STA 114: STATISTICS

Notes 11. Central Credible Intervals & Multiparameter Models

Interval summary of a pdf/pmf

We have already seen that a “central range” of a pdf f(z) over a scalar variable x, can be
summarized by [#q/2, 1-q/2] for some small a € (0,1), where for any v € (0,1), x, denotes
the u-th quantile of f(z). This means, if F'(x) denotes the cdf of f(x), then z, is the smallest
number x such that F(x) > u. If f(x) is a pdf, then F(z) is continuous and so z, = F~*(u).

For pdf f(z), the interval [x4/2,Z1-q/2] comes with the credibility that the area under
f(x) within this range equals F(z1_q/2) — F(2q2) = 1 — /2 — /2 = 1 — a. For a pmf
f(z), the area is approximately 1 —a. Of course, there are many other intervals which would
include an area of 1 — « (e.g., the interval [xg,21_(o—p) for any 0 < 8 < «). However, the
interval [Zo/2, T1-q/2] is “central”, because it leaves out exactly /2 area in either tail. We
shall call [z4/2, %1-q/2] the 100(1 — a)% central credible interval of the pdf/pmf f(x). If f(x)
is used to give plausibility scores of a variable X then we shall also identify [z, /2, T1—a /2] as
the 100(1 — )% central credible interval for X.

A nice property of this interval is invariance under monotone transformation. Suppose
X ~ f(z)and Y = h(X) where h(z) is a monotone (either increasing or decreasing) function.
Then the for any u € (0, 1), the u-th quantile y, of Y is precisely h(z,), with z, denoting
the u-th quantile of X. Therefore the central 100(1 — a)% credible [yq /2, y1-a 2] interval for
Y is exactly [h(za/2), M(21-a/2)], which is obtained by applying the function h(z) to the end
points of the 100(1 — «)% credible interval of X.

Central credible intervals in scalar parameter Bayesian models

For a Bayesian analysis, we shall talk about prior and posterior credible intervals of a pa-
rameter or of a quantity derived from the parameter. For a model X ~ f(z|f), with a
scalar parameter §# € O, and prior pdf/pmf £(0), the central 100(1 — «)% prior credible
interval for 6 is [04/2,61-a/2] and the central 100(1 — )% posterior credible interval for 6 is
0 /2(2),01-a/2(x)]. If we are interested in 7 = h(6), where h is a monotone transformation,
then the invariance result above helps to get prior and posterior central credible intervals for
7.

Example (Opinion poll). For the opinion poll example, with model X ~ Binomial(n, p),
n = 500, p € [0,1] and £(p) = Uniform(0, 1), the posterior is {(p|z) = Beta(x + 1,n —z + 1).
The central 95% prior credible interval for p is [0.025,0.975] (directly from the uniform pdf
plot) and the central 95% posterior credible interval, based on data z = 200 is [0.36, 0.44]
(from gbeta()). If we are interested in the log-odds ratio n = log ﬁ, then prior and
posterior central 95% credible intervals of n are [—3.7,3.7] and [—0.54, —0.28] (by applying
the same transformation to the end points of the above intervals). O
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Central credible intervals in multiparameter Bayesian models

If the model parameter is vector valued, and we are interested in some scalar quantity
n = h(f) derived from it (h is now a many-to-one function, so cannot talk of monotonicity),
then we must find prior and posterior pdfs of n from those of §. Once we get these pdfs we
can directly apply the central credible interval concept to these derived pdfs.

Example (Lactic acid conentration). Consider n lactic acid measurements modeled as
X; ~ Normal(p,02), 1 € (—00,00), 02 € (0,00), with a Nx~2(1,1,1,1) prior £(u, ). For
observations (0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58) with n = 10, 7 = 1.38,
s, = 0.33, the posterior pdf is &(u, 0?|r) = Nx~2(1.34,11,11,0.19). We are interested in
getting a 95% posterior credible interval for p.

From the properties of the normal-inverse-chi-square distributions, when (u, 02) ~ Nx~%(m, k,r, s),
the variable 1 = \/k/s(u —m) has a ¢(r) pdf. So a 100(1 — )% central credible interval for
1 is [~2.(), z.(a)]. Because u = m + +/s/k -1 is a monotone transformation of 7, we must
have m F /s/k x z,(a) as the central 100(1 — a)% for p.

Therefore, for &(u,0?|r) = Ny=%(1.34,11,11,0.19), the central 95% posterior credible
interval for p is 1.34 F0.132 x 2.2 = [1.05, 1.63]. O

Some fundamental concepts about multiparameter models

As in the previous example, we might be interested in a single parameter in a multi-parameter
Bayesian model. There are various things we can pursue here and all follows from the
basic concept of joint, conditional and marginal probability distributions of a collection of
variables.

For simplicity, assume we have a two parameter model: X ~ f(z|0,63), 61 € Oy,
0, € O, with prior pdf/pmf on £(6;,0,) that leads to the posterior pdf/pmf £(6;,0|z) =
const x f(x|01,60)E(0;,02) once we observe X = z.

So both the prior and the posterior provide plausibility scores on the joint space of 6,
and 6. From either, we can extract the plausibility scores on

e (; alone , or

e (5 alone, or

e 0 given a specific value of 05 or
e Oy given a specific value of 6.

To further simplify our discussion, let’s assume that ©; and O, are discrete sets, so both
£(01,02) and £(6, 0|z) are pmfs.

When we talk about the plausibility of #; = 0 (for some fixed number ¢; € ©,), without
saying anything about #, we are essentially considering all possibilities for 6,. That is
the plausibility of #; = 6} is the same as the plausibility of the event {0, = 6,0, € ©y}.
The plausibility score of this event, respectively under the prior and the posterior, equals
61(67) = Yg,co, €61 02) and £4(6112) = 3, co, E(6L, fol2). The functions €,(61) and & (6 v)
defined this way are pmfs over ©; (this is easy to verify), and are called the marginal prior
and posterior pmfs of ;. We could similarly define the marginal prior and posterior pmfs of
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Oy as &2(02) = > g co, (01, 02) and &(b2|x) = >, <o, €(01, 02|) and use these to talk about
0y alone, without any specific mentions of 6,.

What if we want to talk about plausibility scores of ; when 65 has been fixed at 657 The

relative (conditional) scores of §; = 0] against 6; = 0] given 0y = 0, equals 5(9}, 9?)) under

£(01,05]2)
(07, 9’| )
conditional pmfs of 0; given 0y defined as (under prior and posterior)

£(601,62) £(01,05|x)
§2(02) & (0o]z)

For every fixed value of 6, the functions & (6;]02) and & (61|z, 02) are pmfs over §; € ©; and
will be called the conditional prior and posterior pmfs of 8; given 6;. We could similarly
define conditional prior and posterior pmfs of 85 given 6.

Similar concepts apply when either £(60y,60;) or £(0y,60;|x) or both are pdfs. We now
talk about marginal prior and posterior pdfs of 6y: & (6;) f@ £(61,02)dOy and &(6,) =
f@ (61, 02)z)dby (and similarly define &;(0;) and &;(02|x) for 67). Conditional prior and pos-
terior pdfs are still given by & (61]02) = £(61,62)/&2(02) and & (61]x, O2) = £(01, 02| ) /§2(02]7),
but now viewed as pdfs over ©;. Similar definition applies to 6 € ©;.

Note that

under the posterior. These relative scores are characterized by the

the prior and

£1(61]09) =

16|z, 05) =

§1(01|62) = const X 5(61,92), 01 c @1

where the constant term may involve 65, but is constant wrt to the function argument 6,.
So if we can identify £(01,65) as a constant multiple of some pdf/pmf in 6; then & (6;]0s)
must equal that pdf/pmf. The same logic applies to & (0|x,02), &(62]01) and &(02|x, 0;).



