
STA 114: Statistics

Notes 6. Confidence intervals

Guaranteeing minimum coverage

We saw that coverage probabilities can be used in choosing the cut-off level c of an ML
interval Bc(x) = {θ : `x(θ) ≥ `x(θ̂MLE(x)) − c2/2}. This argument, however, was presented
only from the perspective of a single parameter value of interest (for the opinion poll example,
p0 = 0.5). It can be substantially extended.

Let A(x) be an interval procedure for a statistical model X ∼ f(x|θ), θ ∈ Θ and let γ(A)
denote the minimum coverage probability of A across Θ, i.e.,

γ(A) = min
θ∈Θ

γ(A; θ).

Because γ(A; θ0) ≥ γ(A) for any θ0 ∈ Θ, using A(x) guarantees at least γ(A) probability of
capturing the true value of the parameter, no matter what this true value is.

In the opinion poll example, if we could establish that γ(B1.96) = 0.95, then the guarantee
(one in twenty chance of a report mismatched with the truth) we gave for the true value
p0 = 0.5 also applies for every true value p0 ∈ [0, 1]. That is if the college had only 25%
supporters, then at most only 5% of our infinitely many researchers would fail to include it
in their reported intervals. Of course this is subject to establishing γ(B1.96) = 0.95, we’ll see
this calculations shortly, after we have dealt with the normal and the uniform model.

The quantity γ(A) is called the confidence coefficient, or the confidence level of an interval
procedure A. If γ(A) = 0.95, then A is often referred to a 95%-confidence interval (in short
95%-CI) for θ. Similarly, if γ(A) = 0.9 then A is a 90%-CI, and so on.

Confidence interval for the normal mean (with known variance)

Consider the model Xi
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ fixed. Then, Bc(x) = x̄∓ cσ/

√
n.

For any µ0,

γ(Bc;µ0) = P[X|µ0]

(
X̄ − c σ√

n
≤ µ ≤ X̄ + c

σ√
n

)
= P[X|µ0]

(
−c ≤ X̄ − µ0

σ/
√
n
≤ c

)
.

But, if Xi
IID∼ Normal(µ0, σ

2) then X̄ ∼ Normal(µ0, σ
2/n) and so the above probability is

exactly Φ(c)−Φ(−c) where Φ(z) is the cumulative distribution function (CDF) of the stan-
dard normal distribution, i.e., Φ(z) is the area under the standard normal bell curve between
−∞ and z. Because the standard normal bell curve is symmetric around 0, the area below
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the curve between −∞ to −z is same as the area under the curve between z and ∞. So
Φ(−z) = 1− Φ(z). And therefore

γ(Bc;µ0) = 2Φ(c)− 1

and we have this identity for every µ0 ∈ (−∞,∞). So,

γ(Bc) = min
µ0∈(−∞,∞)

γ(Bc;µ0) = 2Φ(c)− 1.

If we want to choose a c so that Bc is a 95%-CI for µ, then we must equate 2Φ(c)−1 = 0.95.
From the z-tables (or from any statistics software), we find c = 1.96.

Similarly for any fraction α ∈ (0, 1), if we want to choose c to make Bc a 100(1−α)%-CI
of µ, then we must have

2Φ(c)− 1 = 1− α, and so, c = Φ−1(1− α/2).

We can evaluate the last quantity in R by qnorm(1 - alpha / 2). You can verify that a
90%-CI is given by B1.64 and a 99%-CI is given by B2.58.

Example (Lactic acid concentration, Contd.). For our cheese data with n = 10, x̄ = 1.379,
a 95%-CI produces the interval [1.17, 1.59] for the overall concentration, a 90%-CI produces
[1.21, 1.55] and a 99%-CI produces [1.11, 1.65].

Confidence interval for the uniform model

Now consider the model Xi
IID∼ Uniform(0, θ), θ ∈ (0,∞). We know that for any fraction

k ∈ [0, 1], the ML interval Ak(x) = {θ : Lx(θ) ≥ kLx(θ̂MLE(x))} equals [xmax, xmax/k
1/n]. At

any θ0 ∈ (0,∞), the coverage of this interval procedure is

γ(Ak; θ0) = P[X|θ0](Xmax ≤ θ0 ≤ Xmax/k
1/n)

= P[X|θ0](k
1/nθ0 ≤ Xmax ≤ θ0)

= P[X|θ0](Xmax ≥ k1/nθ0)

because Xmax ≤ θ0 for sure if Xi
IID∼ Uniform(0, θ0). But,

P[X|θ0](Xmax ≥ k1/nθ0) = 1− P[X|θ0](Xmax < k1/nθ0)

= 1− P[X|θ0](every Xi ≤ k1/nθ0)

= 1− P[X|θ0](X1 ≤ k1/nθ0)× · · · × P[X|θ0](Xn ≤ k1/nθ0)

= 1− k1/n × · · · × k1/n︸ ︷︷ ︸
n many

= 1− k.

Therefore, γ(Ak; θ0) = 1− k for every θ0 ∈ (0,∞), and consequently,

γ(Ak) = min
θ0∈(0,∞)

γ(Ak; θ0) = 1− k.

Therefore a 95%-CI for θ is A0.05, a 90%-CI for θ is A0.1 and a 99%-CI for θ is A0.01.
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Use of confidence coefficient

Note that unlike the risk associated with an estimator, the confidence coefficient associated
with an interval procedure does not help us compare two intervals in order to find the
“better” one. The interval procedure with maximum confidence is the that reports the
whole parameter space for all observed data (i.e., A(x) = Θ for all x,and so γ(A) = 1).
But this is a stupid procedure. (One can compare two interval procedures A and B with
the same confidence coefficient by looking at which one is shorter in length for most or all
x ∈ S.)

The most practical use of confidence coefficient is to associate guarantees to a set of
interval procedures that arise from a single way of evaluating “strength of evidence” of the
parameter values. For ML intervals, the strength of evidence is given by the likelihood (or
the log-likelihood) function, but different interval procedures Ak (or Bc) arise based on the
cut-off point k (or c).

This concept goes beyond the ML principle and can be applied to any strength of evidence
function Ux(θ). For example, if T (x) is an estimator of θ and g(t|θ) denotes the pdf/pmf of
T (X) when X ∼ f(x|θ), then one could construct Ux(θ) = g(T (x)|θ), θ ∈ Θ. This indeed
is the likelihood function of θ for the model T ∼ g(t|θ), θ ∈ Θ, but this need not equal the
original likelihood function Lx(θ) = f(x|θ), θ ∈ Θ. But once we have Ux(θ) we can obtain
interval procedures based on it in the form A′k(x) = {θ : Ux(θ) ≥ kmaxθ Ux(θ)} for any
cut-off k ∈ [0, 1]. The choice of k can be calibrated by computing the confidence coefficient
γ(A′k).

Example (CI based on median for normal data). Consider X1, · · · , Xn
IID∼ Normal(µ, σ2),

µ ∈ (−∞,∞), σ fixed. It is known that if Xi
IID∼ Normal(µ, σ2) then Xmed is approximately

distributed as Normal(µ, πσ
2

2n
) (the larger the n, the better the approximation). Therefore we

can generate median based interval procedures of the form B′c(x) = xmed∓ cσ
√
π/(2n) based

on the surrogate model Xmed ∼ Normal(µ, πσ
2

2n
), µ ∈ (−∞,∞), σ fixed. And we can state

γ(B′c) ≈ 2Φ(c)− 1, i.e., γ(B′1.96) = 0.95, γ(B′1.64) = 0.90 etc.
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