STA 114: STATISTICS

Notes 6. Confidence intervals

Guaranteeing minimum coverage

We saw that coverage probabilities can be used in choosing the cut-off level ¢ of an ML
interval B,(z) = {0 : £,(0) > l,(Ayuu(z)) — 2/2}. This argument, however, was presented
only from the perspective of a single parameter value of interest (for the opinion poll example,
po = 0.5). It can be substantially extended.

Let A(z) be an interval procedure for a statistical model X ~ f(x]6), 6 € © and let v(A)

denote the minimum coverage probability of A across O, i.e.,

7(A) = min~y(A;0).
Because v(A;0y) > v(A) for any 0y € ©, using A(z) guarantees at least y(A) probability of
capturing the true value of the parameter, no matter what this true value is.

In the opinion poll example, if we could establish that v(Bj.gs) = 0.95, then the guarantee
(one in twenty chance of a report mismatched with the truth) we gave for the true value
po = 0.5 also applies for every true value py € [0,1]. That is if the college had only 25%
supporters, then at most only 5% of our infinitely many researchers would fail to include it
in their reported intervals. Of course this is subject to establishing y(Bj.9¢) = 0.95, we'll see
this calculations shortly, after we have dealt with the normal and the uniform model.

The quantity v(A) is called the confidence coefficient, or the confidence level of an interval
procedure A. If v(A) = 0.95, then A is often referred to a 95%-confidence interval (in short
95%-CI) for 0. Similarly, if v(A) = 0.9 then A is a 90%-CI, and so on.

Confidence interval for the normal mean (with known variance)

Consider the model X; ~ Normal(u, 0?), i1 € (—00,0), o fixed. Then, B.(z) = & F co//n.
For any py,
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But, if X; ~ Normal(s,0?) then X ~ Normal(pg,o?/n) and so the above probability is
exactly ®(c) — ®(—c) where ®(2) is the cumulative distribution function (CDF) of the stan-
dard normal distribution, i.e., ®(z) is the area under the standard normal bell curve between
—oo and z. Because the standard normal bell curve is symmetric around 0, the area below




the curve between —oo to —z is same as the area under the curve between z and oco. So
O(—2) =1— ®(z). And therefore

V(Bei po) = 20(c) — 1
and we have this identity for every py € (—o0, 00). So,

V(B:) = min (B o) = 2®(c) — 1.
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If we want to choose a ¢ so that B, is a 95%-CI for u, then we must equate 2®(c) —1 = 0.95.
From the z-tables (or from any statistics software), we find ¢ = 1.96.

Similarly for any fraction a € (0, 1), if we want to choose ¢ to make B, a 100(1 — a)%-CI
of 1, then we must have

20(c) —1=1-aq, and so, c = &1 (1 — a/2).
We can evaluate the last quantity in R by gnorm(1 - alpha / 2). You can verify that a
90%-CI is given by By g4 and a 99%-CI is given by B ss.

Example (Lactic acid concentration, Contd.). For our cheese data with n = 10, z = 1.379,
a 95%-CI produces the interval [1.17,1.59] for the overall concentration, a 90%-CI produces
[1.21,1.55] and a 99%-CI produces [1.11,1.65].

Confidence interval for the uniform model

Now consider the model X; ~ Uniform(0,6), 6 € (0,00). We know that for any fraction
k € [0,1], the ML interval Ag(x) = {0 : L,(0) > kL.(Oyus(7))} equals [Zmax, Tmax/EY"]. At
any 6y € (0,00), the coverage of this interval procedure is
P)/(Aka 90) = P[X\GO] (Xmax < 90 < Xmax/kl/n>
= P[X\00]<k1/n00 < Xmax < 60)
= Pixjoo)(Xmax > k')

because Xyax < O for sure if X; ~ Uniform(0, 6y). But,

Prxcioo)(Xmax = k/"60) = 1 = Pixjao)(Xmax < k"/"60)
=1 — P, (every X; < k'/76p)
= 1 — Pixjop) (X1 < k"00) X -+ X Prjaey (X < k/"6)
:1_1{1/77/)( . Xkl/n
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=1-—k.
Therefore, v(Ayg;60y) = 1 — k for every 6y € (0,00), and consequently,
v(Ag) = min (A 6p) =1 — k.

00€(0,00)

Therefore a 95%-CI for 6 is Ag s, a 90%-CI for 0 is Ag; and a 99%-CI for 6 is Ag.g;.
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Use of confidence coefficient

Note that unlike the risk associated with an estimator, the confidence coefficient associated
with an interval procedure does not help us compare two intervals in order to find the
“better” one. The interval procedure with maximum confidence is the that reports the
whole parameter space for all observed data (i.e., A(z) = © for all z,and so v(A) = 1).
But this is a stupid procedure. (One can compare two interval procedures A and B with
the same confidence coefficient by looking at which one is shorter in length for most or all
reSs.)

The most practical use of confidence coefficient is to associate guarantees to a set of
interval procedures that arise from a single way of evaluating “strength of evidence” of the
parameter values. For ML intervals, the strength of evidence is given by the likelihood (or
the log-likelihood) function, but different interval procedures Ay (or B.) arise based on the
cut-off point & (or ¢).

This concept goes beyond the ML principle and can be applied to any strength of evidence
function U, (6). For example, if T'(x) is an estimator of 6 and g(¢|f) denotes the pdf/pmf of
T(X) when X ~ f(z]f), then one could construct U,(0) = g(T(x)|f),0 € ©. This indeed
is the likelihood function of  for the model T' ~ ¢(t|6),0 € O, but this need not equal the
original likelihood function L,(6) = f(z|0),6 € ©. But once we have U,(f) we can obtain
interval procedures based on it in the form Aj(x) = {0 : U,(0) > kmaxyU,(6)} for any
cut-off k € [0,1]. The choice of k can be calibrated by computing the confidence coefficient

1Ay,

Example (CI based on median for normal data). Consider Xi,---, X, ~ Normal(y,c?),
€ (—o00,00), o fixed. It is known that if X; ~ Normal(s, 02) then X,., is approximately
distributed as Normal(y, 7%2) (the larger the n, the better the approximation). Therefore we
can generate median based interval procedures of the form B.(x) = .4 F CO‘\/W based

on the surrogate model X, ., ~ Normal(y, ”2;':), p € (—o0,00), o fixed. And we can state
v(B;) & 2®(c) — 1, Le., ¥(Big6) = 0.95, 7(B]64) = 0.90 etc. ]



