

STA 114: STATISTICS

Notes 11. Central Credible Intervals & Multiparameter Models

Interval summary of a pdf/pmf

We have already seen that a “central range” of a pdf $f(x)$ over a scalar variable x , can be summarized by $[x_{\alpha/2}, x_{1-\alpha/2}]$ for some small $\alpha \in (0, 1)$, where for any $u \in (0, 1)$, x_u denotes the u -th quantile of $f(x)$. This means, if $F(x)$ denotes the cdf of $f(x)$, then x_u is the smallest number x such that $F(x) \geq u$. If $f(x)$ is a pdf, then $F(x)$ is continuous and so $x_u = F^{-1}(u)$.

For pdf $f(x)$, the interval $[x_{\alpha/2}, x_{1-\alpha/2}]$ comes with the credibility that the area under $f(x)$ within this range equals $F(x_{1-\alpha/2}) - F(x_{\alpha/2}) = 1 - \alpha/2 - \alpha/2 = 1 - \alpha$. For a pmf $f(x)$, the area is approximately $1 - \alpha$. Of course, there are many other intervals which would include an area of $1 - \alpha$ (e.g., the interval $[x_\beta, x_{1-(\alpha-\beta)}]$ for any $0 < \beta < \alpha$). However, the interval $[x_{\alpha/2}, x_{1-\alpha/2}]$ is “central”, because it leaves out exactly $\alpha/2$ area in either tail. We shall call $[x_{\alpha/2}, x_{1-\alpha/2}]$ the $100(1 - \alpha)\%$ central credible interval of the pdf/pmf $f(x)$. If $f(x)$ is used to give plausibility scores of a variable X then we shall also identify $[x_{\alpha/2}, x_{1-\alpha/2}]$ as the $100(1 - \alpha)\%$ central credible interval for X .

A nice property of this interval is invariance under monotone transformation. Suppose $X \sim f(x)$ and $Y = h(X)$ where $h(x)$ is a monotone (either increasing or decreasing) function. Then for any $u \in (0, 1)$, the u -th quantile y_u of Y is precisely $h(x_u)$, with x_u denoting the u -th quantile of X . Therefore the central $100(1 - \alpha)\%$ credible $[y_{\alpha/2}, y_{1-\alpha/2}]$ interval for Y is exactly $[h(x_{\alpha/2}), h(x_{1-\alpha/2})]$, which is obtained by applying the function $h(x)$ to the end points of the $100(1 - \alpha)\%$ credible interval of X .

Central credible intervals in scalar parameter Bayesian models

For a Bayesian analysis, we shall talk about prior and posterior credible intervals of a parameter or of a quantity derived from the parameter. For a model $X \sim f(x|\theta)$, with a scalar parameter $\theta \in \Theta$, and prior pdf/pmf $\xi(\theta)$, the central $100(1 - \alpha)\%$ prior credible interval for θ is $[\theta_{\alpha/2}, \theta_{1-\alpha/2}]$ and the central $100(1 - \alpha)\%$ posterior credible interval for θ is $[\theta_{\alpha/2}(x), \theta_{1-\alpha/2}(x)]$. If we are interested in $\eta = h(\theta)$, where h is a monotone transformation, then the invariance result above helps to get prior and posterior central credible intervals for η .

Example (Opinion poll). For the opinion poll example, with model $X \sim \text{Binomial}(n, p)$, $n = 500$, $p \in [0, 1]$ and $\xi(p) = \text{Uniform}(0, 1)$, the posterior is $\xi(p|x) = \text{Beta}(x + 1, n - x + 1)$. The central 95% prior credible interval for p is $[0.025, 0.975]$ (directly from the uniform pdf plot) and the central 95% posterior credible interval, based on data $x = 200$ is $[0.36, 0.44]$ (from `qbeta()`). If we are interested in the log-odds ratio $\eta = \log \frac{p}{1-p}$, then prior and posterior central 95% credible intervals of η are $[-3.7, 3.7]$ and $[-0.54, -0.28]$ (by applying the same transformation to the end points of the above intervals). \square

Central credible intervals in multiparameter Bayesian models

If the model parameter is vector valued, and we are interested in some scalar quantity $\eta = h(\theta)$ derived from it (h is now a many-to-one function, so cannot talk of monotonicity), then we must find prior and posterior pdfs of η from those of θ . Once we get these pdfs we can directly apply the central credible interval concept to these derived pdfs.

Example (Lactic acid concentration). Consider n lactic acid measurements modeled as $X_i \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$, $\mu \in (-\infty, \infty)$, $\sigma^2 \in (0, \infty)$, with a $\text{N}\chi^{-2}(1, 1, 1, 1)$ prior $\xi(\mu, \sigma^2)$. For observations $(0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58)$ with $n = 10$, $\bar{x} = 1.38$, $s_x = 0.33$, the posterior pdf is $\xi(\mu, \sigma^2|x) = \text{N}\chi^{-2}(1.34, 11, 11, 0.19)$. We are interested in getting a 95% posterior credible interval for μ .

From the properties of the normal-inverse-chi-square distributions, when $(\mu, \sigma^2) \sim \text{N}\chi^{-2}(m, k, r, s)$, the variable $\eta = \sqrt{k/s}(\mu - m)$ has a $t(r)$ pdf. So a $100(1 - \alpha)\%$ central credible interval for η is $[-z_r(\alpha), z_r(\alpha)]$. Because $\mu = m + \sqrt{s/k} \cdot \eta$ is a monotone transformation of η , we must have $m \mp \sqrt{s/k} \times z_r(\alpha)$ as the central $100(1 - \alpha)\%$ for μ .

Therefore, for $\xi(\mu, \sigma^2|x) = \text{N}\chi^{-2}(1.34, 11, 11, 0.19)$, the central 95% posterior credible interval for μ is $1.34 \mp 0.132 \times 2.2 = [1.05, 1.63]$. \square

Some fundamental concepts about multiparameter models

As in the previous example, we might be interested in a single parameter in a multi-parameter Bayesian model. There are various things we can pursue here and all follows from the basic concept of joint, conditional and marginal probability distributions of a collection of variables.

For simplicity, assume we have a two parameter model: $X \sim f(x|\theta_1, \theta_2)$, $\theta_1 \in \Theta_1$, $\theta_2 \in \Theta_2$ with prior pdf/pmf on $\xi(\theta_1, \theta_2)$ that leads to the posterior pdf/pmf $\xi(\theta_1, \theta_2|x) = \text{const} \times f(x|\theta_1, \theta_2)\xi(\theta_1, \theta_2)$ once we observe $X = x$.

So both the prior and the posterior provide plausibility scores on the joint space of θ_1 and θ_2 . From either, we can extract the plausibility scores on

- θ_1 alone , or
- θ_2 alone, or
- θ_1 given a specific value of θ_2 or
- θ_2 given a specific value of θ_1 .

To further simplify our discussion, let's assume that Θ_1 and Θ_2 are discrete sets, so both $\xi(\theta_1, \theta_2)$ and $\xi(\theta_1, \theta_2|x)$ are pmfs.

When we talk about the plausibility of $\theta_1 = \theta'_1$ (for some fixed number $\theta'_1 \in \Theta_1$), without saying anything about θ_2 , we are essentially considering all possibilities for θ_2 . That is the plausibility of $\theta_1 = \theta'_1$ is the same as the plausibility of the event $\{\theta_1 = \theta'_1, \theta_2 \in \Theta_2\}$. The plausibility score of this event, respectively under the prior and the posterior, equals $\xi_1(\theta'_1) = \sum_{\theta_2 \in \Theta_2} \xi(\theta'_1, \theta_2)$ and $\xi_1(\theta'_1|x) = \sum_{\theta_2 \in \Theta_2} \xi(\theta'_1, \theta_2|x)$. The functions $\xi_1(\theta_1)$ and $\xi_1(\theta_1|x)$ defined this way are pmfs over Θ_1 (this is easy to verify), and are called the marginal prior and posterior pmfs of θ_1 . We could similarly define the marginal prior and posterior pmfs of

θ_2 as $\xi_2(\theta_2) = \sum_{\theta_1 \in \Theta_1} \xi(\theta_1, \theta_2)$ and $\xi_2(\theta_2|x) = \sum_{\theta_1 \in \Theta_1} \xi(\theta_1, \theta_2|x)$ and use these to talk about θ_2 alone, without any specific mentions of θ_1 .

What if we want to talk about plausibility scores of θ_1 when θ_2 has been fixed at θ_2' ? The relative (conditional) scores of $\theta_1 = \theta_1'$ against $\theta_1 = \theta_1''$ given $\theta_2 = \theta_2'$ equals $\frac{\xi(\theta_1', \theta_2')}{\xi(\theta_1'', \theta_2')}$ under the prior and $\frac{\xi(\theta_1', \theta_2'|x)}{\xi(\theta_1'', \theta_2'|x)}$ under the posterior. These relative scores are characterized by the conditional pmfs of θ_1 given θ_2 defined as (under prior and posterior)

$$\xi_1(\theta_1|\theta_2) = \frac{\xi(\theta_1, \theta_2)}{\xi_2(\theta_2)}, \quad \xi_1(\theta_2|x, \theta_2) = \frac{\xi(\theta_1, \theta_2|x)}{\xi_2(\theta_2|x)}.$$

For every fixed value of θ_2 , the functions $\xi_1(\theta_1|\theta_2)$ and $\xi_1(\theta_1|x, \theta_2)$ are pmfs over $\theta_1 \in \Theta_1$ and will be called the conditional prior and posterior pmfs of θ_1 given θ_2 . We could similarly define conditional prior and posterior pmfs of θ_2 given θ_1 .

Similar concepts apply when either $\xi(\theta_1, \theta_2)$ or $\xi(\theta_1, \theta_2|x)$ or both are pdfs. We now talk about marginal prior and posterior pdfs of θ_1 : $\xi_1(\theta_1) = \int_{\Theta_2} \xi(\theta_1, \theta_2)d\theta_2$ and $\xi_1(\theta_1) = \int_{\Theta_2} \xi(\theta_1, \theta_2|x)d\theta_2$ (and similarly define $\xi_2(\theta_1)$ and $\xi_2(\theta_2|x)$ for θ_2). Conditional prior and posterior pdfs are still given by $\xi_1(\theta_1|\theta_2) = \xi(\theta_1, \theta_2)/\xi_2(\theta_2)$ and $\xi_1(\theta_1|x, \theta_2) = \xi(\theta_1, \theta_2|x)/\xi_2(\theta_2|x)$, but now viewed as pdfs over Θ_1 . Similar definition applies to $\theta_2 \in \Theta_1$.

Note that

$$\xi_1(\theta_1|\theta_2) = \text{const} \times \xi(\theta_1, \theta_2), \quad \theta_1 \in \Theta_1$$

where the constant term may involve θ_2 , but is constant wrt to the function argument θ_1 . So if we can identify $\xi(\theta_1, \theta_2)$ as a constant multiple of some pdf/pmf in θ_1 then $\xi_1(\theta_1|\theta_2)$ must equal that pdf/pmf. The same logic applies to $\xi_1(\theta_1|x, \theta_2)$, $\xi_2(\theta_2|\theta_1)$ and $\xi_2(\theta_2|x, \theta_1)$.