STA 114: STATISTICS

Notes 20. Chi-square tests for Independence, Goodness-of-fit

Two-way tables: category counts based on two attributes

A two-way contingency table is a special kind of categorical data where n units are split into
categories determined by two attributes. In the following table, 231 humans are categorized
according to their hair color and eye color.

Eye color
Blue Green Brown Black | Total
;5 Blonde | 20 15 18 14 67
2  Red 11 4 24 2 41
-3 Brown 9 11 36 18 74
= Black 8 17 20 4 49
Total 48 47 98 38 231

The table contains counts data X on 16 categories and so we can model X ~ Multinomial(n, p)
with p in the 16-dimensional simplex.

However, as shown in the table, it is more convenient and informative to present the
counts as a two-dimensional array, with the labels of one attribute along each dimension.
Therefore, we would interpret, with R = number of rows and C' = number of columns of the
table,

X =(Xu1, -, X1, Xa2,- -, Xgo, -+, Xy -+, Xgo)
p= (pllf” yPR1,P12, " s PR2, """ ,P1Cs " *° 7pRC>7

i.e., x;; is the count in the (¢,7)-th cell of the table and p;; is the probability that any
unit would land up in that cell. Observed data would be denoted in the same manner:
T = (xlla"' s LR1, X125 yLTR2, " ,X1C, " " axRC')'

To facilitate discussion, introduce the following margin counts

Xi = Xa+Xp+-+Xie, 1=12,--- R
Xj = Xy+Xoj+--+Xpg;, j=12,---,C

and use similar definitions on p to get p;.’s, p.;’s and on x to get x;..’s and x.;’s. For the
hair-eye color table, 1. = 67, x.3 = 98 and so on.

The row counts X® = (X,.,---,Xp.) are simply the count data when the units are
only split according to the row attribute (hair color). Similarly, the columns counts X¢ =
(X1, -+, X ) give the one-way categorization according to the column-attribute (eye color).
Under the model X ~ Multinomial(n, p), we must have X ~ Multinomial(n, pf*) and X ~
Multinomial(n, p®). And if we observe data X = x then the observation for X% is simply z%#
and that for X¢ is z¢.



Test of attribute independence

Two way tables are widely used to test for independence between the two attributes. For
our hair-eye color example, we could test whether what eye color we have is independent of
our hair color. Under independence of the two attributes we can write:

pij = P(row attribute label = ¢, column attribute label = j)
= P(row attribute label = i) x P(column attribute label = j)

= pzp]

Therefore, if we know p® = (p1.,--- ,pgr.) and p© = (p.1,--- , p.c), then under the assumption
of independence we can construct all RC' elements ofp by taking products p;; = p;.p.;. We'll
use p = out(p®,p%) to denote such an “outer product” construction of p € Agc from a
pft € Ap and a p© € A¢. So, we can formalize the hypothesis of independence as

HO - p < A(]);Ct'a : ¢ AOUt
where A% = {p = out(pf,p®) : pf* € Ag, p© € Ac}.

Pearson’s test of independence

From our discussion in the last handout, we can test the above H, as follows. We first

construct
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where é; = npg}" is the expected cell counts under Hy, with p°** denoting the restricted

MLE of p under Hy. To find p°" notice that for a p = out(p®, p®), the likelihood function
simplifies to

R c
L.(p) = const X {pr] X [Hpg;’]
i=1 j=1

and hence it is maximized at p;, = z;./n, i =1,2,--- R and p; = z;/n, j = 1,2,--- ,C.
That is, pi'* = (;.2.;)/n* and consequently, é;; = (z5.2.5)/n.

With Q( ) constructed, Pearson’s chi-square size-a test would reject Hy if Q(z) >
F7' (1 —a) where k = RC is the total number of categories, and r is the number of free
parameters in A%, Note that elements of this set are made of a p® € Ag with R—1 free ele-
ments, plus Wlth ap® € A¢ with another C'—1 free elements. So the number of free elements
in A‘If’%‘g isr = R—1+C—1. Combining, we get k—1—r=RC—-—R—C+1=(R—-1)(C—1).

So in summary, we’d perform a size-a Pearson’s chi-square test of independence by re-
jecting H, if Q(z) > F(%l_l)(c_l)(l — ). The p-value based on these tests is given by
1 = Flr-1)c-1(Q(x)).

Example (Hair-eye color). To perform the test on the hair/eye color data, we’d insert in
each cell on the table the expected count z;.x.;/n (shown in parentheses below).



Eye color
Blue Green Brown Black Total
& Blonde | 20 (13.9) 15 (13.6) 18 (28.4) 14 (11.0) | 67
S  Red 11(8.5) 4(8.3) 24 (174) 2(6.7) 41
-2 Brown | 9 (15.4) 11 (15.1) 36 (31.4) 18 (12.2) 74
= Black | 8 (10.2) 17 (10.0) 20 (20.8) 4 (8.1) 49
Total 48 47 98 38 231

and find Q(z) = 30.9. So the p-value is 1 — Fi4_1)1-1)(30.9) = 1 — F4(30.9) = 0.

Testing goodness-of-fit

So far in our course we have always accepted a given statistical model to describe our
data. Can we ascertain whether a model is adequate for the data we observe? Surprisingly,
Pearson’s chi-square test provides quite a compelling way of doing it.

Let’s start with a simpler problem. Suppose we model Z = (Zy,---,7,) as Z; ~
Normal(0,1). Once we observe data z = (z1,---,2,) can we ascertain if they really came
from a Normal(0,1) distribution. We have done this in our labs many times. We simply
make a histogram plot of our data and then overlay with the pdf of the Normal(0,1). If the
histogram and the pdf look similar, we’re reasonably happy that the Normal(0, 1) model fits
the observations.

In matching the histogram with the theoretical pdf, we essentially did the following. We
split the range of our observations into bins, then counted number of observations in each
bin and checked whether these counts are in agreement with the expected counts in the bins
if they really came from the Normal(0, 1) distribution. That is, we first turn our original
data into a count data (with multinomial pmf) and then checked whether they agree with
the bin probabilities under the Normal(0, 1) pdf.

Formalization through bin count and Pearson’s test

We can do this testing formally as follows. Fix k bins (ag = —00, a1], (a1, az|, - -, (ar_2, ax_1],
(ax_1,ar = 00) covering the whole of (—oo,00), and define X; as the number of Z;’s in the
first bin, X5 as the number of Z;’s in the second bin and so on. Together we get k bin counts,
and X = (Xq, -+, X,) must have a Multinomial(n, p) where p; denotes the probability that
7y (or any other Z;) would be in the [-th bin (a;_1, a;].

If indeed Z; ~ Normal(0, 1) then we should have p = py where py, = ®(a;) — ®(a;—1) for
[l =1,---,k. Here ®(z) denotes the Normal(0,1) cdf. So we can rephrase our question as
testing Hy : p = po against Hy : p # po. If we reject Hy, then that would mean that we have
evidence against Z;’s being IID Normal(0, 1).

Once the problem is set up this way, testing Hj is straightforward by using Pearson’s
chi-square test for a point null. That is, we calculate Q(z) = S.b, (1 — €)?/e; where
er = npy = n(®(a;) — ®(a;_) and reject Hy at level « if Q(x) > F_',(1 — «), or report the
p-value 1 — Fi_1(Q(x)).

The only non-trivial thing here is how we choose the bins (how many and where). More
bins would mean a finer comparison between the histogram shape and the Normal(0, 1) pdf,
and hence better power. But by choosing too many bins, we may bring down the count in

3



each to very small numbers, making the test unreliable. It is usually recommended that each
bin should have expected count (under the null) of at least 5. So we can take k to be the
integer just larger than or equal to n/5.

We saw in the lab that the power of a Pearson’s chi-square test against a point null
is larger when the point null is py = (1/k,---,1/k). So we can choose a;’s to make the
bins receive equal probabilities under the Normal(0,1) pdf. This is achieved by setting
a; =@ 1/k), ay = ®71(2/k), -+, a1 = @1 ((k — 1)/k). With this choice each ¢; = n/k
s0 Q(x) = Yoy (w0 — n/k)*/(n/k) = E30 (a1 = n/k)*.

Similarly, if we wanted to test if Z; ~ Normal(y,52) for some fixed z and o2 then we
would do exactly as above, but choose the bins according to the inverse of the Normal(u, o%)
cdf, ie., ay = p+ @1 (1/k), ay = p+ o®1(2/k), -+, ar_1 = p+ @ ((k — 1)/k).
Once we get the bin counts zq,--- , 2z, we have a similar construction of the test statistic
Q(z) = ES°F (2, — n/k)®  As before, Q(X) is approximately y2(k — 1) under the null.
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Therefore a size a test rejects Hy if Q(x) > F ', (1 — ) and the p-value based on such tests

is 1 — Fp1(Q(x)).

Testing goodness-of-fit of the normal model

However, our real interest is in checking if Z; ~ Normal(u, 0%) for some p and o that are not
necessarily known to us. To tackle this we can follow the same recipe above but with p and o
estimated by i = zZ and & = s,. That is, we use bins a; = z+s. P71 (1/k), as = z+s,9271(2/k),
etc to get our bin counts z1, - -+ ,x;. We again construct Q(x) = %Zf’;l(ml —n/k)>.

What should be the distribution of this Q(X) under the null? The number of free
parameters under the null is » = 2 because we had both p and ¢? unknown. Should we
have Q(X) ~ x*(k — 1 —2) = x*(k — 3)? This approximation, however, does not work
so well. But it turns out that under the null P(Q(X) > ¢ lies between 1 — Fj_3(c) and
1 — Fy_1(c). Consequently the p-value based on “reject Hy if Q(z) > ¢” type of tests lies
between 1 — Fi,_3(Q(z)) and 1 — Fj,_1(Q(x)). So we have a range of p-values.

Example (Lactic acid concentration). 30 samples from a cheese slab are measured to have
the following lactic acid concentrations:

0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58,
1.68, 1.90, 1.06, 1.30, 1.52, 1.74, 1.16, 1.49, 1.63, 1.99,
1.15, 1.33, 1.44, 2.01, 1.31, 1.46, 1.72, 1.25, 1.08, 1.25

We want to test whether these observations are IID draws from a Normal(u, o?) distibution,
with no assumption made on p and o?. The figure below (left) shows the data histogram
overlaid with the Normal(fi, 52?) pdf where fi = z = 1.44 and 6 = s, = 0.30. There seems a
fairly good agreement between the two.

Because we have n = 30, we can use k = n/5 = 6 bins of the form (a;_1,q;] with
a; = %z + s,971(I/k). The bins are found to be (—oo,1.15], (1.15, 1.31], (1.31, 1.44], (1.44,
1.57], (1.57, 1.74], (1.74, 00) with bin counts 5,8,2,5,4,6. We calculate Q(x) = 4. Therefore
the p-value ranges between 1 — F3(4) = 0.26 and 1 — F5(4) = 0.55. So we would fail to accept
the null hypotheses at nominal levels of 5%, 10% or 1%.



Lactic acid in cheese Atlantic TC counts

o o
- o
o _| g |
2 > °
@ D
c c -
A o
0 | S
© o
o | 8 |
D e IS A B B — S T T T T T T 1
0.8 10 12 14 16 18 20 2.2 0 5 10 15 20 25 30 35
z z

Testing goodness-of-fit of a general parametric model

The same concepts apply for a general model Z; ~ g(zl0), 0 € © for data Z = (Z,--- , Zy,).
We first find an estimate 0(z) of ¢, usually the MLE, and then form k > n/5 bins (a;-1, ai],
I =1,k with q = GY(I/k|0 = 0(z)), where G(2]0) denotes the CDF of g(z|6). We

get bin counts 1, - - , xy, and constrict Q(z) = £ S (2; — n/k)? and find a p-value range
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between 1 — Fy,_1_,.(Q(z)) and 1 — F_1(Q(x)) where r is the dimension of § (i.e., number
of free parameters we needed to estimate).

Example (Annual TC counts in the north Atlantic). The annual tropical cyclone counts in
the north Atlantic between 1980 and 2009 are as below (30 years).

1111 5 41211 6 7 12 11
14 8 6 8 7 19 13 7 14 12
14 15 12 16 14 27 10 14 16 11

Are these data from a Poisson(u) distribution for some p > 07 To test this, we first estimate
by fiyie(2) = 11.57. The figure above (right) shows the data histogram overlaid with the
Poisson(11.57) pmf. A total of n/5 = 6 bins are found by using the inverse CDF of this
Poisson pmf. These equal [0, 8], (8, 10], (10. 11], (11, 13], (13, 15], (15, 00) with bin counts
91556 4. For these counts, we get Q(x) = 6.8. Consequently the p-value ranges between
1 — Fy(6.8) = 0.147 to 1 — F5(6.8) = 0.236. So again there is no strong evidence against the
null hypothesis.



