
STA 114: Statistics

Notes 21. Linear Regression

Introduction

A most widely used statistical analysis is regression, where one tries to explain a response
variable Y by an explanatory variable X based on paired data (X1, Y1), · · · , (Xn, Yn). The
most common way to model the dependence of Y on X is to look for a linear relationship
with additional noise,

Yi = β0 + β1Xi + ϵi

with ϵ1, · · · , ϵn taken to be independent and identically distributed random variables with
mean 0 and variance σ2. The unknown quantities are (β0, β1, σ

2). Many pairs of natural
measurements exhibit such linear relationships. The figure below shows atmospheric pressure
(in inches of Mercury) against boiling point of water (in degrees F) based on 17 pairs of
observations. Although water’s boiling point and atmospheric pressure should have a precise
physical relationship, there would always be some deviation in actual measurements due to
factors that are hard to control.
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Least squares line

The straight line you see in the above figure is the line that “best fits” the data. This is found
as follows. For any line y = b0+b1x, we can find the “residuals” ei = yi−b0−b1xi if we tried
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to explain the observed values of Y by those of X using this line. The total deviation can be
measured by the sum of squares of the residuals d(b0, b1) =

∑n
i=1 e

2
i =

∑n
i=1(yi − b0 − b1xi)

2.
We could find b0 and b1 that minimize d(b0, b1). This is easily done by using calculus. We
set ∂

∂b0
d(b0, b1) = 0, ∂

∂b1
d(b0, b1) = 0 and solve for b0, b1. In particular,

0 =
∂

∂b0
d(b0, b1) =

n∑
i=1

2(yi − b0 − b1xi)(−1) = −2n(ȳ − b0 − b1x̄)

0 =
∂

∂b1
d(b0, b1) =

∑
i=1

2(yi − b0 − b1xi)(−xi) = −2(
n∑

i=1

xiyi − nb0 − b1

n∑
i=1

x2
i ).

These are two linear equations in two unknowns b0, b1. The solutions are:

b̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
=

∑n
i=1 yi(xi − x̄)∑n
i=1(xi − x̄)2

, b̂0 = ȳ − b̂1x̄.

Let’s denote sxy = 1
n−1

(yi − ȳ)(xi − x̄) [this is the sample covariance between Y and X].

Then using our old notation s2x = 1
n−1

∑n
i=1(xi − x̄)2 we can write the least squares solution

as b̂0 = ȳ − sxyx̄/s
2
x, b̂1 = sxy/s

2
x.

The method of least squares was used by physicists working on astrological measure-
ments in the early 18th century. A statistical framework was developed much later. The
main import of the statistical development, as usual, has been to incorporate a notion of
uncertainty.

Statistical analysis of simple linear regression

To put the linear regression relationship Yi = β0+β1Xi+ ϵi into a statistical model, we need
a distribution on the ϵi’s. The most common choice is a normal distribution Normal(0, σ2).
This can be justified as follows: the additional factors that give rise to the noise term are
many in number and act independently of each other, each making a little contribution. By
the central limit theorem the aggregate of such numerous, independent, small contributions
should behave like a normal variable. The mean is fixed at zero because any non-zero mean
can be absorbed in the intercept β0.

So our statistical model is Yi = β0+β1Xi+ ϵi, ϵi
IID∼ Normal(0, σ2) with model parameters

β0 ∈ (−∞,∞), β1 ∈ (−∞,∞), and σ2 > 0. We also need to assume that the error terms ϵi’s
are independent of the explanatory variables Xi (because the errors account for additional
factors beyond the explanatory variable). Then, the log-likelihood function in the model
parameters is given by,

ℓx,y(β0, β1, σ
2) = const− n

2
log σ2 −

∑n
i=1(yi − β0 − β1xi)

2

2σ2
.

To find the MLE, first notice that for every σ2, the log-likelihood function is maximized
at (β0, β1) equal to the least squares solutions (ȳ − sxyx̄/s

2
x, sxy/s

2
x), and so we must have

β̂1,MLE(x, y) = ȳ − sxyx̄/s
2
x, β̂2,MLE(x, y) = sxy/s

2
x. To shorten notations we’ll just write β̂0

and β̂1 for β̂0,MLE(x, y) and β̂1,MLE(x, y) respectively.
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Consequently, the MLE of σ2 is found by setting ∂
∂σ2 ℓx,y(β̂0, β̂1, σ

2) = 0. This given,

σ̂2
MLE(x, y) =

1

n

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

It is more common to estimate σ2 by

σ̂2 = s2y|x =
1

n− 2

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

where n−2 indicates that two unknown quantities (β0 and β1) were to be estimated to define
the residuals.

Sampling theory

To construct confidence intervals and test procedures for the model parameters, we’ll first
need to look at their sampling theory. We’ll explore these treating the explanatory variable
as non-random, i.e., as if we picked and fixed the observations x1, · · · , xn. You can interpret
this as being the conditional sampling theory of the estimated model parameters given the
observed explanatory variables.

It turns out that when Yi = β0 + β1xi + ϵi with ϵi
IID∼ Normal(0, σ2), for any two numbers

a and b,

1. aβ̂0 + bβ̂1 ∼ Normal
(
aβ0 + bβ1, σ

2
{

a2

n
+ (ax̄−b)2

(n−1)s2x

})
.

2. (n− 2)σ̂2/σ2 ∼ χ2(n− 2)

3. and these two random variables are mutually independent.

A proof of this is given at the end of this handout. It is only for those who are curious to
know why this happens. You may ignore it if you’re not interested.

Two special cases of the above result would be important to us. First, with a = 1 and
b = 0 the result gives β̂0 ∼ Normal(β0, σ

2{ 1
n
+ x̄2

(n−1)s2x
}) and is independent of σ̂2. Second,

with a = 0 and b = 1 we have β̂1 ∼ Normal(β1, σ
2 1
(n−1)s2x

) and is independent of σ̂2.

ML confidence interval

We shall only look at confidence intervals for parameters that can be written as η = aβ0 +
bβ1 for some real numbers a and b (again, the interesting cases would be (a = 1, b = 0)
corresponding to β0 and (a = 0, b = 1) corresponding to β1). From the result above it follows

that η̂ = aβ̂0 + bβ̂1 ∼ Normal(η, σ2
η) where σ

2
η = σ2

[
a2

n
+ (ax̄−b)2

(n−1)s2x

]
and η̂ is independent of σ̂2.

Let σ̂2
η = σ̂2

[
a2

n
+ (ax̄−b)2

(n−1)s2x

]
. A bit of algebra shows that

η̂ − η

σ̂η

∼ t(n− 2).
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Therefore a 100(1− α)% confidence interval for η is given by

B(x, y) = η̂ ∓ σ̂ηzn−2(α).

This confidence interval is also the ML confidence interval, i.e., it matches {ℓ∗x,y(η) ≥
maxη ℓ

∗
x,y(η) − c2/2} for some c > 0 where ℓ∗x,y(η) is the pofile log-likelihood of η, but we

would not pursue a proof here.

Hypotheses testing

Again we restrict ourselves to parameters that can be written as η = aβ0 + bβ1. To test
H0 : η = η0 against H1 : η ̸= η1, the size-α ML test is the one that rejects H0 whenever η0 is
outside the 100(1− α)% ML confidence interval η̂ ∓ σ̂ηzn−2(α). The p-value based on these
tests is precisely the α for which η0 is just on the boundary of this interval.

Of particular interest is testing H0 : β1 = 0 against H1 : β1 ̸= 0. The null hypothesis
says that X offers no explanation of Y within the linear relationship framework. This can
be dealt as above with a = 0 and b = 1 and thus checking whether 0 is outside the interval
β̂1 ∓ σ̂zn−2(α)/

√
(n− 1)s2x.

Prediction

Suppose you want to predict the value Y ∗ of Y corresponding to an X = x∗ that is known
to you. The model says Y ∗ = β0 + β1x

∗ + ϵ∗ where ϵ∗ ∼ Normal(0, σ2) and is independent
of ϵ1, · · · , ϵn. If we knew β0, β1, σ, we could give the interval β0 + β1x

∗ ∓ σz(α), taking
into account the variability σ2 of ϵ∗. Our best guess for β0 + β1x

∗ is the fitted value ŷ∗ =
β̂0+β̂1x

∗ (the point on the least squares line with x-coordinate x∗) with additional associated

variability σ2{ 1
n
+ (x̄−x∗)2

(n−1)s2x
} [follows from the result with a = 1, b = x∗]. Also, we have an

estimate σ̂2 for σ2. Putting all these together, it follows that the predictive interval

β̂0 + β̂1x
∗ + σ̂

[
1 +

1

n
+

(x̄− x∗)2

(n− 1)s2x

] 1
2

· zn−2(α)

has a 100(1− α)% coverage.

Testing goodness of fit

Once we fit the model, we can construct our residuals ei = Yi − β̂0 − β̂1xi, i = 1, · · · , n.
The histogram of these residuals should match the Normal(0, σ2) pdf, with σ2 estimated by
σ̂2. So we could carry out a Pearson’s goodness-of-fit test with these residuals in the same
manner we did for iid normal data. The only difference would be that the p-value range
would now be given by 1− Fk−1(Q(x)) to 1 − Fk−4((Q(x)) to reflect that 3 parameters are
being estimated (β0, β1 and σ).

Technical details (ignore if you’re not interested)

To dig into the sampling distribution of β̂0, β̂1 and σ̂2, we first need to recall an important
result we had seen a long time back (Notes 7 to be precise). We saw that if Z1, · · · , Zn

IID∼
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Normal(0, 1) and W1, · · · ,Wn relate to Z1, · · · , Zn through the system of equations:

W1 = a11Z1 + · · ·+ a1nZn

W2 = a21Z1 + · · ·+ a2nZn

...

Wn = an1Z1 + · · ·+ annZn

thenW1, · · · ,Wn are also independent Normal(0, 1) variables with W 2
1 +· · ·+W 2

n = Z2
1+· · ·+

Z2
n provided the coefficients on each row form a vector of unit length and these vectors are

orthogonal to each other. We had used this result to show that if X1, · · · , Xn
IID∼ Normal(0, 1)

then X̄ ∼ Normal(0, 1/
√
n) and

∑n
i=1(Xi − X̄)2 ∼ χ2(n− 1) and these two are independent

of each other.
We will pursue a similar track here. First we note that when Yi = β0 + β1xi + ϵi with

ϵi
IID∼ Normal(0, σ2),

Ȳ =
1

n

n∑
i=1

(β0 + β1xi + ϵi) = β0 + β1x̄+ ϵ̄

and with ui = (xi − x̄)/
∑n

i=1(xi − x̄)2,

β̂1 =

∑n
i=1 Yi(xi − x̄)∑n
i=1(xi − x̄)2

=
n∑

i=1

uiYi =
n∑

i=1

ui(β0 + β1xi + ϵi) = β1 +
n∑

i=1

uiϵi

because
∑n

i=1 ui = 0 and
∑n

i=1 uixi = 1.

Define ζ1 = ϵ1/σ, · · · , ζn = ϵn/σ, then ζ1, · · · , ζn
IID∼ Normal(0, 1) and from calculations

above Ȳ = β0 + β1x̄+ σζ̄ and β̂1 = β1 + σ
∑n

i=1 uiζi. Now get W1, · · · ,Wn as

√
n ζ̄ = W1 =

1√
n
ζ1 + · · ·+ 1√

n
ζn[

n∑
i=1

(xi − x̄)2

]1/2 n∑
i=1

uiζi = W2 =
x1 − x̄√∑n
i=1(xi − x̄)2

ζ1 + · · ·+ xn − x̄√∑n
i=1(xi − x̄)2

ζn

W3 = a31ζ1 + · · ·+ an1ζn
...

Wn = an1ζ1 + · · ·+ annζn

where the rows are unit length and mutually orthogonal (the first two rows are so by design,
and so can be extended to a set of n rows by what is known as Gram-Schmidt orthogonal-
ization). So we have Wi

IID∼ Normal(0, 1) and W 2
1 + · · ·+W 2

n = ζ21 + · · ·+ ζ2n.
This leads to a rich collection of results. First we see that β̂1 = β1+σW2/

√∑n
i=1(xi − x̄)2

with W2 ∼ Normal(0, 1). Hence we must have

β̂1 ∼ Normal

(
β1,

σ2∑n
i=1(xi − x̄)2

)
.
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Next,

β̂0 = Ȳ − β̂1x̄ = β0 + σ

[
W1√
n
− x̄W2√∑n

i=1(xi − x̄)2

]
with W1,W2 independent Normal(0, 1). Therefore,

β̂0 ∼ Normal

(
β0, σ

2

[
1

n
+

(x̄)2∑n
i=1(xi − x̄)2

])
.

Furthermore, for any two numbers a and b

aβ̂0 + bβ̂1 = aβ1 + bβ0 + σ

[
aW1√

n
− (ax̄− b)W2√∑n

i=1(xi − x̄)2

]

∼ Normal

(
aβ0 + bβ1, σ

2

{
a2

n
+

(ax̄− b)2

(n− 1)s2x

})
.

Next we look at σ̂2. First note that,

Yi − β̂0 − β̂1xi = ϵi − (β̂0 − β0)− (β̂1 − β1)xi = σ

[
ζi −

W1√
n
− (xi − x̄)W2√∑n

i=1(xi − x̄)2

]

which leads to the following identity (with a bit of algebra that you can ignore)∑n
i=1(Yi − β̂0 − β̂1xi)

2

σ2
=

n∑
i=1

ζ2i −W 2
1 −W 2

2 = W 2
3 + · · ·+W 2

n

because
∑n

i=1 ζ
2
i =

∑n
i=1W

2
i . But W

2
3 +· · ·+W 2

n is the sum of n−2 independent Normal(0, 1)
variables, so

(n− 2)σ̂2

σ2
=

∑n
i=1(Yi − β̂0 − β̂1xi)

2

σ2
∼ χ2(n− 2)

and because W3, · · · ,Wn are independent of W1,W2, we can conclude σ̂2 is independent of
β̂0 and β̂1.
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