
STA 114: Statistics

Notes 17. Hypotheses testing

Hypotheses about model parameters

A new soporific drug is tried on n = 10 patients with sleep disorder, and the average
increase in sleep hours is found to be 2.33 hours (with standard deviation 2 hours). Is the
drug effective in increasing sleep hours?

Suppose we model the increase in sleep hours for the 10 patients as Xi
IID∼ Normal(µ, σ2).

However, we are no longer interested in a general summary of the model parameters. To
ascertain whether the drug is effective, we must contrast the support lent by data to two
precise statements about the parameters: “µ > 0” and “µ ≤ 0”.

Such inferential tasks are referred to as hypotheses testing. This is statistical inference
where one of two well specified decisions must be made. Each decision corresponds to
a specific hypothesis about the model parameter (µ in our example) and the quantity of
interested characterized by it (drug efficacy).

More formally, hypotheses testing about a statistical model X ∼ f(x|θ), θ ∈ Θ is about
deciding whether to declare θ ∈ Θ0 or declare θ ∈ Θ1, where Θ0 and Θ1 form a partition
of the parameter space Θ. This means, Θ = Θ0 ∪ Θ1 and that Θ0 and Θ1 are disjoint.
The two subsets Θ0 and Θ1 represent two contrasting scientific hypotheses about the model
parameter (drug is effective or not effective).

Null and alternative hypotheses

For now we will be content to look only at the classical approach to hypotheses testing. A
foundational point of this approach is that it treats the two hypotheses asymmetrically. One
of the hypotheses is taken to represent the status-quo, the no-change scenario (a drug is not
effective, a federal policy has 50% support, annual hurricane counts are steady over time,
etc.) and is labelled the null hypothesis (denoted H0, and the corresponding parameters
subset is labelled Θ0). The other hypothesis is called the alternative hypothesis (denote
H1 and corresponds to Θ1), one that provides an alternative to the status-quo (a drug is
effective, a federal policy is hated more than it is loved, hurricane counts are increasing with
time, etc.).

The classical approach takes the stand that without any data we would accept the null
hypothesis and one has to find data with substantial evidence against this hypothesis to
reject it and go for the alternative (i..e, the null is innocent until proven guilty).

This stand simplifies the task at hand. One simply needs to check whether there is any
support in the data toward any θ ∈ Θ0. If yes, then the null hypothesis stands undefeated.
Otherwise, we reject it.
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ML testing

Checking whether any θ ∈ Θ0 receives support from data blends nicely with the ML approach
toward quantifying data support. Recall that subject to a thresholding fraction k ∈ [0, 1],
for any observation X = x, we dichotomize the parameter space Θ into a subsets of well
and not-so-well supported theories based on whether Lx(θ) ≥ kmaxθ′∈Θ Lx(θ

′). Therefore,
subject to the choice of this k, we can perform a test of our hypotheses by checking whether
Lx(θ) ≥ kmaxθ′∈Θ Lx(θ

′) for any θ ∈ Θ0. The obvious and important question here is how
to choose this constant? More precisely, what impact does the choice of this constant have
on our decision making?

This question is awfully close to one that we asked when talking about interval summaries
of parameters and found an answer in the form of confidence coefficient guarantee calcula-
tions. In fact, the ML approach to testing described above is same as checking whether
or not any θ ∈ Θ0 belongs to the ML interval Ak(x) = {θ ∈ Θ : Lx(θ) ≥ kLx(θ̂MLE(x))}.
Could we simply use guarantee calculations for Ak(x) to fix k? The answer is “yes” – but
we still need to look directly at guarantee calculations for a testing procedure itself. That
the two guarantee calculations are related is not a surprise. The whole concept of confidence
intervals was a spin off of an already mature understanding of hypotheses testing. And a
direct look at hypotheses testing allows us to broaden the scope to models where confidence
intervals are not easy to obtain directly.

Classical theory: Errors in decision making and frequentist guarantees

As with interval summarization, the classical theory looks at every data analytic task as
an application of a statistical procedure to the observed data. Accordingly, from a classical
perspective, deciding between H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1 given data X = x, is simply the
application of a decision rule δ(x) to the observed data x. The decision rule is any map from
the sample space S to the binary decision space {reject H0, accept H0}. Such a decision rule
is called a test procedure, or simply a test for the pair H0, H1.

Classical theory therefore tries to quantify the performance of a test procedure under
various possibilities about the true value of θ. To assess the performance of a test procedure
δ(x), one needs to consider two types of decision errors. First, the true value could belong
to Θ0, and we might declare reject H0 based on δ(x), committing a Type I error. Or, the
true value could belong to Θ1 and we might declare accept H0, committing a Type II error.
These two errors and also the corresponding non-errors are reported in the following table:

Truth
θ ∈ Θ0 θ ∈ Θ1

δ(x)
accept H0 X Type II error

reject H0 Type II error X

To quantify a test’s tendency to make either kind of error, we introduce a new quantity,
the power function of the test. For any test δ(x) for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1,
its power function is defined as

π(θ; δ) = P[X|θ](δ(X) = reject H0), θ ∈ Θ.
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Therefore, for any θ ∈ Θ0, π(θ; δ) denotes the corresponding type I error probability (which
might be different for two different values of θ from Θ0). And for a θ ∈ Θ1, the corresponding
type II error probability is given by 1− π(θ; δ).

It is sometimes useful to represent a test δ(x) by its associated critical or rejection region
defined as the set of all x ∈ S for which δ(x) = reject H0. If a test δ(x) has critical region C
then,

π(θ : δ) = P[X|θ](δ(X) = reject H0) = P[X|θ](X ∈ C).

The size of a test

Recall that H0 plays the squatter’s role in classical testing. Therefore an error of type I
must be considered much more serious than an error of type II (declaring an ineffective drug
effective is more harmful than failing to declare a drug effective when it actually is effective).
For this reason performance measurements of a test is driven primarily by the type I error
probabilities. The size of a test δ(x), denoted α(δ) is defined to be its maximum type I error
probability,

α(δ) = max
θ∈Θ0

π(θ; δ).

This is the worst possible chance the test has in erroneously rejecting the null hypothesis.

Size calculation for ML tests of a point null

A null hypothesis H0 : θ ∈ Θ0 is called a point null (or a simple null) if Θ0 contains a single
point θ0. In this case the size of a test is simply its power at θ0:

α(δ) = max
θ∈Θ0

π(θ; δ) = π(θ0; δ).

For point nulls, size calculation is often a simple task. We will see this for ML tests.
An ML test δ(x) for H0 : θ = θ0 against H1 : θ ̸= θ0, based on a threshold k ∈ [0, 1] can

be written as:

δ(x) =

 accept H0 if Lx(θ0)
maxθ∈Θ Lx(θ)

≥ k, i..e, if θ0 ∈ Ak(x)

reject H0 if Lx(θ0)
maxθ∈Θ Lx(θ)

< k, i..e, if θ0 ̸∈ Ak(x)

where Ak(x) is the ML interval procedure based on k: Ak(x) = {θ : Lx(θ) ≥ kmaxθ∈Θ Lx(θ)}.
Therefore

α(δ) = π(θ0; δ) = P[X|θ0](θ0 ̸∈ Ak(X)) = 1− γ(θ0;Ak),

one minus the coverage of Ak at θ0.

Example (Normal with known variance). Consider X1, · · · , Xn
IID∼ Normal(µ, σ2), where σ2

is fixed. We want to test H0 : µ = µ0 against H1 : µ ̸= µ0, where µ0 is a special value of
interest (in the drug example, µ0 = 0, reflecting no improvement on an average). Because
ML intervals for µ are of the form x̄∓ cσ/

√
n, an ML test for H0 is of the form:

reject H0 if and only if µ0 ̸∈ x̄∓ σ√
n

⇐⇒ |x̄− µ0|
σ/

√
n

> c,

with size 1− {2Φ(c)− 1} = 2{1− Φ(c)}. So with c = 1.96, the corresponding ML test has
size 5%. More generally, with c = z(α) the corresponding ML test has size α.
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Example (Models with asymptotically normal MLE). We have seen many instances of a
scalar parameter model X ∼ f(x|θ), θ ∈ Θ, for which θ̂MLE(x) ∓ c/

√
Ix has approximately

2Φ(c)−1 coverage at all θ. For any such model, an ML test forH0 : θ = θ0 againstH1 : θ = θ1
is of the form

reject H0 if and only if
√
Ix|θ̂MLE(x)− θ0| > c

with size approximately 2{1− Φ(c)}. Again, with c = z(α), the size is approximately α.

Non-ML tests based on point estimates

The performance quantification concept clearly applies to any test procedure, not necessarily
only those derived from a likelihood function. For example, consider again the normal model
X1, · · · , Xn

IID∼ Normal(µ, σ2) where σ2 is known and we want to test H0 : µ = µ0 against
H1 : µ ̸= µ0. We could do this based on the median xmed – large values of the difference
|xmed − µ0| shows evidence against H0. “Large” of course is relative to how spread out xmed

is likely to be around µ0 if µ = µ0 was the truth. We know that when Xi
IID∼ Normal(µ, σ2),

Xmed is approximately Normal(µ, πσ
2

2n
), therefore we can construct a test for H0 against H1 of

the form:

reject H0 if and only if
|xmed − µ0|
σ
√
π/2n

> c

with approximate size 2{1− Φ(c)}.

Use ML tests if you can

Although we could construct and measure the size of any test procedure for a given model, it
is generally wise to use an ML test whenever we can. This is because between an ML test and
a non-ML test of the same size, the ML test usually enjoys a smaller type II probability error
(more power under the alternative) than its rival. We won’t state a very general result to
this end, but discuss the classic Neyman-Pearson lemma that started this whole discussion.

Lemma 1 (Neyman-Pearson). Consider a model X ∼ f(x|θ), θ ∈ Θ, where the parameter
space contains only two points: Θ = {θ0, θ1}. Any ML test for H0 : θ = θ0 against H1 : θ = θ1
is given by:

reject H0 if and only if
Lx(θ1)

Lx(θ0)
> b

for some b > 0. Denote this test by δb(x). Then for any test δ(x) with size equal or smaller
than that of δb(x) [i.e., π(θ0; δ) ≤ π(θ0; δb)] one must have π(θ1; δb) > π(θ1; δ).
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