
STA 114: Statistics

Notes 3. Maximum Likelihood

Inference from the Likelihood Function

The likelihood function Lx(θ) (or the log-likelihood function `x(θ)) gives scores to theories
θ ∈ Θ as to how well they explain the observed data X = x. There are two ways we can
report the message from the likelihood function. First, we can split the parameter space
Θ into two subsets: a subset of well supported theories and the other with theories not so
well supported by the observed data, with Lx(θ) for any θ in the first subset being larger
than Lx(θ) for every θ in the second. This approach leads to maximum likelihood (ML)
inference. An alternative is to convert the likelihood function Lx(θ) into a pdf/pmf on Θ
and then report visual or numerical summaries of this pdf/pmf through density plot, mean,
variance, quantiles etc. This approach leads to the Bayesian inference. For now we focus on
ML inference.

Maximum Likelihood Estimate

A set of well supported theories can be identified by considering all θ such that

Lx(θ) ≥ k ×max
θ∈Θ

Lx(θ),

for some fraction k ∈ [0, 1] of our choice. If A denotes the subset of θ where this happens,
then clearly Lx(θ1) > Lx(θ2) for any θ1 ∈ A and θ2 ∈ Θ \ A. See Figure 1.

An extreme case of this obtains if we choose k = 1, so that we only consider theories that
are best supported by data:

Lx(θ) = max
θ∈Θ

Lx(θ).

Any point θ that satisfies the above is called a maximum likelihood estimate (MLE), and is
denoted θ̂MLE(x). In many cases there is a single point where this happens, so the MLE is
unique, and we can talk about the MLE. Note that since log is a monotone transform, we
also have `x(θ̂MLE(x)) = maxθ∈Θ `x(θ), i.e., the MLE maximizes the log-likelihood function
over Θ.

In ML inference, a summary of the likelihood function begins with the reporting of the
MLE (provided it exists and is unique). The popularity of ML inference is partly due to
the fact that finding the MLE is an optimization problem, which is both elegant and well
understood. Optimization is one mathematical problem that can be routinely solved either
analytically or with the help of a computer, thanks to an array of very powerful numerical
algorithms that have been developed over centuries (starting from Newton).

1



θ

L x
(θ
)

A

θ̂MLE(x)

0.1 * maxθLx(θ)

Figure 1: A schematic representation of ML inference. Solid curve is the likelihood function.
Horizontal dashed line gives separation by 0.1 × maxθ∈Θ Lx(θ). The corresponding set A
of well-supported θ are marked by the black segment on the horizontal axis. The MLE is
marked with the arrow.

Finding the MLE

A standard technique to find the MLE relies on the following observation. If Lx(θ), or
equivalently, `x(θ) is a differentiable function over Θ with a unique maxima inside Θ, then
its first derivative vanishes at the maximum. Thus, if θ is a p-dimensional vector θ =
(θ1, θ2, · · · , θp) then the MLE θ̂MLE(x) can be found by solving the simultaneous equations

∂

∂θj
`x(θ) = 0, j = 1, 2, · · · , p,

in θ. In many cases these equations can be solved analytically, and we’d see some examples
shortly. In many other cases, these equations can be solved by running a suitable computer
algorithm.

Example (Opinion poll). In our opinion poll example data X is modeled by Binomial(n, p),
p ∈ [0, 1] and the likelihood function based on observation X = x is given by

Lx(p) =

(
n

p

)
px(1− p)n−x

and so the log-likelihood function is given by

`x(p) = const + x log p+ (n− x) log(1− p),

with p ∈ [0, 1]. To find the MLE we set up the equation

0 =
∂

∂p
`x(p) =

x

p
− n− x

1− p
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which is solved at p = x/n. Hence p̂MLE(x) = x/n. For n = 500 and observed data X = 200,
the MLE is 0.40. This is the researcher’s “estimate”, based on the ML approach, of the
unknown proportion of supporters in the entire college.

Example (Lactic acid in cheese). A cheese manufacturer wants to quantify the lactic acid
concentration in cheese produced at one of his factories. He gets n randomly chosen pieces
of cheese measured and their lactic acid concentrations X1, · · · , Xn recorded. Suppose these
data are to be modeled as Xi

IID∼ Normal(µ, σ2), i.e., each Xi is described by the Normal(µ, σ2)
pdf g(xi|µ, σ2) = (2πσ)−1/2 exp{−(xi− µ)2/(2σ2)}, and they are described independently of
each other. So the pdf of the data X at any x = (x1, · · · , xn) is given by:

f(x|µ, σ2) =
n∏
i=1

g(xi|µ, σ2).

Here µ gives the overall concentration of lactic acid, which is the quantity of interest, and σ
explains the variability from one piece to another. Suppose, it is known that the variability
σ = 1/3. So our statistical model is Xi

IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ = 1/3.
Let’s start by writing the log-likelihood function

`x(µ) = log f(x|µ, σ2) =
n∑
i=1

log g(xi|µ, σ2)

=
n∑
i=1

[
− 1

2
log(2π)− 1

2
log σ2 − (xi − µ)2

2σ2

]
= −n

2
log(2π)− n

2
log σ2 −

∑n
i=1(xi − µ)2

2σ2

which is a quadratic function in µ (here σ = 1/3 is known, but we retain the symbol σ to
keep the calculations general and adaptable to other values of σ). At this stage we use the
identity that for any n numbers x1, · · · , xn and another number a,

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄)2 + n(x̄− a)2

where x̄ =
∑n

i=1 xi/n is the average of x1, · · · , xn. Using this above we see

`x(µ) = −n
2

log(2π)− n

2
log σ2 −

∑n
i=1(xi − x̄)2

2σ2
− n(x̄− µ)2

2σ2

= const− n(x̄− µ)2

2σ2

where “const” absorbs all additive terms that do not involve the argument µ of the log-
likelihood function.

To find the MLE we now set up the equation

0 =
∂

∂µ
`x(µ) =

n(x̄− µ)

σ2

which is solved at µ = x̄ and hence µ̂MLE(x) = x̄. If the manufacturer had n = 10 pieces
measured to have concentrations (0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58), then
his MLE of the overall concentration is the average of these 10 numbers, 1.379.
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Example (Lactic acid concentration in cheese, Cond.). Now consider the case where the
variability is also unknown along with the overall concentration µ. Now our statistical model
is Xi

IID∼ Normal(µ, σ2), (µ, σ2) ∈ (−∞,∞)× (0,∞). Working as before we get

`x(µ, σ
2) = −n

2
log(2π)− n

2
log σ2 −

∑n
i=1(xi − x̄)2

2σ2
− n(x̄− µ)2

2σ2
.

To find the MLE we set up the equations:

0 =
∂

∂µ
`x(µ, σ

2) =
n(x̄− µ)

σ2

0 =
∂

∂σ2
`x(µ, σ

2) = − n

2σ2
+

∑n
i=1(xi − x̄)2

2(σ2)2
+
n(x̄− µ)2

2(σ2)2

which are solved at µ = x̄, σ2 =
∑n

i=1(xi − x̄)2/n. Hence µ̂MLE(x) = x̄ and σ̂2
MLE(x) =∑n

i=1(xi − x̄)2/n. We shall denote the latter quantity, which is a measure of the variability
among {x1, · · · , xn}, by vx. Going back to the 10 measurements reported above, we see the
MLE of µ remains 1.379 and now we also have the MLE of σ2 equal to 0.096 = 0.312. So
the manufacturer’s ML estimates of concentration and variability are 1.379 and 0.31.

Example (Annual TC counts). As a final example consider inference on trend of tropical
cyclone counts, where annual counts X1, · · · , Xn from n consecutive years are modeled as
Xt

IND∼ Poisson(exp{α + β(t − 1)}), (α, β) ∈ (−∞,∞)2. Here the expected counts µt =
exp{α + β(t − 1)} in years t satisfy the growth equations: µ1 = eα, µt = µt−1e

β. Based on
observations Xt = xt, t = 1, · · · , n, the log-likelihood function is:

`x(α, β) =
n∑
t=1

log(e−µtµxtt /xt!) = −
n∑
t=1

µt +
n∑
t=1

xt log µt −
n∑
t=1

log xt!

= −
n∑
t=1

exp{α + β(t− 1)}+ (α− β)
n∑
t=1

xt + β
t∑
t=1

txt + const.

To find the MLE, we could set ∂
∂α
`x(α, β) = 0, ∂

∂β
`x(β) = 0 and solve. But it is difficult

to derive the solution analytically. Instead we can use iterative optimization routines to
directly maximize `x(α, β). The R package has such a routine called optim().

As observed data, we use the recorded TC counts in the north Atlantic between 1908 and
2007. For these n = 100 records, we have

∑n
t=1 xt = 932 and

∑n
t=1 txt = 51884. For these

observed data, optim() computes (see table 1) the MLE to be (1.9, 6.2×10−3). Accordingly,
the estimated expected annual counts µt satisfy µ̂1 = exp(1.9) = 6.7, with a growth rate

eβ̂ − 1 = 0.63% (see Figure 2).
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## Code for computing MLE for the TC counts.

## Note: optim() performs minimization, so work with negative log-likelihood.

> n <- 100; t <- 1:n; sum.x <- 932; sum.tx <- 51884

> neg.log.lik <- function(par){

+ alpha <- par[1]; beta <- par[2]; mu <- exp(alpha + beta * (t - 1))

+ return(sum(mu) - (alpha - beta) * sum.x - beta * sum.tx)

+ }

> o <- optim(c(0,0), neg.log.lik)

> print(o)

$par

[1] 1.9068 0.0062

$value

[1] -1163

$counts

function gradient

89 NA

$convergence

[1] 0

$message

NULL

> alpha.hat <- o$par[1]; beta.hat <- o$par[2];

> print(alpha.hat); print(beta.hat)

[1] 1.9

[1] 0.0062

Table 1: R code for computing the MLE of (α, β) for the annual TC count model. You are
not required to learn this code. This is presented here only for those curious to know how
MLE can computed numerically, using computer programs.
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Figure 2: Observed annual north-Atlantic TC counts and ML estimate of expected counts
for the log-linear Poisson model described in the text. Data are from 1908 through 2007.

Sufficient statistics

It is interesting to note that for the annual TC count model, the observed data (x1, · · · , xn)
affect the log-likelihood function through only two summaries

∑
t xt and

∑
t txt. Any sum-

mary of the data is called a statistic. For a statistical model {f(x|θ) : θ ∈ Θ} , if there is a
vector of statistics T (x) = (T1(x), · · · , Tm(x)) such that for some functions h(x) and g(t, θ),

`x(θ) = h(x) + g(T (x), θ), θ ∈ Θ

for every possible observation X = x, then T (x) is called a vector of sufficient statistics for
the model. For the TC counts model (

∑
t xt,

∑
t txt) is a vector of sufficient statistics. For

the lactic acid concentration model with known variability, x̄ is a sufficient statistic. For
the lactic acid concentration model with unknown concentration and variability, (x̄, vx) is a
vector of sufficient statistics. It should be obvious that any likelihood based inference of θ
depends on data only through the sufficient statistics.
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