (X1·, · · · , XR·) are simply the count data when the units are
only split according to the row attribute (hair color). Similarly, the columns counts XC =
(X·1, · · · , X·C) give the one-way categorization according to the column-attribute (eye color).
Under the model X ∼ Multinomial(n, p), we must have XR ∼ Multinomial(n, pR) and XC ∼
Multinomial(n, pC). And if we observe data X = x then the observation for XR is simply xR

and that for XC is xC .

1



Test of attribute independence

Two way tables are widely used to test for independence between the two attributes. For
our hair-eye color example, we could test whether what eye color we have is independent of
our hair color. Under independence of the two attributes we can write:

pij = P (row attribute label = i, column attribute label = j)

= P (row attribute label = i)× P (column attribute label = j)

= pi·p·j.

Therefore, if we know pR = (p1·, · · · , pR·) and pC = (p·1, · · · , p·C), then under the assumption
of independence we can construct all RC elements ofp by taking products pij = pi·p·j. We’ll
use p = out(pR, pC) to denote such an “outer product” construction of p ∈ ∆RC from a
pR ∈ ∆R and a pC ∈ ∆C . So, we can formalize the hypothesis of independence as

H0 : p ∈ ∆out
RC , H1 : p ̸∈ ∆out

RC

where ∆out
RC = {p = out(pR, pC) : pR ∈ ∆R, p

C ∈ ∆C}.

Pearson’s test of independence

From our discussion in the last handout, we can test the above H0 as follows. We first
construct

Q(x) =
R∑
i=1

C∑
j=1

(xij − êij)
2

êij

where êij = np̂outij is the expected cell counts under H0, with p̂out denoting the restricted
MLE of p under H0. To find p̂out notice that for a p = out(pR, pC), the likelihood function
simplifies to

Lx(p) = const×
[ R∏

i=1

pxi·
i·

]
×
[ C∏

j=1

p
x·j
·j

]
and hence it is maximized at p̂i· = xi·/n, i = 1, 2, · · · , R and p̂·j = x·j/n, j = 1, 2, · · · , C.
That is, p̂outij = (xi·x·j)/n

2 and consequently, êij = (xi·x·j)/n.
With Q(x) constructed, Pearson’s chi-square size-α test would reject H0 if Q(x) >

F−1
k−1−r(1− α) where k = RC is the total number of categories, and r is the number of free

parameters in ∆out
RC . Note that elements of this set are made of a pR ∈ ∆R with R−1 free ele-

ments, plus with a pC ∈ ∆C with another C−1 free elements. So the number of free elements
in ∆out

RC is r = R−1+C−1. Combining, we get k−1−r = RC−R−C+1 = (R−1)(C−1).
So in summary, we’d perform a size-α Pearson’s chi-square test of independence by re-

jecting H0 if Q(x) > F−1
(R−1)(C−1)(1 − α). The p-value based on these tests is given by

1− F(R−1)(C−1)(Q(x)).

Example (Hair-eye color). To perform the test on the hair/eye color data, we’d insert in
each cell on the table the expected count xi·x·j/n (shown in parentheses below).
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Eye color
Blue Green Brown Black Total

H
ai
r
co
lo
r Blonde 20 (13.9) 15 (13.6) 18 (28.4) 14 (11.0) 67

Red 11(8.5) 4 (8.3) 24 (17.4) 2 (6.7) 41
Brown 9 (15.4) 11 (15.1) 36 (31.4) 18 (12.2) 74
Black 8 (10.2) 17 (10.0) 20 (20.8) 4 (8.1) 49
Total 48 47 98 38 231

and find Q(x) = 30.9. So the p-value is 1− F(4−1)(4−1)(30.9) = 1− F9(30.9) ≈ 0.

Testing goodness-of-fit

So far in our course we have always accepted a given statistical model to describe our
data. Can we ascertain whether a model is adequate for the data we observe? Surprisingly,
Pearson’s chi-square test provides quite a compelling way of doing it.

Let’s start with a simpler problem. Suppose we model Z = (Z1, · · · , Zn) as Zi
IID∼

Normal(0, 1). Once we observe data z = (z1, · · · , zn) can we ascertain if they really came
from a Normal(0, 1) distribution. We have done this in our labs many times. We simply
make a histogram plot of our data and then overlay with the pdf of the Normal(0, 1). If the
histogram and the pdf look similar, we’re reasonably happy that the Normal(0, 1) model fits
the observations.

In matching the histogram with the theoretical pdf, we essentially did the following. We
split the range of our observations into bins, then counted number of observations in each
bin and checked whether these counts are in agreement with the expected counts in the bins
if they really came from the Normal(0, 1) distribution. That is, we first turn our original
data into a count data (with multinomial pmf) and then checked whether they agree with
the bin probabilities under the Normal(0, 1) pdf.

Formalization through bin count and Pearson’s test

We can do this testing formally as follows. Fix k bins (a0 = −∞, a1], (a1, a2], · · · , (ak−2, ak−1],
(ak−1, ak = ∞) covering the whole of (−∞,∞), and define X1 as the number of Zi’s in the
first bin, X2 as the number of Zi’s in the second bin and so on. Together we get k bin counts,
and X = (X1, · · · , Xn) must have a Multinomial(n, p) where pl denotes the probability that
Z1 (or any other Zi) would be in the l-th bin (al−1, al].

If indeed Zi
IID∼ Normal(0, 1) then we should have p = p0 where p0l = Φ(al)− Φ(al−1) for

l = 1, · · · , k. Here Φ(z) denotes the Normal(0, 1) cdf. So we can rephrase our question as
testing H0 : p = p0 against H1 : p ̸= p0. If we reject H0, then that would mean that we have
evidence against Zi’s being IID Normal(0, 1).

Once the problem is set up this way, testing H0 is straightforward by using Pearson’s
chi-square test for a point null. That is, we calculate Q(x) =

∑k
l=1(xl − el)

2/el where
el = np0l = n(Φ(al)− Φ(al−1) and reject H0 at level α if Q(x) > F−1

k−1(1− α), or report the
p-value 1− Fk−1(Q(x)).

The only non-trivial thing here is how we choose the bins (how many and where). More
bins would mean a finer comparison between the histogram shape and the Normal(0, 1) pdf,
and hence better power. But by choosing too many bins, we may bring down the count in
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each to very small numbers, making the test unreliable. It is usually recommended that each
bin should have expected count (under the null) of at least 5. So we can take k to be the
integer just larger than or equal to n/5.

We saw in the lab that the power of a Pearson’s chi-square test against a point null
is larger when the point null is p0 = (1/k, · · · , 1/k). So we can choose al’s to make the
bins receive equal probabilities under the Normal(0, 1) pdf. This is achieved by setting
a1 = Φ−1(1/k), a2 = Φ−1(2/k), · · · , ak−1 = Φ−1((k − 1)/k). With this choice each el = n/k
so Q(x) =

∑k
l=1(xl − n/k)2/(n/k) = k

n

∑k
l=1(xl − n/k)2.

Similarly, if we wanted to test if Zi
IID∼ Normal(µ, σ2) for some fixed µ and σ2 then we

would do exactly as above, but choose the bins according to the inverse of the Normal(µ, σ2)
cdf, i.e., a1 = µ + σΦ−1(1/k), a2 = µ + σΦ−1(2/k), · · · , ak−1 = µ + σΦ−1((k − 1)/k).
Once we get the bin counts x1, · · · , xk we have a similar construction of the test statistic
Q(x) = k

n

∑k
l=1(xl − n/k)2. As before, Q(X) is approximately χ2(k − 1) under the null.

Therefore a size α test rejects H0 if Q(x) > F−1
k−1(1−α) and the p-value based on such tests

is 1− Fk−1(Q(x)).

Testing goodness-of-fit of the normal model

However, our real interest is in checking if Zi
IID∼ Normal(µ, σ2) for some µ and σ2 that are not

necessarily known to us. To tackle this we can follow the same recipe above but with µ and σ
estimated by µ̂ = z̄ and σ̂ = sz. That is, we use bins a1 = z̄+szΦ

−1(1/k), a2 = z̄+szΦ
−1(2/k),

etc to get our bin counts x1, · · · , xk. We again construct Q(x) = k
n

∑k
l=1(xl − n/k)2.

What should be the distribution of this Q(X) under the null? The number of free
parameters under the null is r = 2 because we had both µ and σ2 unknown. Should we
have Q(X) ∼ χ2(k − 1 − 2) = χ2(k − 3)? This approximation, however, does not work
so well. But it turns out that under the null P (Q(X) > c lies between 1 − Fk−3(c) and
1 − Fk−1(c). Consequently the p-value based on “reject H0 if Q(x) > c” type of tests lies
between 1− Fk−3(Q(x)) and 1− Fk−1(Q(x)). So we have a range of p-values.

Example (Lactic acid concentration). 30 samples from a cheese slab are measured to have
the following lactic acid concentrations:

0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58,

1.68, 1.90, 1.06, 1.30, 1.52, 1.74, 1.16, 1.49, 1.63, 1.99,

1.15, 1.33, 1.44, 2.01, 1.31, 1.46, 1.72, 1.25, 1.08, 1.25

We want to test whether these observations are IID draws from a Normal(µ, σ2) distibution,
with no assumption made on µ and σ2. The figure below (left) shows the data histogram
overlaid with the Normal(µ̂, σ̂2) pdf where µ̂ = z̄ = 1.44 and σ̂ = sz = 0.30. There seems a
fairly good agreement between the two.

Because we have n = 30, we can use k = n/5 = 6 bins of the form (al−1, al] with
al = z̄ + szΦ

−1(l/k). The bins are found to be (−∞, 1.15], (1.15, 1.31], (1.31, 1.44], (1.44,
1.57], (1.57, 1.74], (1.74,∞) with bin counts 5, 8, 2, 5, 4, 6. We calculate Q(x) = 4. Therefore
the p-value ranges between 1−F3(4) = 0.26 and 1−F5(4) = 0.55. So we would fail to accept
the null hypotheses at nominal levels of 5%, 10% or 1%.
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Atlantic TC counts

Testing goodness-of-fit of a general parametric model

The same concepts apply for a general model Zi
IID∼ g(zi||θ), θ ∈ Θ for data Z = (Z1, · · · , Zn).

We first find an estimate θ̂(z) of θ, usually the MLE, and then form k ≥ n/5 bins (al−1, al],
l = 1, · · · , k with al = G−1(l/k|θ = θ̂(x)), where G(zi|θ) denotes the CDF of g(zi|θ). We
get bin counts x1, · · · , xk and constrict Q(x) = k

n

∑k
l=1(xl − n/k)2 and find a p-value range

between 1 − Fk−1−r(Q(x)) and 1 − Fk−1(Q(x)) where r is the dimension of θ (i.e., number
of free parameters we needed to estimate).

Example (Annual TC counts in the north Atlantic). The annual tropical cyclone counts in
the north Atlantic between 1980 and 2009 are as below (30 years).

11 11 5 4 12 11 6 7 12 11

14 8 6 8 7 19 13 7 14 12

14 15 12 16 14 27 10 14 16 11

Are these data from a Poisson(µ) distribution for some µ > 0? To test this, we first estimate
µ by µ̂MLE(z) = 11.57. The figure above (right) shows the data histogram overlaid with the
Poisson(11.57) pmf. A total of n/5 = 6 bins are found by using the inverse CDF of this
Poisson pmf. These equal [0, 8], (8, 10], (10. 11], (11, 13], (13, 15], (15,∞) with bin counts
9 1 5 5 6 4. For these counts, we get Q(x) = 6.8. Consequently the p-value ranges between
1− F4(6.8) = 0.147 to 1− F5(6.8) = 0.236. So again there is no strong evidence against the
null hypothesis.
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