STA 114: STATISTICS

Notes 17. Hypotheses testing

Hypotheses about model parameters

A new soporific drug is tried on n = 10 patients with sleep disorder, and the average
increase in sleep hours is found to be 2.33 hours (with standard deviation 2 hours). Is the
drug effective in increasing sleep hours?

Suppose we model the increase in sleep hours for the 10 patients as X; ~ Normal(u, o).
However, we are no longer interested in a general summary of the model parameters. To
ascertain whether the drug is effective, we must contrast the support lent by data to two
precise statements about the parameters: “u > 07 and “p < 07.

Such inferential tasks are referred to as hypotheses testing. This is statistical inference
where one of two well specified decisions must be made. Each decision corresponds to
a specific hypothesis about the model parameter (x in our example) and the quantity of
interested characterized by it (drug efficacy).

More formally, hypotheses testing about a statistical model X ~ f(z|), § € © is about
deciding whether to declare 8 € ©( or declare § € O, where Oy and ©; form a partition
of the parameter space ©. This means, © = Oy U ©; and that ©y and ©; are disjoint.
The two subsets Oy and ©; represent two contrasting scientific hypotheses about the model
parameter (drug is effective or not effective).

Null and alternative hypotheses

For now we will be content to look only at the classical approach to hypotheses testing. A
foundational point of this approach is that it treats the two hypotheses asymmetrically. One
of the hypotheses is taken to represent the status-quo, the no-change scenario (a drug is not
effective, a federal policy has 50% support, annual hurricane counts are steady over time,
etc.) and is labelled the null hypothesis (denoted Hy, and the corresponding parameters
subset is labelled ©g). The other hypothesis is called the alternative hypothesis (denote
H; and corresponds to ©1), one that provides an alternative to the status-quo (a drug is
effective, a federal policy is hated more than it is loved, hurricane counts are increasing with
time, etc.).

The classical approach takes the stand that without any data we would accept the null
hypothesis and one has to find data with substantial evidence against this hypothesis to
reject it and go for the alternative (i..e, the null is innocent until proven guilty).

This stand simplifies the task at hand. One simply needs to check whether there is any
support in the data toward any 6 € ©,. If yes, then the null hypothesis stands undefeated.
Otherwise, we reject it.



ML testing

Checking whether any 6 € O receives support from data blends nicely with the ML approach
toward quantifying data support. Recall that subject to a thresholding fraction & € [0, 1],
for any observation X = z, we dichotomize the parameter space © into a subsets of well
and not-so-well supported theories based on whether L,(0) > kmaxyce L.(0'). Therefore,
subject to the choice of this k, we can perform a test of our hypotheses by checking whether
L.(0) > kmaxgyce L, (6) for any 6 € ©y. The obvious and important question here is how
to choose this constant? More precisely, what impact does the choice of this constant have
on our decision making?

This question is awfully close to one that we asked when talking about interval summaries
of parameters and found an answer in the form of confidence coefficient guarantee calcula-
tions. In fact, the ML approach to testing described above is same as checking whether

~

or not any 6 € ©y belongs to the ML interval Ay(xz) = {0 € © : L,(0) > kL,(Oyie(z))}.
Could we simply use guarantee calculations for Ag(z) to fix k? The answer is “yes” — but
we still need to look directly at guarantee calculations for a testing procedure itself. That
the two guarantee calculations are related is not a surprise. The whole concept of confidence
intervals was a spin off of an already mature understanding of hypotheses testing. And a
direct look at hypotheses testing allows us to broaden the scope to models where confidence
intervals are not easy to obtain directly.

Classical theory: Errors in decision making and frequentist guarantees

As with interval summarization, the classical theory looks at every data analytic task as
an application of a statistical procedure to the observed data. Accordingly, from a classical
perspective, deciding between Hy : § € ©y and H; : § € ©; given data X = x, is simply the
application of a decision rule d(z) to the observed data x. The decision rule is any map from
the sample space S to the binary decision space {reject Hy, accept Hy}. Such a decision rule
is called a test procedure, or simply a test for the pair Hy, H;.

Classical theory therefore tries to quantify the performance of a test procedure under
various possibilities about the true value of . To assess the performance of a test procedure
d(z), one needs to consider two types of decision errors. First, the true value could belong
to Og, and we might declare reject Hy based on §(x), committing a Type I error. Or, the
true value could belong to ©; and we might declare accept Hy, committing a Type II error.
These two errors and also the corresponding non-errors are reported in the following table:

Truth
00y | 06
5(x) accept Hy v Type II error
reject Hy | Type II error v

To quantify a test’s tendency to make either kind of error, we introduce a new quantity,
the power function of the test. For any test §(z) for testing Hy : 0 € ©¢ against H; : 0 € Oy,
its power function is defined as

7(0;6) = Pixj)(6(X) = reject Hy), 0 € O.
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Therefore, for any 6 € Og, m(0;0) denotes the corresponding type I error probability (which
might be different for two different values of 6 from ©g). And for a § € O, the corresponding
type 11 error probability is given by 1 — 7 (0;4).

It is sometimes useful to represent a test d(x) by its associated critical or rejection region
defined as the set of all © € S for which §(x) = reject Hy. If a test 6(x) has critical region C
then,

(0 : 0) = Pixjg(6(X) = reject Hy) = Prxje(X € C).

The size of a test

Recall that Hjy plays the squatter’s role in classical testing. Therefore an error of type I
must be considered much more serious than an error of type II (declaring an ineffective drug
effective is more harmful than failing to declare a drug effective when it actually is effective).
For this reason performance measurements of a test is driven primarily by the type I error
probabilities. The size of a test 6(x), denoted «(d) is defined to be its maximum type I error
probability,

a(d) = grézgéﬁ(ﬁ; J).

This is the worst possible chance the test has in erroneously rejecting the null hypothesis.

Size calculation for ML tests of a point null

A null hypothesis Hy : 0 € Oy is called a point null (or a simple null) if ©, contains a single
point y. In this case the size of a test is simply its power at :

a(d) = gé%)gw(ﬁ; 0) = m(0;9).

For point nulls, size calculation is often a simple task. We will see this for ML tests.
An ML test 6(x) for Hy : 0 = 0y against Hy : 6 # 60y, based on a threshold k € [0, 1] can
be written as:

accept Hy if —2=2%) __ > e iff, € Ag(z)

maxpeo Lz(0) —

reject Hy if —LaB0) _ k, i.e, if 6y & Ap(x)

maxgeo La(0)

i(z) =

where Ay (x) is the ML interval procedure based on k: Ay (x) = {0 : L.(0) > kmaxgeco L.(0)}.
Therefore

a(0) = 7(6o; 0) = Pixje)(00 & Ar(X)) =1 —(00; Ar),
one minus the coverage of Ay at 6.

Example (Normal with known variance). Consider Xy, --- , X,, ~ Normal(x, 0?), where o2
is fixed. We want to test Hy : u = po against Hy : u # po, where pg is a special value of
interest (in the drug example, po = 0, reflecting no improvement on an average). Because
ML intervals for u are of the form T F co/y/n, an ML test for Hy is of the form:

o T — pol
—

Vn o/Vn
with size 1 — {2®(c) — 1} = 2{1 — ®(¢)}. So with ¢ = 1.96, the corresponding ML test has
size 5%. More generally, with ¢ = z(«) the corresponding ML test has size a.

reject Hy if and only if ug & T F > ¢,
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Example (Models with asymptotically normal MLE). We have seen many instances of a
scalar parameter model X ~ f(x|0), 6 € O, for which Oy, () F ¢/+/I, has approximately
20 (c)—1 coverage at all 8. For any such model, an ML test for Hy : 0 = 6, against Hy : 0 = 6,
is of the form

reject Hy if and only if v/I,|0ywe(z) — 60| > ¢

with size approximately 2{1 — ®(c)}. Again, with ¢ = z(«), the size is approximately «.

Non-ML tests based on point estimates

The performance quantification concept clearly applies to any test procedure, not necessarily
only those derived from a likelihood function. For example, consider again the normal model
X1, X, ~ Normal(u, 0?) where o2 is known and we want to test Hy : u = po against
Hy : o # po. We could do this based on the median z,., — large values of the difference
Tmea — o] shows evidence against Hy. “Large” of course is relative to how spread out ..

is likely to be around fiq if p = p1o was the truth. We know that when X; ~ Normal(y, o),
Xonea 18 approximately Normal(y, ”2;'”2), therefore we can construct a test for Hy against Hy of

the form:
|Imcd - /’L0| >

o\/7/2n

reject Hy if and only if c

with approximate size 2{1 — ®(c)}.

Use ML tests if you can

Although we could construct and measure the size of any test procedure for a given model, it
is generally wise to use an ML test whenever we can. This is because between an ML test and
a non-ML test of the same size, the ML test usually enjoys a smaller type II probability error
(more power under the alternative) than its rival. We won’t state a very general result to
this end, but discuss the classic Neyman-Pearson lemma that started this whole discussion.

Lemma 1 (Neyman-Pearson). Consider a model X ~ f(z|d), 6 € ©, where the parameter
space contains only two points: © = {6y, 0,}. Any ML test for Hy : 0 = 6y against Hy : 0 = 0,
s given by:

Lm<91)
Lx<90)

for some b > 0. Denote this test by o,(x). Then for any test 6(x) with size equal or smaller
than that of dy(z) [i.e., m(6o;0) < w(6o; dp)] one must have w(6y1; ) > w(0y;9).

> b

reject Hy if and only if



