STA 114: STATISTICS

Notes 4. ML Intervals

Well supported theories

Reporting the MLE, or any other single number summary of the likelihood function, under-
mines the inherent uncertainty associated with a statistical model. Instead we could report
a subset of well supported theories as A(z) = {0 € © : L(#) > kL, (0yus(z))} for a fraction
of our choice k € [0,1]. In the log-scale, the set Ax(z) equals B.(z) = {6 € © : £,(0) >
Co(Orin(z)) — 2/2} where ¢ = \/21log(1/k) > 0. When 6 is a scalar parameter and £,(0) is
a nice unimodal function with a unique maxima at 6y,5(2), the set B.(z) forms an interval
around the MLE, and is called an ML interval. We now look at how to characterize and

compute such ML intervals.

Characterization for normal model with known variance

Example (Lactic acid concentration, Contd.). Consider again modeling n concentration

measurements X, --- , X, by X; ~ Normal(y,0?), i € (—00,00), 0 = 1/3. We previously
derived that the log-likelihood function is given by:
n(z — p)®
lo(p) = t —
(1) = cons 52

with fiyie(x) = Z. Therefore,

Ce(p) = o(famn (7)) = @ —p)

and so for any ¢ > 0, the set B.(z) = {u € (—00,00) : £x(pt) > Ly(finue(x)) — ¢*/2} equals

C2

B.(x) = {u € (—00,00) : % < 5} = [T — co/\/n, T + co/\/n].

Therefore the set B.(z) of well supported theories forms an interval centered at the MLE
T with half-width co/y/n. For our data from the cheese manufacturer with n = 10 and
T = 1.379, this interval equals [1.17, 1.59] for a choice of ¢ = 1.96 = /21og(1/0.146). O

That the width of the ML interval ZFco/y/n should depend on ¢ and n is intuitive. With
larger o, there is less separation between the normal pdfs Normal(s1, 0?) and Normal(us, 02)
and hence a less sharp comparison between theories is possible. Indeed, the interval gets
wider with larger 0. However, sharp comparison should be eventually possible with more
and more specimens being measured, i.e., with large n, which indeed shortens the width of
the interval.



Characterization for normal model with unknown variance

Example (Lactic acid concentration, Contd.). Now consider the case where the variability
component is not assumed known and our model for data is: X; ~ Normal(y, 02), (i, 0) €
(—00,00) x (0,00). We are still interested in reporting a set of valued of u that are well
supported by data. One way of constructing such a set is the following:

Bc(l’) = {:u € (_00700) ¢ max gm(:u>o'2) > gx(/lMLE(m)v&I%iLE(x)) - 02/2}

2€(0,00)

that is, we report any value of y which, for some o, explains the data within a log-factor
¢ of the best explanation offered by the MLE. The quantity £%(u) = max,z2 £, (p, 0?) is said
to give the profile log-likelihood at p. Equivalently, one can define the profile likelihood
L*(p) = max,2 Ly (i, 0?). Evidently, ¢* (1) = log L ().

Note that max, £} () = max,, ,2 £,(1) and hence the profile likelihood is maximized at the
same [l p(®) which, coupled with 62, ,(r) maximizes the original likelihood. So the MLE
of 1 based on the profile likelihood is the same as the original MLE. So the set B.(x) above
then is same as what we would do for the scalar parameter p but with its profile likelihood
rather than the original likelihood: B.(z) = {u € (—o00,00) : £:(p) > €:(fnme(z)) — 2/2}.

We previously derived

T 2
gl‘(ﬂ? 02) = const — glog 0-2 _ n{vl‘ +2f2 H’) }

and so to maximize this in o2, for a given y, we set:

L0, n nfut@-p
N 802&6(“’0 )= 202 2(02)?

0

which is solved at 02 = v, + (Z — p)?. Plugging this into the log-likelihood we get the profile
log-likelihood

C(p) = max C(u, 02) = const — glog{ux + (7 — M)Q} . g

2€(0,00)

Plugging in the MLE jiyx(x) = Z, we get

g::(/)MLE(iU)) = const — glog Vy — g
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which is an interval centered at 7 with half-width vy/*ve®/m — 1. For n moderately large,
e’/ — 1 ~ /n (see Figure 1), and hence B.(z) ~ & T cviﬂ/\/ﬁ. This interval looks just
like the one we had for the known o case, with the estimate vy/? in place of o.

The sample variance of n numbers zy, - - -, z, is usually defined as s2 = L= 3" | (z;,—7)?,

which relates to v, as v, = “=2ts2.

B.(z) = T F s, /+/n.
For our observed data T = 1.379 and v, = 0.312. Therefore, for ¢ = 1.96, B gs(x) =~
[1.19,1.57].

For large n, v, ~ s2 and therefore we could also write

]

Characterization in general

The characterization of B.(x) in the above example used the fact that the log-likelihood
function is quadratic, or log-quadratic in the parameter of interest. This is a special property
of the normal models. For other models, the the log-likelihood may not be quadratic, making
exact characterization of B.(z) difficult. Nonetheless, we can use a quadratic approximation
to obtain a good approximate characterization of B.(z).

Suppose X ~ f(x]0),6 € © is our statistical model for data X € S. We will assume 6 is
a scalar parameter, i.e., © is a subset of the real line. We have observed X = x € S and have
constructed the log-likelihood function ¢,(6, 6 € © and suppose it is uniquely maximized at
Oy () inside ©. Fix a ¢ € [0, 00 and consider B,(z) = {0 € © : £,(0) > (o (0yu(x)) —2/2}.

Use the notations ¢, (6) and £,(0) to denote the first and second order derivatives 20,(0)
and (%2261(9) of the log-likelihood function. Because £, (0) is maximized at Oy ,(z) inside
O, we must have @x(éMLE(x)) = 0 and ﬁx(éMLE(:L’)) < 0. Let I, = —gz(éMLE(aj)), which is a
positive number.

the derivative of £,(f) must vanish at the maximal points which is fys(z). Now, use

second order Taylor approximation of £,(0) around Oy, () to write

£0) = CeOuun @) + (0 = B ()L Bune () + 50— Bue () B )
= gx(éMLE(x)) - %(‘9 - éMLE(m))2IJ‘

and consequently,

A Cc ~ C

Bia) 2 {05 50— Bunle) < 5} ~ [funsl) ~ = Bunl) +

The quantity I, is called the “observed information”. It usually increases when more infor-
mation are available from data. In particular if data X = (X1, -+, X,,) with X; modeled as

X; ~ g(x|@), then I, is roughly proportional to n.

Example (Opinion poll, Contd.). For the opinion poll example, with the model X ~
Binomial(n, p), p € [0, 1], the log-likelihood function equals

l,(p) = const + zlogp + (n — ) log(1 — p)



with pyws(2) = 2/n. Differentiating twice we get, £,(p) = —x/p* — (n — z)/(1 — p)? and so

2 2

—— n n n
L= ~elban(@)) = 4 0 = sy

For our data with n = 500 and = = 200, pye(z) = 0.4 and [, = 2083. Therefore, for
¢ =1.96 = \/21og(1/0.146), By.os(z) ~ 0.4 F 0.043 = [0.357,0.443).

Choice of the cutoff

So we now how to construct B.(x) for a choice of ¢ > 0 (at least for some statistical models).
But how do we decide upon ¢? Consider two choices of this cutoff ¢ = 1.96 and ¢ = 3.
Qualitatively we understand that Bs(x) includes more theories than By g¢(z), i.e., ¢ = 3 has
a lower standard than ¢ = 1.96 of accepting a theory as a “good explanation” of the data.
But is there a quantitative interpretation of the choice ¢?

The classical theory of statistics provides such a quantification. It involves a “what if”
type thought experiment that we shall see in detail in the next two lectures.
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Figure 1: Comparison of ve¢/® — 1 and ¢/+/n for ¢ = 1.96 over a range of n values.



