

STA 114: STATISTICS

HW 7

Due Wed Oct 26 2011

1. Consider scalar data $X = X_1$ and a future scalar variable $X^* = X_2$ modeled as $X_1, X_2 \stackrel{\text{IID}}{\sim} g(x_i|\theta)$, $\theta \in (-\infty, \infty)$ where the $g(y|\theta)$ is the following pmf: $g(y|\theta) = 0.5$ if $y = \theta - 1$ or $y = \theta + 1$, and $g(y|\theta) = 0$ otherwise. Describe the pmf $f^*(x^*|x)$ of X^* given $X = x$ under the prior $\xi(\theta) = \text{Normal}(0, 1)$. [For any arbitrary x give the exact formula of $f^*(x^*|x)$ as a function of x^* .]
2. A soporific drug, given to a certain kind insomniac patients, enhances nightly sleep hours by an amount μ with some patient-to-patient variability σ . Suppose the drug is given to n such patients, and their 30-day average increase in nightly sleep hours are measured as $X = (X_1, \dots, X_n)$, and modeled $X_i \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$. The model parameters (μ, σ^2) are assigned a prior pmf $\xi(\mu, \sigma^2)$ described by the following table ($\xi(\mu, \sigma^2) = 0$ otherwise):

μ	$\xi(\mu, 0.5^2)$	$\xi(\mu, 1)$	$\xi(\mu, 1.5^2)$	$\xi(\mu, 2^2)$
0.0	$\frac{1}{30}$	$\frac{2}{30}$	$\frac{2}{30}$	$\frac{1}{30}$
0.5	$\frac{2}{30}$	$\frac{2}{30}$	$\frac{2}{30}$	$\frac{2}{30}$
1.0	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{2}{30}$	$\frac{2}{30}$
1.5	$\frac{2}{30}$	$\frac{1}{30}$	$\frac{1}{30}$	$\frac{0}{30}$
2.0	$\frac{2}{30}$	$\frac{1}{30}$	$\frac{0}{30}$	$\frac{0}{30}$

- (a) Give the posterior pmf $\xi(\mu, \sigma^2|x)$ based on observation $X = x$ for which $n = 10$, $\bar{x} = 1.6$ and $s_x = 1.23$.
 - (b) Suppose the drug is to be given to a hypothetical future patient with similar conditions. Letting X^* denote his 30-day average increase in nightly sleep hours, calculate the probability $P(X^* > 1|X = x) = \int_1^\infty f^*(x^*|x)dx^*$ based on x as in part (a). State your model assumptions on X^* . [Hint. This is not a conjugate model, so don't copy the conjugate normal formulas from notes, they don't apply. And note $P(X^* > a|X = x) = \int_{\Theta} P(X^* > a|\theta)\xi(\theta|x)d\theta$.]
3. Consider data $X = (X_1, \dots, X_n)$ and a future variable $X^* = X_{n+1}$ modeled as $X_1, \dots, X_n, X_{n+1} \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$.
 - (a) When σ^2 is fixed and $\mu \in (-\infty, \infty)$ is assigned the Jeffreys prior $\xi(\mu) = \text{const.}$, identify the central $100(1 - \alpha)\%$ credible interval for the posterior predictive pdf $f^*(x^*|x)$ given $X = x$.
 - (b) When $(\mu, \sigma^2) \in (-\infty, \infty) \times (0, \infty)$ is assigned the reference prior $\xi(\mu, \sigma^2) = \text{const.}/\sigma^2$, identify the central $100(1 - \alpha)\%$ credible interval for the posterior predictive pdf $f^*(x^*|x)$ given $X = x$.

4. Suppose the duration (in seconds) of a smile of a certain eight week old baby follows a $\text{Uniform}(0, \theta)$ distribution with $\theta > 0$ unknown. The data X consists of n observed durations X_1, \dots, X_n from the baby. We are interested in a future observation $X^* = X_{n+1}$.

- Based on observations (10.4, 19.6, 12.8, 14.8, 1.3, 0.7, 5.8, 6.9, 8.9, 9.4), what is the probability that X^* would exceed 15 under the plug-in predictive pdf $\hat{f}^*(x^*|x)$ when θ is estimated by its MLE?
- Based on the same observations, what is the probability that X^* would exceed 15 under the posterior predictive pdf $f^*(x^*|x)$ when θ is assigned a $\text{Pareto}(2, 15)$ prior? [Hint. $P(X^* > a|X = x) = \int_{\Theta} P(X^* > a|\theta) \xi(\theta|x) d\theta.$]

5. Time gaps between successive eruptions of a geyser are modeled as independently distributed according to $\text{Exponential}(\lambda)$ with $\lambda \in (0, \infty)$ assigned a $\text{Gamma}(a, b)$ prior. Our data consists of n time gaps $X = (X_1, \dots, X_n)$ and we are interested in a future time gap $X^* = X_{n+1}$.

- Show that the posterior predictive pdf $f^*(x^*|x)$ of X^* equals

$$f^*(x^*|x) = \frac{a'(b')^{a'}}{(b' + x^*)^{a'+1}}, \text{ for } x^* > 0; \quad f(x^*|x) = 0 \text{ otherwise,}$$

where $a' = a + n$ and $b' = b + n\bar{x}$ are the usual updates for the exponential-gamma conjugate model. [Hint. $\int_0^\infty \lambda^r \exp(-s\lambda) d\lambda = \Gamma(r+1)/s^{r+1}$ and $\Gamma(r+1) = r\Gamma(r).$]

- Show that the posterior predictive distribution of $Y^* = 1 + \frac{X^*}{b'}$ is a Pareto distribution. Identify its parameters.

6. To analyze how well undergraduates manage of pursue non-curricular interests and hobbies, data X_1, \dots, X_n will be recorded from n students, with X_i giving the weekly amount of time, averaged over last 5 weeks, the i -th student spent on such activities. Consider similar records Y_1, Y_2 from two hypothetical students randomly selected from the undergraduate population.

- Quantify your personal beliefs about undergraduates' pursuit of such activities by answering the following questions on your belief about Y_1, Y_2
 - Give a number q_1 that you think Y_1 is equally likely to be smaller or larger than.
 - Suppose you were told that Y_1 exceeds q_1 of part (a). Give a number q_2 that you think Y_1 is equally likely to be smaller or larger than.
 - Suppose you were told that Y_1 exceeds q_2 of part (b). Give a number q_3 that you think Y_2 is equally likely to be smaller or larger than.
 - Give a number q_4 that you think $|Y_1 - Y_2|$ is equally likely to be smaller or larger than.
- Are there numbers $-\infty < m < \infty, k > 0, r > 0, s > 0$ such that the Bayesian model $X_1, \dots, X_n \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$, with prior $\xi(\mu, \sigma^2) = N\chi^{-2}(m, k, r, s)$ is consistent with your belief quantification above? If not, explain why not. If yes, give values of m, k, r, s .