STA 114: STATISTICS

Notes 21. Linear Regression

Introduction

A most widely used statistical analysis is regression, where one tries to explain a response
variable Y by an explanatory variable X based on paired data (X1,Y7), -+, (X,,Y,). The
most common way to model the dependence of ¥ on X is to look for a linear relationship
with additional noise,
Yi=06+ 65 Xi+6

with €,--- €, taken to be independent and identically distributed random variables with
mean 0 and variance o?. The unknown quantities are (3, 31,0%). Many pairs of natural
measurements exhibit such linear relationships. The figure below shows atmospheric pressure
(in inches of Mercury) against boiling point of water (in degrees F) based on 17 pairs of
observations. Although water’s boiling point and atmospheric pressure should have a precise
physical relationship, there would always be some deviation in actual measurements due to
factors that are hard to control.
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Least squares line

The straight line you see in the above figure is the line that “best fits” the data. This is found
as follows. For any line y = by + b1z, we can find the “residuals” e; = y; — by — by x; if we tried



to explain the observed values of Y by those of X using this line. The total deviation can be
measured by the sum of squares of the residuals d(by, b1) =Y 1, €2 = > 7" (y; — bo — bix;)?.
We could find by and b; that minimize d(bg, b;). This is easily done by using calculus. We

set aibod(bo, b)) =0, 8‘2 d(bg, b1) = 0 and solve for by, b;. In particular,

(’9
0= bo, b1 Z 2 - bo - blxz)(—l) = —2n( - bo — blx)

3
0= bo,bl 22 —bo—b1$ leyz—nbo—blzx
These are two linear equations in two unknowns by, b;. The solutions are:
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> i1 (i — T)? Yoz —7)?

Let’s denote s,y = — (i — ) (2 _) [this is the sample covariance between Y and X].

Then using our old notation s? = —= LS~ (zi — T)% we can write the least squares solution
as by = § — 82y /52, by = Sgy /52

The method of least squares was used by physicists working on astrological measure-
ments in the early 18th century. A statistical framework was developed much later. The
main import of the statistical development, as usual, has been to incorporate a notion of
uncertainty.

Statistical analysis of simple linear regression

To put the linear regression relationship Y; = 5y + 81 X; + ¢; into a statistical model, we need
a distribution on the ¢;’s. The most common choice is a normal distribution Normal(0, o%).
This can be justified as follows: the additional factors that give rise to the noise term are
many in number and act independently of each other, each making a little contribution. By
the central limit theorem the aggregate of such numerous, independent, small contributions
should behave like a normal variable. The mean is fixed at zero because any non-zero mean
can be absorbed in the intercept f.

So our statistical model is Y; = [y + 51 X; + €, € ~ Normal(0, o) with model parameters
Bo € (—00,00), B € (—00,0), and 02 > 0. We also need to assume that the error terms ¢;’s
are independent of the explanatory variables X; (because the errors account for additional
factors beyond the explanatory variable). Then, the log-likelihood function in the model
parameters is given by,

Z?:l(yi — Bo — 51%)2.
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Cay(Bo, 1,0%) = const — glog o —

To find the MLE, first notice that for every o2, the log-likelihood function is maximized
at (Bo, /1) equal to the least squares solutions (y — SuyT/S2, Suy/52), and so we must have
Bl,MLE(x Y) = U — SuyT/52, ﬁg aie(T,Y) = Sgy/s2. To shorten notations we’ll just write ﬁo

A

and Bl for ﬁ()’MLE(x,y) and [y yue(, y) respectively.
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Consequently, the MLE of o2 is found by setting %Emvy(ﬁ?o, B, 0?) = 0. This given,

R 1 < L
O-I?/ILE(']:’y> = E Z(yz - 50 - 51$i)2’

=1

It is more common to estimate o2 by

1 < N
~9 2 2
o :Sy\x:m : (Yi — Bo — Brzi)”.
=1
where n—2 indicates that two unknown quantities (5y and ;) were to be estimated to define
the residuals.

Sampling theory

To construct confidence intervals and test procedures for the model parameters, we’ll first
need to look at their sampling theory. We’ll explore these treating the explanatory variable
as non-random, i.e., as if we picked and fixed the observations x1,--- ,x,. You can interpret
this as being the conditional sampling theory of the estimated model parameters given the
observed explanatory variables.

It turns out that when Y; = 8y + Si2; + €; with €; ~ Normal(0, ¢%), for any two numbers
a and b,

1. aBo + bB; ~ Normal (aﬁo + b8, 0° {% + Ef__l;’i; }) .
2. (n—2)6%/0% ~ x*(n —2)
3. and these two random variables are mutually independent.

A proof of this is given at the end of this handout. It is only for those who are curious to
know why this happens. You may ignore it if you're not interested.

Two special cases of the above result would be important to us. First, with a = 1 and
b = 0 the result gives 5y ~ Normal(Gy,o?{1 + —Z—1}) and is independent of 2. Second,

-1)s2

with @ = 0 and b = 1 we have 3; ~ Normal(5, UQW) and is independent of 62.

ML confidence interval

We shall only look at confidence intervals for parameters that can be written as n = afy +
bB; for some real numbers a and b (again, the interesting cases would be (a = 1,b = 0)
corresponding to y and (a = 0,b = 1) corresponding to ;). From the result above it follows

that /) = afy + b3y ~ Normal(n, 07) where 0} = o [‘;—2 + ((fi_l;’iz} and 7 is independent of 2.
Let 67 = 6° [% + ((Zi;’;} . A bit of algebra shows that
D=0 tn - 2).
Tn



Therefore a 100(1 — a))% confidence interval for 7 is given by
B(ZE, y) = ﬁ + &nzn—Q(a)'

This confidence interval is also the ML confidence interval, i.e., it matches {(; (n) >
max, (5 (1) — ¢*/2} for some ¢ > 0 where £} (n) is the pofile log-likelihood of 7, but we
would not pursue a proof here.

Hypotheses testing

Again we restrict ourselves to parameters that can be written as n = afy + bf;. To test
Hy : n=no against H; : n # 1, the size-a ML test is the one that rejects Hy whenever g is
outside the 100(1 — «)% ML confidence interval 7 F 6,2,—2(«). The p-value based on these
tests is precisely the « for which nq is just on the boundary of this interval.

Of particular interest is testing Hy : 1 = 0 against Hy : 1 # 0. The null hypothesis
says that X offers no explanation of Y within the linear relationship framework. This can
be dealt as above with a = 0 and b = 1 and thus checking whether 0 is outside the interval

By T 62n_a(a)//(n — 1)s2.

Prediction

Suppose you want to predict the value Y* of Y corresponding to an X = x* that is known
to you. The model says Y* = 3y + B1z* + €* where ¢* ~ Normal(0, 0?) and is independent
of €, -+ ,€,. If we knew [y, 51,0, we could give the interval fy + fiz* F oz(«a), taking
into account the variability o2 of e*. Our best guess for 3y + fiz* is the fitted value §* =

Bo+ frz* (the point on the least squares line with z-coordinate z*) with additional associated

variability o?{% + Ei:f)s)j } [follows from the result with @ = 1, b = 2*]. Also, we have an

estimate 62 for o2. Putting all these together, it follows that the predictive interval

(7 — 2%)2]?

- 5 1
o |14 — © Zp—
Bo+ Bix* + 0 +n+(n—1)s§ Zn_o(@)
has a 100(1 — a)% coverage.
Testing goodness of fit
Once we fit the model, we can construct our residuals ¢; = Y; — o — fiay, i = 1,--+ ,n.

The histogram of these residuals should match the Normal(0, 0?) pdf, with o2 estimated by
2. So we could carry out a Pearson’s goodness-of-fit test with these residuals in the same
manner we did for iid normal data. The only difference would be that the p-value range
would now be given by 1 — Fy_1(Q(z)) to 1 — F_4((Q(x)) to reflect that 3 parameters are
being estimated (S, f; and o).

Technical details (ignore if you’re not interested)

To dig into the sampling distribution of BO, Bl and 62, we first need to recall an important
IID

result we had seen a long time back (Notes 7 to be precise). We saw that if Z;,---, 7, ~
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Normal(0,1) and Wy, --- W, relate to Zy,--- , Z, through the system of equations:

Wi =anz1+- -+ ansn
W2 = a2121 + -+ ClQnZn

Wn = anIZI + -+ annZn

then Wy, --- | W, are also independent Normal(0, 1) variables with W2+ - -+ W2 = ZZ+-- -+

Z?2 provided the coefficients on each row form a vector of unit length and these vectors are
IID

orthogonal to each other. We had used this result to show that if Xy,---, X, ~ Normal(0, 1)
then X ~ Normal(0,1/y/n) and >_1" (X; — X)* ~ x*(n — 1) and these two are independent
of each other.

We will pursue a similar track here. First we note that when Y; = £y + f1x; + ¢; with

11D
¢; ~ Normal(0, 0?),
n

Y:%Z<50+lei+€i)zﬁo+ﬂlj+g

~ T.i Y; T, — X . 3
B = Zzgl ( _ ) - ZU’Y; — Zui(ﬂo + iz +€) =P+ Zuiei
" ( — — i—1

because Y u; =0 and > wz; = 1.
Define ¢; = €1/0,-,( = €u/0, then (i, -+, (y ~ Normal(0,1) and from calculations
above Y = fy + /1T +oC and 1 = 1 + 0y . u;¢;. Now get Wy, --- W, as

VAl=Wi=—= .

TGt
" 12 _
C_=)\2 (. = = ot ttt i
[Dx’ K ] 2 6= W= el e

W3 = az1¢i + -+ + aniGp

Wn = anlCl + -+ annCn

where the rows are unit length and mutually orthogonal (the first two rows are so by design,
and so can be extended to a set of n rows by what is known as Gram-Schmidt orthogonal-
ization). So we have W; ~ Normal(0,1) and W2+ --- + W2 = (2 +--- + (2.

This leads to a rich collection of results. First we see that 81 = 81 +0Ws/ Vo (z — 7)?
with W5 ~ Normal(0, 1). Hence we must have

~

0.2
61 ~ Normal (51, Z?:l(gji — :7:)2) .




Next,

BOZY_BICEZEO"‘U

W aw
Vi /T (@ - 7)?
with Wy, Wy independent Normal(0, 1). Therefore,

st o))

Furthermore, for any two numbers a and b

afo + bBy = afy + 0By + o

aWy  (az —b)Ws ]
v \/27:1(% —I)?

~ Normal (aﬁo + 0By, 0% {%2 + M}) :

(n—1)s2
Next we look at 2. First note that,

Y — Bo— Prai = € — (Bo — Bo) — (51 —Bizi=0 [Cz‘ - % - \/S;L _(??/25)2]
i=1\"1

which leads to the following identity (with a bit of algebra that you can ignore)

S (Vi = Bo — Bimi)?

o2

=Y G-V Wy =W+ W,
=1

because > (2 = >, W2. But Wi+---+ W2 is the sum of n—2 independent Normal(0, 1)
variables, so

(n — 2)‘32 Z?:l(Y;l - BO - 811’1’)2

= = = ~x'(n—2)

and because W3, --- , W, are independent of Wi, W», we can conclude 6% is independent of
By and (.



