
STA 114: Statistics

Notes 4. ML Intervals

Well supported theories

Reporting the MLE, or any other single number summary of the likelihood function, under-
mines the inherent uncertainty associated with a statistical model. Instead we could report
a subset of well supported theories as Ak(x) = {θ ∈ Θ : Lx(θ) ≥ kLx(θ̂MLE(x))} for a fraction
of our choice k ∈ [0, 1]. In the log-scale, the set Ak(x) equals Bc(x) = {θ ∈ Θ : `x(θ) ≥
`x(θ̂MLE(x))− c2/2} where c =

√
2 log(1/k) ≥ 0. When θ is a scalar parameter and `x(θ) is

a nice unimodal function with a unique maxima at θ̂MLE(x), the set Bc(x) forms an interval
around the MLE, and is called an ML interval. We now look at how to characterize and
compute such ML intervals.

Characterization for normal model with known variance

Example (Lactic acid concentration, Contd.). Consider again modeling n concentration

measurements X1, · · · , Xn by Xi
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ = 1/3. We previously

derived that the log-likelihood function is given by:

`x(µ) = const− n(x̄− µ)2

2σ2

with µ̂MLE(x) = x̄. Therefore,

`x(µ)− `x(µ̂MLE(x)) = −n(x̄− µ)2

2σ2

and so for any c ≥ 0, the set Bc(x) = {µ ∈ (−∞,∞) : `x(µ) ≥ `x(µ̂MLE(x))− c2/2} equals

Bc(x) =

{
µ ∈ (−∞,∞) :

n(x̄− µ)2

2σ2
≤ c2

2

}
= [x̄− cσ/

√
n, x̄+ cσ/

√
n].

Therefore the set Bc(x) of well supported theories forms an interval centered at the MLE
x̄ with half-width cσ/

√
n. For our data from the cheese manufacturer with n = 10 and

x̄ = 1.379, this interval equals [1.17, 1.59] for a choice of c = 1.96 =
√

2 log(1/0.146).
That the width of the ML interval x̄∓cσ/

√
n should depend on σ and n is intuitive. With

larger σ, there is less separation between the normal pdfs Normal(µ1, σ
2) and Normal(µ2, σ

2)
and hence a less sharp comparison between theories is possible. Indeed, the interval gets
wider with larger σ. However, sharp comparison should be eventually possible with more
and more specimens being measured, i.e., with large n, which indeed shortens the width of
the interval.
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Characterization for normal model with unknown variance

Example (Lactic acid concentration, Contd.). Now consider the case where the variability

component is not assumed known and our model for data is: Xi
IID∼ Normal(µ, σ2), (µ, σ) ∈

(−∞,∞) × (0,∞). We are still interested in reporting a set of valued of µ that are well
supported by data. One way of constructing such a set is the following:

Bc(x) =

{
µ ∈ (−∞,∞) : max

σ2∈(0,∞)
`x(µ, σ

2) ≥ `x(µ̂MLE(x), σ̂2
MLE(x))− c2/2

}
that is, we report any value of µ which, for some σ, explains the data within a log-factor
c of the best explanation offered by the MLE. The quantity `∗x(µ) = maxσ2 `x(µ, σ

2) is said
to give the profile log-likelihood at µ. Equivalently, one can define the profile likelihood
L∗x(µ) = maxσ2 Lx(µ, σ

2). Evidently, `∗x(µ) = logL∗x(µ).
Note that maxµ `

∗
x(µ) = maxµ,σ2 `x(µ) and hence the profile likelihood is maximized at the

same µ̂MLE(x) which, coupled with σ̂2
MLE(x) maximizes the original likelihood. So the MLE

of µ based on the profile likelihood is the same as the original MLE. So the set Bc(x) above
then is same as what we would do for the scalar parameter µ but with its profile likelihood
rather than the original likelihood: Bc(x) = {µ ∈ (−∞,∞) : `∗x(µ) ≥ `∗x(µ̂MLE(x))− c2/2}.

We previously derived

`x(µ, σ
2) = const− n

2
log σ2 − n{vx + (x̄− µ)2}

2σ2

and so to maximize this in σ2, for a given µ, we set:

0 =
∂

∂σ2
`x(µ, σ

2) = − n

2σ2
− n{vx + (x̄− µ)2}

2(σ2)2

which is solved at σ2 = vx + (x̄−µ)2. Plugging this into the log-likelihood we get the profile
log-likelihood

`∗x(µ) = max
σ2∈(0,∞)

`x(µ, σ
2) = const− n

2
log{vx + (x̄− µ)2} − n

2
.

Plugging in the MLE µ̂MLE(x) = x̄, we get

`∗x(µ̂MLE(x)) = const− n

2
log vx −

n

2

and consequently, `∗x(µ)− `∗x(µ̂MLE(x)) = −n
2

log{1 + (x̄− µ)2/vx}. Therefore,

Bc(x) =

{
µ :

n

2
log

{
1 +

(x̄− µ)2

vx

}
≤ c2/2

}
=

{
µ :

(x̄− µ)2

vx
≤ ec

2/n − 1

}
=
[
x̄− v1/2x

√
ec2/n − 1, x̄+ v1/2x

√
ec2/n − 1

]
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which is an interval centered at x̄ with half-width v
1/2
x

√
ec2/n − 1. For n moderately large,

ec
2/n − 1 ≈ c2/n (see Figure 1), and hence Bc(x) ≈ x̄ ∓ cv1/2x /

√
n. This interval looks just

like the one we had for the known σ case, with the estimate v
1/2
x in place of σ.

The sample variance of n numbers x1, · · · , xn is usually defined as s2x = 1
n−1

∑n
i=1(xi−x̄)2,

which relates to vx as vx = n−1
n
s2x. For large n, vx ≈ s2x and therefore we could also write

Bc(x) ≈ x̄∓ csx/
√
n.

For our observed data x̄ = 1.379 and vx = 0.312. Therefore, for c = 1.96, B1.96(x) ≈
[1.19, 1.57].

Characterization in general

The characterization of Bc(x) in the above example used the fact that the log-likelihood
function is quadratic, or log-quadratic in the parameter of interest. This is a special property
of the normal models. For other models, the the log-likelihood may not be quadratic, making
exact characterization of Bc(x) difficult. Nonetheless, we can use a quadratic approximation
to obtain a good approximate characterization of Bc(x).

Suppose X ∼ f(x|θ), θ ∈ Θ is our statistical model for data X ∈ S. We will assume θ is
a scalar parameter, i.e., Θ is a subset of the real line. We have observed X = x ∈ S and have
constructed the log-likelihood function `x(θ, θ ∈ Θ and suppose it is uniquely maximized at
θ̂MLE(x) inside Θ. Fix a c ∈ [0,∞] and consider Bc(x) = {θ ∈ Θ : `x(θ) ≥ `x(θ̂MLE(x))−c2/2}.

Use the notations ˙̀
x(θ) and ῭

x(θ) to denote the first and second order derivatives ∂
∂θ
`x(θ)

and ∂2

∂θ2
`x(θ) of the log-likelihood function. Because `x(θ) is maximized at θ̂MLE(x) inside

Θ, we must have ˙̀
x(θ̂MLE(x)) = 0 and ῭

x(θ̂MLE(x)) < 0. Let Ix = −῭
x(θ̂MLE(x)), which is a

positive number.
the derivative of `x(θ) must vanish at the maximal points which is θ̂MLE(x). Now, use

second order Taylor approximation of `x(θ) around θ̂MLE(x) to write

`x(θ) ≈ `x(θ̂MLE(x)) + (θ − θ̂MLE(x)) ˙̀
x(θ̂MLE(x)) +

1

2
(θ − θ̂MLE(x))2 ῭

x(θ̂MLE(x))

= `x(θ̂MLE(x))− 1

2
(θ − θ̂MLE(x))2Ix

and consequently,

Bc(x) ≈
{
θ :

Ix
2

(θ − θ̂MLE(x))2 ≤ c2

2

}
=

[
θ̂MLE(x)− c√

Ix
, θ̂MLE(x) +

c√
Ix

]
.

The quantity Ix is called the “observed information”. It usually increases when more infor-
mation are available from data. In particular if data X = (X1, · · · , Xn) with Xi modeled as

Xi
IID∼ g(x|θ), then Ix is roughly proportional to n.

Example (Opinion poll, Contd.). For the opinion poll example, with the model X ∼
Binomial(n, p), p ∈ [0, 1], the log-likelihood function equals

`x(p) = const + x log p+ (n− x) log(1− p)

3



with p̂MLE(x) = x/n. Differentiating twice we get, ῭
x(p) = −x/p2 − (n− x)/(1− p)2 and so

Ix = −῭
x(p̂MLE(x)) =

n2

x
+

n2

n− x
=

n
x
n
(1− x

n
)
.

For our data with n = 500 and x = 200, p̂MLE(x) = 0.4 and Ix = 2083. Therefore, for
c = 1.96 =

√
2 log(1/0.146), B1.96(x) ≈ 0.4∓ 0.043 = [0.357, 0.443].

Choice of the cutoff

So we now how to construct Bc(x) for a choice of c ≥ 0 (at least for some statistical models).
But how do we decide upon c? Consider two choices of this cutoff c = 1.96 and c = 3.
Qualitatively we understand that B3(x) includes more theories than B1.96(x), i.e., c = 3 has
a lower standard than c = 1.96 of accepting a theory as a “good explanation” of the data.
But is there a quantitative interpretation of the choice c?

The classical theory of statistics provides such a quantification. It involves a “what if”
type thought experiment that we shall see in detail in the next two lectures.
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Figure 1: Comparison of
√
ec2/n − 1 and c/

√
n for c = 1.96 over a range of n values.
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