
STA 114: Statistics

Notes 14. Elicitation for the conjugate two-parameter normal model

Analyzing weekly food expenditure of Duke students

Suppose I want to create an information booklet for incoming Duke students. Among other
things, I want to include the dollar amount a student is likely to spend on food every
week. My data would be the numbers I get from STA114 students reporting their weekly
expenditure on food averaged over last 5 weeks. I’d model the data X = (X1, · · · , Xn) as

Xi
IID∼ Normal(µ, σ2) with a conjugate prior ξ(µ, σ2) = Nχ−2(m, k, r, s). What m, k, r and s

should I work with?

Eliciting m, k, r and s

Because ξ(µ, σ2) is supposed to reflect our prior beliefs (knowledge + assumptions we are
willing to make) about (µ, σ2), we should first quantify our prior beliefs and then pick m, k,
r and s so that the corresponding Nχ−2(m, k, r, s) distribution gives a reasonable match to
our quantified beliefs.

But we must pause here to think about this point. The variables (µ, σ2) have no physical
interpretation – they index a collection of pdfs and are just mathematical quantities. It is
unlikely that we can do a good job of expressing our beliefs about variables that are not
tangible. Human mind is not very good at that.

However, the variables (µ, σ2), through our model, determine the behavior of the actual
observable data X1, · · · , Xn. And because these represent quantities we can easily relate to,
it is much more appealing to quantify beliefs about these variables. Our beliefs about model
parameters are implicit in our beliefs about data.

So we shall think of hypothetical students randomly chosen from the population and
wonder about the numbers Y1, Y2, · · · they are likely to report as their weekly food expendi-
ture averaged over last 5 weeks. Since these variables are same as what we’d collect as data,
we must also model Yj

IID∼ Normal(µ, σ2) with prior belief ξ(µ, σ2) = Nχ−2(m, k, r, s).

General strategy: bisection approach

Suppose we want to quantify our beliefs about a scalar variable Z and then choose a pdf/pmf
f(z) that matches these quantified beliefs. There are various things we can quantify about
Z, e.g., its center, spread, a range that is likely to contain most possible values, whether it
is likely to be asymmetrically distributed around its center and so on. It is known, through
experimentation, that we are fairly good at quantifying beliefs about “central values”, but
not so good at quantifying beliefs about spread or range. In particular, the question that we
can most reliably answer is:
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What is the number q1 that we think Z is equally likely to be larger or smaller
than?

By “reliably answer” I mean that in answering this question, what we really believe and
what we say we believe are usually close [psychologists have ways of figuring out what we
really believe, or so they claim.]

Once we identify q1, we must restrict our choice of f(z) to pdfs that have q1 as their
median (i.e., 0.5-th quantile, i.e., P (Z < q1) = P (Z > q1) = 0.5 under these pdfs). Clearly,
there are infinitely many pdfs that satisfy this. To make further progress, we need to answer
more questions about our beliefs on Z. Now that the median has already been quantified,
how can we talk about “centers” any more?

There is a fairly clever approach. We next ask this,

Imagine we are told Z > q1 (recall q1 is already identified). Given this infor-
mation, what is the number q2 that Z is equally likely to be larger or smaller
than?

Once we identify q1, q2, our choice of f(z) must satisfy conditions: P (Z < q1) = 1/2 and
P (Z < q2) = 3/4 under this pdf. So q2 gives the 0.75-th quantile of f(z).

We can repeat this on the left side, given the information Z < q1 identify q3 that Z is
equally likely to be larger or smaller than. Then q3 is the 0.25-th quantile f(z). Continuing
like these, we can identify the 0.875-th, the 0.125-th, the 0.9375-th, the 0.0625-th,... quantiles
of f(z).

Of course we can’t continue forever. Pretty soon we start answering “I don’t know”, “I
really don’t know”, “leave me alone”... Wherever we stop, we’d still have a large collections
of pdfs that will match the quantities we have identified as the desired quantiles. At this
point, we usually choose the one (among the matching ones) that is convenient to work
with1.

More intelligently, we can start with a collection of convenient pdfs (like a conjugate
family of prior pdfs for a Bayesian analysis) and keep quantifying q1, q2, · · · until a member
of this family is uniquely determined as the only one that provides a match. If the collection
of pdfs is indexed by k many unknown quantities, then we are likely to get a unique, exact
match by the time we have quantified k quantiles.

Belief quantification for Y1 and Y1 − Y2
For our normal model, we focus on the collection of prior pdfs {Nχ−2(m, k, r, s) : −∞ < m <
∞, k > 0, r > 0, s > 0}. Since this collection is indexed by 4 quantities, we need four pieces
of quantification on Y1, Y2, · · · . We will quantify three quantities for Y1 and one quantity
for Y1 − Y2. Under our model, the pdfs of these variables indeed depend on the choice of
m, k, r, s. In particular:

Y1 −m√
s(1 + 1/k)

∼ t(r), and
Y1 − Y2√

2s
∼ t(r).

1If we are more careful, we choose a few of such pdfs and perform our analysis under each, and then
present all. If we are lucky the reports are close. Otherwise, we say there is too much prior uncertainty to
come up with a singular analysis.
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This is because of the following result (this is related to Result 2 from notes 10/19).

Result 1. If (W,V ) ∼ Nχ−2(m, k, r, s) and U |(W = w, V = v) ∼ Normal(aw, bv) then
U−am√
s(b+a2/k)

∼ t(r).

Proof. For U to have that conditional distribution, it must equal U = aW +
√
bV Z for a

Z ∼ Normal(0, 1) that is independent of W and V . Sp given V = v, U = aW +
√
bvZ.

But given V = v,
√
bZ ∼ Normal(0, bv) because Z ∼ Normal(0, 1) no matter what V is,

and aW ∼ Normal(am, a2v/k) by properties of Nχ−2(m, k, r, s) distributions, and these two
are independent. So, given V = v, U ∼ Normal(am, a2v/k + bv) = Normal(am, v/k′) where
1/k′ = b+ a2/k. Hence (U, V ) ∼ Nχ−2(am, k′, r, s), from which the result follows.

We will start by quantifying the median, the 0.75-th and the 0.875-th quantiles q1, q2, q3
for Y1. This follows the bisection approach discussed above, but only on one side (we do
not get 0.25-th quantile, etc.). This is because we are restricted only to pdfs of Y1 that are
symmetric around the median. We also apply the bisection method on Y1 − Y2 to quantify
its 0.75-th quantile (the median must be quantified 0, by symmetry of Y1 and Y2).

Solving for m, k, r, s

Because Y1−m√
s(1+1/k)

∼ t(r), for any fraction u ∈ (0, 1) the u-th quantile of Y1 must equal

m +
√
s(1 + 1/k)Φ−1r (u) where Φ−1r (u) is the u-th quantile of the t(r) pdf. First note that

Φ−1r (0.5) = 0 for any r. So

q1 = m+
√
s(1 + 1/k)Φ−1r (0.5) = m

and so m = q1 .

Next, in our old notations, Φ−1r (0.75) = Φ−1r (1−0.5/2) = zr(0.5) and similarly, Φ−1r (0.875) =
zr(0.25) and so

q2 = m+
√
s(1 + 1/k)zr(0.5)

q3 = m+
√
s(1 + 1/k)zr(0.25)

and so zr(0.5)
zr(0.25)

= q2−m
q3−m = q2−q1

q3−q1 . The ratio zr(0.5)/zr(0.25) is a continuous, increasing func-

tion in r and ranges between 0 (for r → 0) and z(0.5)/z(0.25) = 0.5863347 [for r → ∞, as
zr(α) becomes z(α)]. See Figure 1. Therefore it is important that we have q2−q1

q3−q1 within this

range. Otherwise, there is no Nχ−2(m, k, r, s) that matches our prior belief. In case of a
mismatch we may revisit some of our answers about q1, q2 and q3. The most suspect would
be q3 and a revised answer maybe considered for which a match occurs. If q2−q1

q3−q1 is inside the

range [0, 0.5863347] then we can identify r as follows.
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Figure 1: The ratio zr(0.5)
zr(0.25)

as a function of r.

ratio <- (q2 - q1) / (q3 - q1)

fn <- function(r) return(qt(0.75, r) / qt(0.875, r) - ratio)

r.sol <- uniroot(fn, interval = c(1e-3, 1e3))

r <- r.sol$root

Now that we have m and r, we can also identify s′ = s(1 + 1/k) from the identity

q2 = m+
√
s(1 + 1/k)zr(0.5). Namely, s′ = {(q2 − q1)/zr(0.5)}2 . But we cannot disentangle

s and k from this. In fact no amount of further quantification on Y1 can identify s and k
separately from s′.

So we now turn to Y1 − Y2 whose 0.75-th quantile must equal 0 +
√

2szr(0.5). Equating
this to q4, and using the value of r that we obtained before, we can now identify s by

s = 0.5(q4/zr(0.5))2 . Combine this with the identified value of s′ = s(1 + 1/k) to identify

k as: k = s/(s′ − s) . This is a legitimate value for k, provided s′ > s. If we do not get this

then again we need to see if we can revise our quantified beliefs.

Example (Weekly food expenditure). To be done at lecture 10/21.
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