
STA 114: Statistics

Notes 11. Central Credible Intervals & Multiparameter Models

Interval summary of a pdf/pmf

We have already seen that a “central range” of a pdf f(x) over a scalar variable x, can be
summarized by [xα/2, x1−α/2] for some small α ∈ (0, 1), where for any u ∈ (0, 1), xu denotes
the u-th quantile of f(x). This means, if F (x) denotes the cdf of f(x), then xu is the smallest
number x such that F (x) ≥ u. If f(x) is a pdf, then F (x) is continuous and so xu = F−1(u).

For pdf f(x), the interval [xα/2, x1−α/2] comes with the credibility that the area under
f(x) within this range equals F (x1−α/2) − F (xα/2) = 1 − α/2 − α/2 = 1 − α. For a pmf
f(x), the area is approximately 1−α. Of course, there are many other intervals which would
include an area of 1 − α (e.g., the interval [xβ, x1−(α−β)] for any 0 < β < α). However, the
interval [xα/2, x1−α/2] is “central”, because it leaves out exactly α/2 area in either tail. We
shall call [xα/2, x1−α/2] the 100(1−α)% central credible interval of the pdf/pmf f(x). If f(x)
is used to give plausibility scores of a variable X then we shall also identify [xα/2, x1−α/2] as
the 100(1− α)% central credible interval for X.

A nice property of this interval is invariance under monotone transformation. Suppose
X ∼ f(x) and Y = h(X) where h(x) is a monotone (either increasing or decreasing) function.
Then the for any u ∈ (0, 1), the u-th quantile yu of Y is precisely h(xu), with xu denoting
the u-th quantile of X. Therefore the central 100(1− α)% credible [yα/2, y1−α/2] interval for
Y is exactly [h(xα/2), h(x1−α/2)], which is obtained by applying the function h(x) to the end
points of the 100(1− α)% credible interval of X.

Central credible intervals in scalar parameter Bayesian models

For a Bayesian analysis, we shall talk about prior and posterior credible intervals of a pa-
rameter or of a quantity derived from the parameter. For a model X ∼ f(x|θ), with a
scalar parameter θ ∈ Θ, and prior pdf/pmf ξ(θ), the central 100(1 − α)% prior credible
interval for θ is [θα/2, θ1−α/2] and the central 100(1− α)% posterior credible interval for θ is
[θα/2(x), θ1−α/2(x)]. If we are interested in η = h(θ), where h is a monotone transformation,
then the invariance result above helps to get prior and posterior central credible intervals for
η.

Example (Opinion poll). For the opinion poll example, with model X ∼ Binomial(n, p),
n = 500, p ∈ [0, 1] and ξ(p) = Uniform(0, 1), the posterior is ξ(p|x) = Beta(x+ 1, n− x+ 1).
The central 95% prior credible interval for p is [0.025, 0.975] (directly from the uniform pdf
plot) and the central 95% posterior credible interval, based on data x = 200 is [0.36, 0.44]
(from qbeta()). If we are interested in the log-odds ratio η = log p

1−p , then prior and

posterior central 95% credible intervals of η are [−3.7, 3.7] and [−0.54,−0.28] (by applying
the same transformation to the end points of the above intervals).
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Central credible intervals in multiparameter Bayesian models

If the model parameter is vector valued, and we are interested in some scalar quantity
η = h(θ) derived from it (h is now a many-to-one function, so cannot talk of monotonicity),
then we must find prior and posterior pdfs of η from those of θ. Once we get these pdfs we
can directly apply the central credible interval concept to these derived pdfs.

Example (Lactic acid conentration). Consider n lactic acid measurements modeled as

Xi
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ2 ∈ (0,∞), with a Nχ−2(1, 1, 1, 1) prior ξ(µ, σ2). For

observations (0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58) with n = 10, x̄ = 1.38,
sx = 0.33, the posterior pdf is ξ(µ, σ2|x) = Nχ−2(1.34, 11, 11, 0.19). We are interested in
getting a 95% posterior credible interval for µ.

From the properties of the normal-inverse-chi-square distributions, when (µ, σ2) ∼ Nχ−2(m, k, r, s),
the variable η =

√
k/s(µ−m) has a t(r) pdf. So a 100(1−α)% central credible interval for

η is [−zr(α), zr(α)]. Because µ = m+
√
s/k · η is a monotone transformation of η, we must

have m∓
√
s/k × zr(α) as the central 100(1− α)% for µ.

Therefore, for ξ(µ, σ2|x) = Nχ−2(1.34, 11, 11, 0.19), the central 95% posterior credible
interval for µ is 1.34∓ 0.132× 2.2 = [1.05, 1.63].

Some fundamental concepts about multiparameter models

As in the previous example, we might be interested in a single parameter in a multi-parameter
Bayesian model. There are various things we can pursue here and all follows from the
basic concept of joint, conditional and marginal probability distributions of a collection of
variables.

For simplicity, assume we have a two parameter model: X ∼ f(x|θ1, θ2), θ1 ∈ Θ1,
θ2 ∈ Θ2 with prior pdf/pmf on ξ(θ1, θ2) that leads to the posterior pdf/pmf ξ(θ1, θ2|x) =
const× f(x|θ1, θ2)ξ(θ1, θ2) once we observe X = x.

So both the prior and the posterior provide plausibility scores on the joint space of θ1

and θ2. From either, we can extract the plausibility scores on

• θ1 alone , or

• θ2 alone, or

• θ1 given a specific value of θ2 or

• θ2 given a specific value of θ1.

To further simplify our discussion, let’s assume that Θ1 and Θ2 are discrete sets, so both
ξ(θ1, θ2) and ξ(θ1, θ2|x) are pmfs.

When we talk about the plausibility of θ1 = θ′1 (for some fixed number θ′1 ∈ Θ1), without
saying anything about θ2, we are essentially considering all possibilities for θ2. That is
the plausibility of θ1 = θ′1 is the same as the plausibility of the event {θ1 = θ′1, θ2 ∈ Θ2}.
The plausibility score of this event, respectively under the prior and the posterior, equals
ξ1(θ′1) =

∑
θ2∈Θ2

ξ(θ′1, θ2) and ξ1(θ′1|x) =
∑

θ2∈Θ2
ξ(θ′1, θ2|x). The functions ξ1(θ1) and ξ1(θ1|x)

defined this way are pmfs over Θ1 (this is easy to verify), and are called the marginal prior
and posterior pmfs of θ1. We could similarly define the marginal prior and posterior pmfs of
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θ2 as ξ2(θ2) =
∑

θ1∈Θ1
ξ(θ1, θ2) and ξ2(θ2|x) =

∑
θ1∈Θ1

ξ(θ1, θ2|x) and use these to talk about
θ2 alone, without any specific mentions of θ1.

What if we want to talk about plausibility scores of θ1 when θ2 has been fixed at θ′2? The

relative (conditional) scores of θ1 = θ′1 against θ1 = θ′′1 given θ2 = θ′2 equals
ξ(θ′1,θ

′
2)

ξ(θ′′1 ,θ
′
2)

under

the prior and
ξ(θ′1,θ

′
2|x)

ξ(θ′′1 ,θ
′
2|x)

under the posterior. These relative scores are characterized by the

conditional pmfs of θ1 given θ2 defined as (under prior and posterior)

ξ1(θ1|θ2) =
ξ(θ1, θ2)

ξ2(θ2)
, ξ1(θ2|x, θ2) =

ξ(θ1, θ2|x)

ξ2(θ2|x)
.

For every fixed value of θ2, the functions ξ1(θ1|θ2) and ξ1(θ1|x, θ2) are pmfs over θ1 ∈ Θ1 and
will be called the conditional prior and posterior pmfs of θ1 given θ2. We could similarly
define conditional prior and posterior pmfs of θ2 given θ1.

Similar concepts apply when either ξ(θ1, θ2) or ξ(θ1, θ2|x) or both are pdfs. We now
talk about marginal prior and posterior pdfs of θ1: ξ1(θ1) =

∫
Θ2
ξ(θ1, θ2)dθ2 and ξ1(θ1) =∫

Θ2
ξ(θ1, θ2|x)dθ2 (and similarly define ξ2(θ1) and ξ2(θ2|x) for θ2). Conditional prior and pos-

terior pdfs are still given by ξ1(θ1|θ2) = ξ(θ1, θ2)/ξ2(θ2) and ξ1(θ1|x, θ2) = ξ(θ1, θ2|x)/ξ2(θ2|x),
but now viewed as pdfs over Θ1. Similar definition applies to θ2 ∈ Θ1.

Note that
ξ1(θ1|θ2) = const× ξ(θ1, θ2), θ1 ∈ Θ1

where the constant term may involve θ2, but is constant wrt to the function argument θ1.
So if we can identify ξ(θ1, θ2) as a constant multiple of some pdf/pmf in θ1 then ξ1(θ1|θ2)
must equal that pdf/pmf. The same logic applies to ξ1(θ1|x, θ2), ξ2(θ2|θ1) and ξ2(θ2|x, θ1).
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